[go: up one dir, main page]

RU2718604C1 - Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали - Google Patents

Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали Download PDF

Info

Publication number
RU2718604C1
RU2718604C1 RU2019135297A RU2019135297A RU2718604C1 RU 2718604 C1 RU2718604 C1 RU 2718604C1 RU 2019135297 A RU2019135297 A RU 2019135297A RU 2019135297 A RU2019135297 A RU 2019135297A RU 2718604 C1 RU2718604 C1 RU 2718604C1
Authority
RU
Russia
Prior art keywords
strength
rolled
rolling
temperature
steel
Prior art date
Application number
RU2019135297A
Other languages
English (en)
Inventor
Ирина Гавриловна Родионова
Владимир Александрович Углов
Александр Александрович Павлов
Ольга Николаевна Бакланова
Наталия Анатольевна Карамышева
Ирина Николаевна Чиркина
Сергей Владимирович Денисов
Вячеслав Евгеньевич Телегин
Дмитрий Юрьевич Лукьянчиков
Сергей Геннадьевич Андреев
Антон Вячеславович Мастяев
Original Assignee
Публичное акционерное общество "Магнитогорский металлургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Магнитогорский металлургический комбинат" filed Critical Публичное акционерное общество "Магнитогорский металлургический комбинат"
Priority to RU2019135297A priority Critical patent/RU2718604C1/ru
Application granted granted Critical
Publication of RU2718604C1 publication Critical patent/RU2718604C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Изобретение относится к области металлургии, а именно к производству холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, который может быть использован в автомобильной промышленности. Для повышения пластичности, а также расширения технологических возможностей для получения из стали одинакового химического состава проката различных классов прочности 780, 980 и 1180 способ включает нагрев заготовки, горячую прокатку, холодную прокатку и обработку в агрегате непрерывного отжига, причем заготовка получена из стали, содержащей следующие компоненты, мас.%: углерод 0,11-0,13, кремний 0,02-0,40, марганец 2,0-2,2, хром 0,25-0,40, молибден 0,10-0,30, ниобий 0,015-0,025, железо и неизбежные примеси - остальное, в агрегате непрерывного отжига осуществляют нагрев проката до температуры отжига, выдержку, замедленное охлаждение, ускоренное охлаждение до температуры начала перестаривания и перестаривание, при этом для получения проката класса прочности 780 нагрев ведут до 700-720°С, класса прочности 980 нагрев ведут до 770-790°С и класса прочности 1180 нагрев ведут до 730-750°С, а скорость движения проката в агрегате непрерывного отжига для классов прочности 780 и 1180 назначают в зависимости от толщины полос в соответствии с зависимостью V=(80-20h)±10, где V - скорость движения проката, м/мин, h - толщина проката, мм, 80 и 20 - эмпирические коэффициенты, м/мин, для проката класса прочности 980 - в соответствии с зависимостью V=(140-40h)±200, где V - скорость движения полосы, м/мин, h - толщина проката, мм, 140 и 40 - эмпирические коэффициенты, м/мин. 2 табл.

Description

Изобретение относится к области металлургии, а именно к способам производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, который может быть использован в автомобильной промышленности. В настоящее время все более востребован такой прокат с минимальным пределом прочности 780, 980 и 1180 МПа (высокопрочный прокат классов прочности 780, 980 и 1180). Используемая в настоящее время сталь для производства проката трех указанных классов прочности, как правило, имеет различный химический состав. Отсутствуют кассетные технологии производства из сталей одного химического состава холоднокатаного проката разных классов прочности, что затрудняет выполнение малых заказов. Производимый в настоящее время прокат указанных классов прочности, как правило, имеет значения относительного удлинения на нижнем пределе предъявляемых требований. При этом наблюдается нестабильность значений прочностных характеристик в пределах одного класса прочности, что затрудняет переработку проката у потребителей. Поэтому актуально проведение исследований, направленных на преодоление указанных недостатков.
Известен способ производства холоднокатаных листов из двухфазной стали, обладающей очень высокой прочностью, и полученные таким способом листы. Из стали, содержащей в % мас.: 0,055≤С≤0,095, 2≤Mn≤2,6. 0,005≤Si≤0,35, S≤0,005, Р≤0,050, 0,1≤Al≤0.3, 0,05≤Мо≤0,2, 0,2≤Cr≤0,5, при условии, что Cr+2Mo≤0,6, Ni≤0,l, 0,010≤Nb≤0,040, 0,010≤Ti≤0,050, 0,0005≤B≤0,0025, 0,002≤N≤0,007, остальное железо и неизбежные примеси, возникающие при плавке, отливают полуфабрикат. Нагревают его до 1150°C≤Tr≤1250°C и подвергают горячей прокатке при температуре конца прокатки TFL≤Ar3, а затем сматывают в рулон при температуре в пределах 500oC≤Tbob≤570°C. Очищают от окалины и проводят холодную прокатку при обжатии от 30 до 80%. Полученный холоднокатаный полуфабрикат нагревают со скоростью 1°С/сек≤VC≤5°С/сек до температуры отжига Тм, определяемой как Ас1+40°С≤Тм≤Ас3-30°С, при которой выдерживают в течение времени 30 ceк≤tм≤300 сек для образования структуры, содержащей аустенит, после чего охлаждают до температуры ниже Ms со скоростью V, достаточно высокой для превращения всего количества аустенита в мартенсит.Получаемые листы обладают хорошей способностью к формованию и к изгибам при обеспечении прочности стали от 980 до 1180 МПа, предела текучести до 700 МПа и удлинении при разрыве выше 9%. Отношение предела текучести к пределу прочности составляет 0,6-0,8. Недостатком данного способа является низкая пластичность, а также сравнительно высокий предел текучести. Кроме того, данный способ не позволяет дифференцированно получать уровень свойств, соответствующий двум соседним классам прочности 980 и 1180.
(Заявка на изобретение WO 2009150319(А1) C21D 8/02, С22С 38/04, С23С 2/02, С23С 2/06 опубликована 17.12.2009).
Известен способ производства экономичной холоднокатаной стали DP590 с различным пределом текучести. Согласно способу, холоднокатаную сталь DP590 с пределом текучести 280-330 МПа, 340-400 МПа и 420-490 МПа получают путем нагрева, горячей прокатки, травления и непрерывного отжига стальной заготовки. Сталь содержит компоненты, % мас.: С 0,08-0,10; Si≤0,4, Mn 1,20-1,40; Al 0,60-0,80; Мо 0,20-0,30; N≤0,005; Р≤0,008; S≤0,005, остальное Fe и другие неизбежные примеси.
Для стали DP590 с пределом текучести 280-330 МПа температура нагрева заготовок под прокатку составляет 1220-1250°С, температура окончания прокатки в черновой группе клетей - 1060-1090°С, температура конца прокатки - 880-910°С, температура смотки - 680-710°С, суммарное обжатие при холодной прокатке - 55,0-60,0%, температура отжига 810-830°С, температура замедленного охлаждения - 650-670°С, температура ускоренного охлаждения - 280-300°С, температура перестаривания - 270-290°С.
Для стали DP590 с пределом текучести 340-400 МПа температура нагрева заготовок под прокатку составляет 1220-1250°С, температура окончания прокатки в черновой группе клетей - 1020-1050°С, температура конца прокатки - 860-890°С, температура смотки - 630-660°С, суммарное обжатие при холодной прокатке - 63,0-68,0%, температура отжига 800-820°С, температура замедленного охлаждения - 670-690°С, температура ускоренного охлаждения - 260-280°С, температура перестаривания - 250-270°С.
Для стали DP590 с пределом тек) чести 420-490 МПа температура нагрева заготовок под прокатку составляет 1220-1250°С, температура окончания прокатки в черновой группе клетей - 1020-1050°С, температура конца прокатки - 810-840°С, температура смотки - 550-580°С, суммарное обжатие при холодной прокатке - 55,0-70,0%, температура отжига 780-800°С, температура замедленного охлаждения - 670-690°С, температура ускоренного охлаждения - 260-280°С, температура перестаривания - 250-270°С.
Способ получения экономичной холоднокатаной стали DP590 с разным пределом текучести с указанным химическим составом отличается тем, что относительное удлинение контролируется на уровне 0,5±0,1%.
Способ позволяет получать из стали одного химического состава прокат класса прочности 590 с различными значениями предела текучести в зависимости от требований конкретного потребителя. Недостатком данного способа является невозможность получения свойств проката, соответствующих более высоким классам прочности, в частности, классу 780. Кроме того, при изменении предела текучести предел прочности остается неизменным, в то время как в соответствии с большей частью нормативных документов при переходе от одного класса прочности к другому большему значению предела текучести должен соответствовать и больший предел прочности.
(Заявка на изобретение CN 109182672 (A) В21В 1/26, C21D 1/26, C21D 6/00, C21D 8/02, C21D 9/52, С22С 38/02, С22С 38/04, С22С 38/06, С22С 38/12, опубликована 11.01.2019).
Известен способ производства экономичной холоднокатаной стали DP780 с различным пределом текучести. Согласно способу, холоднокатаную сталь DP780 с пределом текучести 400-440 МПа, 450-490 МПа и 510-580 МПа получают путем нагрева, горячей прокатки, травления и непрерывного отжига стальной заготовки. Сталь содержит компоненты, % маc.: С 0,10-0,16; Si≤0,05; Mn 1,80-2,10; Al 0,40-0,60; Cr 0,20-0,40; N≤0,005; Р≤0,008; S≤0,005, остальное Fe и другие неизбежные примеси.
Для стали DP780 с пределом текучести 400-440 МПа температура нагрева заготовок под прокатку составляет 1230-1270°С, температура окончания прокатки в черновой группе клетей - 1050-1090°С, температура конца прокатки - 890-920°С, температура смотки - 680-710°С, суммарное обжатие при холодной прокатке - 68,0-72,0%, температура отжига 810-830°С, температура замедленного охлаждения - 670-690°С, температура ускоренною охлаждения - 300-340°С, температура перестаривания - 280-320°С.
Для стали DP780 с пределом текучести 450-490 МПа температура нагрева заготовок под прокатку составляет 1200-1240°С, температура окончания прокатки в черновой группе клетей - 1000-1040°С, температура конца прокатки - 850-880°С, температура смотки - 650-680°С, суммарное обжатие при холодной прокатке - 63,0-66,0%, температура отжига 780-800°С, температура замедленного охлаждения - 660-680°С, температура ускоренного охлаждения - 280-330°С, температура перестаривания - 260-310°С.
Для стали DP780 с пределом текучести 510-580 МПа температура нагрева заготовок под прокатку составляет 1160-1200°С, температура окончания прокатки в черновой группе клетей - 1040-1080°С, температура конца прокатки - 860-890°С при обжатии ≥12%, температура смотки - 540-570°С, суммарное обжатие при холодной прокатке - 60,0-65,0%, температура отжига 770-790°С, температура замедленного охлаждения -630-650°С, температура ускоренного охлаждения - 230-280°С, температура перестаривания - 210-260°С.
Способ позволяет получать из стали одного химического состава прокат класса прочности 780 с различными значениями предела текучести в зависимости от требований конкретного потребителя. Недостатком данного способа является то, что при изменении предела текучести предел прочности остается неизменным, в то время как в соответствии с большей частью нормативных документов при переходе от одного класса прочности к другому большему значению предела текучести должен соответствовать и больший предел прочности. Данный способ не позволяет получить предел прочности 980 МПа и более. Кроме того, максимальное значение предела текучести, которое можно получить при использовании данного способа, составляет 580 МПа, что также ниже требований к пределу текучести для класса прочности 980 (не менее 590-600 МПа по разным нормативным документам).
(Заявка на изобретение CN108754307(A) C21D 1/26; C21D 8/02; С22С 38/02; С22С 38/06; С22С 38/38, опубликована 06.11.2018 - прототип).
Техническим результатом настоящего изобретения является обеспечение повышения пластичности, а также расширение технологических возможностей способа производства холоднокатаного высокопрочного проката из двухфазной ферритно-мартенситной стали путем получения из стали одинакового химического состава проката различных классов прочности 780, 980 и 1180.
Указанный технический результат достигается тем, что в способе производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, включающем нагрев заготовки, горячую прокатку, холодную прокатку и обработку в агрегате непрерывного отжига, согласно изобретению, нагревают заготовку из стали, содержащей следующие компоненты, % маc.:
Углерод 0,1-0,13
Кремний 0,02-0,40
Марганец 2,0-2,2
Хром 0,25-0,40
Молибден 0,10-0,30
Ниобий 0,015-0,025
Железо и неизбежные примеси остальное, обработка в агрегате непрерывного отжига включает нагрев до температуры отжига, выдержку, замедленное охлаждение, ускоренное охлаждение до температуры начала перестаривания и перестаривание, при этом температуру отжига для получения проката класса прочности 780 назначают 700-720°С, проката класса прочности 980 - 770-790°С, проката класса прочности 1180 - 730-750°С, а скорость движения полосы в агрегате непрерывного отжига для проката классов прочности 780 и 1180 назначают в зависимости от толщины полос в соответствии с зависимостью:
Figure 00000001
где V - скорость движения полосы, м/мин, h - толщина проката, мм, 80 и -20 - эмпирические коэффициенты, м/мин, для проката класса прочности 980 - в соответствии с зависимостью:
Figure 00000002
где V - скорость движения полосы, м/мин, h - толщина проката, мм, 140 и - 40 - эмпирические коэффициенты, м/мин.
Сущность изобретения заключается в том, что обеспечение необходимого комплекса механических свойств, включающего предел прочности, предел текучести и относительное удлинение, достигается использованием определенного химического состава двухфазной ферритно-мартенситной стали, единого для трех классов прочности, и способов получения холоднокатаного высокопрочного проката из нее, различающихся для разных классов прочности. Требуемый уровень прочностных характеристик достигается путем обеспечения содержания в стали таких элементов, как углерод, кремний, марганец, хром, молибден и ниобий в указанных выше пределах. Ограничение нижних пределов содержания указанных элементов определяется необходимостью обеспечения высокой прочности. Превышение верхних пределов содержания указанных элементов приводит к снижению пластичности.
При нагреве и выдержке холоднокатаного проката в агрегатах непрерывного отжига происходят следующие процессы - рекристаллизация холоднокатаного проката, полиморфное α→γ превращение, а также диффузионное перераспределение элементов между ферритом и аустенитом, Ключевым параметром обработки, определяющим условия и степень протекания указанных процессов, является температура отжига.
При отжиге в нижней части двухфазной ферритно-аустенитной области в интервале температур 700-720°С формируется двухфазная структура со сравнительно большой долей феррита - около 40-50%. Формирующийся при этом аустенит имеет высокое содержание углерода и при последующем охлаждении превращается в устойчивый мартенсит. Содержания мартенсита на уровне 50-60% достаточно для обеспечения прочностных характеристик, соответствующих классу прочности 780. Уменьшение температуры отжига ниже 700°С приводит к тому, что доля мартенсита в структуре оказывается недостаточной для обеспечения требуемой прочности. Увеличение температуры отжига более 720°С приводит к формированию избыточной для класса 780 доле мартенсита, что способствует получению завышенных значений прочностных характеристик и недостаточной пластичности.
При отжиге в интервале температур 730-750°С доля устойчивого прочного мартенсита с достаточно высоким содержанием углерода достигает 80% и более. Это позволяет обеспечить уровень свойств, соответствующий классу прочности 1180. Уменьшение температуры отжига ниже 730°С приводит к тому, что доля мартенсита в структуре оказывается недостаточной для обеспечения требуемой прочности. Увеличение температуры отжига более 750°С приводит к формированию избыточной для класса 1180 доле мартенсита, что способствует получению завышенных значений прочностных характеристик и недостаточной пластичности.
При отжиге в интервале температур 770-790°С снижается содержание углерода в аустените и, соответственно, в мартенсите, что уменьшает прочность мартенсита, а также его устойчивость против распада в процессе перестаривания. Получаемый при этом уровень свойств соответствует требованиям к классу прочности 980. Уменьшение температуры отжига ниже 770°С приводит к формированию близкой доли, но более высокоуглеродистого прочного мартенсита, присутствие которого в структуре снижает пластичность. Увеличение температуры отжига более 790°С приводит к существенному снижению устойчивости аустенита и, соответственно, формирующегося из него мартенсита. При этом прочностные характеристики становятся ниже уровня, требуемого для класса прочности 980.
Дополнительно повысить пластичность холоднокатаного проката за счет более полного протекания рекристаллизационных процессов можно путем использования сравнительно низких скоростей движения полосы в агрегатах непрерывного отжига, что особенно актуально для отжига при сравнительно низких температурах - не выше 750°С. Поэтому для проката классов прочности 780 и 1180 должны быть использованы более низкие скорости движения полосы, рассчитываемые по зависимости (1), чем для проката класса прочности 980, для которого скорости движения полосы должны быть рассчитаны по зависимости (2). Использование скоростей движения полосы выше, чем рассчитанные по зависимостям (1) и (2), не обеспечит требуемый уровень пластичности. Использование скоростей движения полосы ниже, чем рассчитанные по зависимостям (1) и (2), не приведет к дальнейшему повышению пластичности, но может привести к уменьшению прочностных характеристик ниже требуемого уровня. Кроме того, при этом снижается производительность.
Примеры конкретного выполнении способа
Два состава стали получены при лабораторной выплавке в вакуумной индукционной печи. В таблице 1 приведен химический состав стали.
Figure 00000003
Горячую прокатку полученных слитков на толщину 3 мм производили по режиму: температура нагрева 1150°С, температура окончания прокатки Ткп от 790 до 910°С. После окончания прокатки полосу охлаждали до температуры Тcм 650°С и далее выдерживали в печи, нагретой до такой же температуры, в течение 1 ч с последующим охлаждением с печью (имитация охлаждения смотанного рулона).
Полученные горячекатаные полосы подвергали травлению для удаления окалины и холодной прокатке на толщину 1,2 и 2 мм (суммарное обжатие 60 и 66%).
Из полученных холоднокатаных полос изготавливали образцы для проведения моделирующей термической обработки на исследовательском комплексе Gleebl 3800. Термическая обработка заключалась в нагреве до температуры отжига 670-813°С, выдержке при этой температуре в течение 200 с, замедленном охлаждении, ускоренном охлаждении (скорость охлаждения около 30°С/с) до температуры окончания ускоренного охлаждения и начала перестаривания в течение 550 с, и последующем охлаждении до комнатной температуры (скорость охлаждения около 10°С/с). Кроме температуры отжига варьировали скорость движения полосы - 45, 60, 100 и 120 м/мин. Натяжение соответствовало номинальным значениям.
При испытаниях на растяжение определяли основные механические характеристики предел текучести, предел прочности и относительное удлинение. В соответствии с требованиями EN 10338:2013 указанные характеристики к разработанной стали включают в себя:
- для проката класса прочности 780: предел прочности не ниже 780 МПа, относительное удлинение не менее 14%, предел текучести в диапазоне 440-550 МПа,
- для проката класса прочности 980: предел прочности не ниже 980 МПа, относительное удлинение не менее 10%, предел текучести в диапазоне 590-740 МПа,
- для проката класса прочности 1180: предел прочности не ниже 1180 МПа, относительное удлинение не менее 5%, предел текучести в диапазоне 900-1100 МПа.
В то же время потребители заинтересованы в получении более высоких значений относительного удлинения. Поэтому условно принимали, что высокая пластичность получена, когда относительное удлинение для проката класса прочности 780 составляет не менее 17%, для проката класса прочности 980 - 12%, для проката класса прочности 1180 - 7%.
Результаты механических испытаний сталей вариантов А и Б после моделирования отжига по различным режимам, соответствующим и не соответствующим формуле изобретения, с целью проверки возможности обеспечения уровня свойств проката классов прочности 780, 980 и 1180 приведены в таблице 2. Также в таблице приведены значения температуры отжига Тотж и скорости движения полосы V, рассчитанной по зависимостям (1) и (2). Выделены значения технологических параметров, не соответствующие формуле изобретения, а также значения механических свойств, не соответствующие указанным выше оптимальным значениям.
Figure 00000004
Для стали состава А, имеющей пониженное содержание углерода и марганца, при всех опробованных режимах не достигается требуемый уровень свойств - для большинства вариантов прочностные характеристики предел прочности получены ниже указанных в таблице 2 (варианты А1, А2, А4, А6, А7-А9, А12, А13, А14, А16, А18), а для части вариантов (A3, A3, А10, A11, А15, А17) и относительное удлинение оказалось ниже предъявляемых требований. Очевидно, что для гарантированного получения уровня свойств, соответствующего трем классам прочности 780, 980 и 1180, должны использоваться стали с химическим составом, соответствующим формуле изобретения.
Для стали состава Б требуемый уровень прочности и пластичности достигается при обработке образцов по режимам, соответствующим формуле изобретения (варианты Б1, Б2, Б7, Б8, Б9, Б10, Б15, Б16, Б17, Б18, Б23, Б24).
При температуре конца прокатки выше указанного диапазона для проката классов прочности 780 и 1180 снижается пластичность при повышении прочности (варианты Б3, Б19), а для проката класса прочности 980 прочностные характеристики становятся ниже требуемого уровня (вариант Б11). Если температура конца прокатки ниже описанной в формуле, для проката классов прочности 780 и 1180 снижается прочность (варианты Б4, Б20), а для проката класса прочности 980 снижается пластичность (вариант Б12).
При скорости движения полосы в агрегатах непрерывного отжига выше рассчитанной по зависимостям (1) и (2) не достигается требуемого уровня пластичности (варианты Б5, Б13, Б21). При скорости движения полосы ниже рассчитанной, наоборот, происходит уменьшение прочностных характеристик ниже требуемого уровня (варианты Б6, Б14, Б22).
Таким образом, на образцах холоднокатаного проката из стали заявленного состава требуемый для трех классов прочности 780, 980 и 1180 комплекс свойств обеспечивается при выполнении требований по режиму производства проката, изложенному в формуле изобретения.

Claims (8)

  1. Способ производства из двухфазной ферритно-мартенситной стали холоднокатаного высокопрочного проката, имеющего классы прочности 780, 980 и 1180, включающий нагрев заготовки, горячую прокатку, холодную прокатку и обработку в агрегате непрерывного отжига, отличающийся тем, что нагревают заготовку из стали, содержащей следующие компоненты, мас.%:
  2. Углерод 0,11-0,13 Кремний 0,02-0,40 Марганец 2,0-2,2 Хром 0,25-0,40 Молибден 0,10-0,30 Ниобий 0,015-0,025 Железо и неизбежные примеси остальное,
  3. причем в агрегате непрерывного отжига осуществляют нагрев проката до температуры отжига, выдержку, замедленное охлаждение, ускоренное охлаждение до температуры начала перестаривания и перестаривание, при этом для получения проката класса прочности 780 нагрев ведут до 700-720°С, класса прочности 980 до 770-790°С, а класса прочности 1180 до 730-750°С, причем скорость движения в агрегате непрерывного отжига для проката классов прочности 780 и 1180 устанавливают в зависимости от толщины полос в соответствии с зависимостью
  4. Figure 00000005
  5. где V - скорость движения проката, м/мин, h - толщина проката, мм, 80 и 20 - эмпирические коэффициенты, м/мин, а
  6. для проката класса прочности 980 - в соответствии с зависимостью
  7. Figure 00000006
  8. где V - скорость движения полосы, м/мин, h - толщина проката, мм, 140 и 40 - эмпирические коэффициенты, м/мин.
RU2019135297A 2019-11-05 2019-11-05 Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали RU2718604C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019135297A RU2718604C1 (ru) 2019-11-05 2019-11-05 Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019135297A RU2718604C1 (ru) 2019-11-05 2019-11-05 Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали

Publications (1)

Publication Number Publication Date
RU2718604C1 true RU2718604C1 (ru) 2020-04-08

Family

ID=70156387

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019135297A RU2718604C1 (ru) 2019-11-05 2019-11-05 Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали

Country Status (1)

Country Link
RU (1) RU2718604C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2341566C2 (ru) * 2003-02-05 2008-12-20 Юзинор Способ изготовления холоднокатаной полосы из двухфазной стали с ферритно-мартенситной структурой и полученная полоса
RU2358025C1 (ru) * 2007-11-21 2009-06-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства холоднокатаного проката повышенной прочности
RU2470087C2 (ru) * 2008-05-21 2012-12-20 Арселормитталь Инвестигасьон И Десарролло Сл Способ производства холоднокатаных листов из двухфазной стали, обладающей очень высокой прочностью, и полученные таким способом листы
RU2610989C2 (ru) * 2012-01-30 2017-02-17 Зальцгиттер Флахшталь Гмбх Многофазная сталь максимальной прочности с улучшенными свойствами в процессе изготовления и переработки
CN108754307A (zh) * 2018-05-24 2018-11-06 山东钢铁集团日照有限公司 一种生产不同屈服强度级别的经济型冷轧dp780钢的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2341566C2 (ru) * 2003-02-05 2008-12-20 Юзинор Способ изготовления холоднокатаной полосы из двухфазной стали с ферритно-мартенситной структурой и полученная полоса
RU2358025C1 (ru) * 2007-11-21 2009-06-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства холоднокатаного проката повышенной прочности
RU2470087C2 (ru) * 2008-05-21 2012-12-20 Арселормитталь Инвестигасьон И Десарролло Сл Способ производства холоднокатаных листов из двухфазной стали, обладающей очень высокой прочностью, и полученные таким способом листы
RU2610989C2 (ru) * 2012-01-30 2017-02-17 Зальцгиттер Флахшталь Гмбх Многофазная сталь максимальной прочности с улучшенными свойствами в процессе изготовления и переработки
CN108754307A (zh) * 2018-05-24 2018-11-06 山东钢铁集团日照有限公司 一种生产不同屈服强度级别的经济型冷轧dp780钢的方法

Similar Documents

Publication Publication Date Title
EP3372703B1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
JP5043248B1 (ja) 高強度焼付硬化型冷延鋼板及びその製造方法
JPWO2010106748A1 (ja) 焼入れ性に優れたボロン添加鋼板および製造方法
US20150027594A1 (en) Thin steel sheet and process for producing the same
JP2023071938A (ja) 延性及び加工性に優れた高強度鋼板、及びその製造方法
JP6559886B2 (ja) めっき鋼板およびその製造方法
JP7442645B2 (ja) 加工性に優れた高強度鋼板及びその製造方法
RU2743946C1 (ru) Способ производства холоднокатаного высокопрочного проката из двухфазной ферритно-мартенситной стали
JP5151390B2 (ja) 高張力冷延鋼板、高張力亜鉛めっき鋼板およびそれらの製造方法
CN114981456A (zh) 制备可冷成形的高强度钢带的方法和钢带
KR102544854B1 (ko) 구멍 확장비가 높은 냉연 어닐링된 강판 및 그 제조 방법
RU2718604C1 (ru) Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали
RU2677426C1 (ru) Способ производства горячекатаного проката из конструкционной стали
KR101607011B1 (ko) 강판 및 그 제조 방법
JP2023547090A (ja) 熱的安定性に優れた高強度鋼板及びその製造方法
JP6111109B2 (ja) 時効硬化特性に優れた低Niオーステナイト系ステンレス鋼板およびその製造方法
JP2023507801A (ja) 耐熱性と成形性に優れた冷延鋼板およびその製造方法
JP2009019231A (ja) 高強度冷延鋼板およびその製造方法
JP7554828B2 (ja) 加工性に優れた高強度鋼板及びその製造方法
KR101597411B1 (ko) 강판 및 그 제조 방법
JP3023014B2 (ja) 超深絞り用冷延極軟鋼板
CN115917029B (zh) 铁素体系不锈钢及铁素体系不锈钢的制造方法
KR101505293B1 (ko) 강판
KR20150038960A (ko) 내시효성 및 내덴트성이 우수한 고강도 복합조직 냉연강판, 용융아연도금강판, 합금화용융아연도금강판 제조 방법
JPH06158175A (ja) 超深絞り用冷延鋼板の製造方法