EP1525386A2 - Vorrichtung zur bestimmung der abgasrückführungsrate einer brennkraftmaschine - Google Patents
Vorrichtung zur bestimmung der abgasrückführungsrate einer brennkraftmaschineInfo
- Publication number
- EP1525386A2 EP1525386A2 EP03764934A EP03764934A EP1525386A2 EP 1525386 A2 EP1525386 A2 EP 1525386A2 EP 03764934 A EP03764934 A EP 03764934A EP 03764934 A EP03764934 A EP 03764934A EP 1525386 A2 EP1525386 A2 EP 1525386A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust gas
- sensor unit
- gas recirculation
- sensor
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims description 8
- 239000012528 membrane Substances 0.000 claims description 4
- 239000010408 film Substances 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 48
- 238000005259 measurement Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000011149 active material Substances 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/0065—Specific aspects of external EGR control
- F02D41/0072—Estimating, calculating or determining the EGR rate, amount or flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/144—Sensor in intake manifold
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/11—Manufacture or assembly of EGR systems; Materials or coatings specially adapted for EGR systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/17—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/45—Sensors specially adapted for EGR systems
- F02M26/46—Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/10—Air intakes; Induction systems
- F02M35/10209—Fluid connections to the air intake system; their arrangement of pipes, valves or the like
- F02M35/10222—Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/10—Air intakes; Induction systems
- F02M35/10373—Sensors for intake systems
- F02M35/10393—Sensors for intake systems for characterising a multi-component mixture, e.g. for the composition such as humidity, density or viscosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a device for determining the exhaust gas recirculation rate of an internal combustion engine according to the preamble of patent claim 1.
- EGR exhaust gas recirculation
- An increase in the exhaust gas recirculation rate with the aim of further reducing the NOX emission is, for example, set a different limit depending on the operating point, namely by the soot or particle emission increasing above certain recirculation rates, the fuel consumption and the deterioration in the smooth running of the internal combustion engine. Carrying out a regulation of the exhaust gas recirculation rate requires the ongoing recording of the respective recirculation conditions when the internal combustion engine is operating.
- a sensor unit for determining the exhaust gas recirculation rate of an internal combustion engine is known from DE 100 070 10 AI.
- the sensor unit is acted upon on the one hand by the exhaust gas atmosphere within the exhaust gas recirculation line, and on the other hand by the atmosphere of exhaust gas and fresh air present in the inlet line of the internal combustion engine after the exhaust gas recirculation line opens, the two gas atmospheres acting on the sensor unit being kept separate from one another.
- DE 197 34 494 Cl discloses a method for operating an internal combustion engine with recirculation of exhaust gases from an exhaust gas line through an exhaust gas recirculation channel into an inlet line.
- the respective oxygen content is measured in the gas streams before and after the exhaust gas recirculation channel flows into the inlet line by means of sensors and the controller unit from the measurement results the return rate is exactly determined.
- a conventionally provided placement of a sensor on the wall of the intake manifold is a problem in that a sensor positioned in this way is not able to optimally react to rapid changes, for example a NOX concentration, because the flow rate of the gas to be detected on the wall of the elbow goes to zero. For this reason, among other things, a change in the gas composition will result in a time delay of the sensor signal, since the new or changed gas composition must flow against the entire sensor surface.
- the object of the invention is to determine an EGR rate in the simplest possible manner with the greatest possible accuracy.
- Pipe-shaped sensor units are also characterized by great mechanical stability.
- Conventional planar sensors were embedded gas-tight in an appropriate holder. In operation, planar sensors were exposed to thermocyclic changes in mechanical stress due to different thermal expansion coefficients of the holder and sensor material. Mechanical stresses caused thereby can lead to sensor failure due to crack formation.
- the EGR sensor unit which is of tubular design according to the invention, crack formation due to thermocyclic load changes can be largely avoided. Furthermore, complex seals are not required in the case of a tubular sensor unit.
- the sensor unit it proves to be expedient for the sensor unit to have electrodes on the inside and / or outside using thin-film or thick-film technology.
- the manufacturing costs can be kept very low.
- the so-called dip-coating process from a sol is pointed out. This process is a wet chemical process for the production of ceramic thin layers that can be implemented very inexpensively. Attention is also drawn to EVD processes (electrochemical vapor deposition) and PVD processes (plasma vapor deposition).
- the arrangement of the sensor unit essentially centrally in the inlet line, in particular an intake manifold.
- the sensor-sensitive areas of the sensor unit can be easily positioned at locations of the greatest flow rates, which enables very precise measurements.
- an outside sensor sensor sensitive area of the sensor unit in the flow direction of at least one of the pressurizing atmospheres has a greater extent than an inside sensor-sensitive area.
- This requirement can be implemented, for example, by a cylindrical sensor unit, in which the sensor-sensitive area on the outside has a greater axial length than the sensor-sensitive area on the inside. In this way, an influence on an inside sensor-active material due to a backflow of an atmosphere acting on the outside of the sensor unit can be effectively avoided.
- baffle plate in the area where the exhaust gas recirculation line opens into the inlet line.
- FIG. 1 is a schematic side sectional view of a preferred embodiment of the inventive direction in which a sensor unit is applied to a carrier tube
- FIG. 2 shows a schematic side view of the sensor unit according to FIG. 1 in a preferred positioning in an intake manifold
- Fig. 3 shows a further preferred embodiment of the sensor unit according to the invention in a schematic side sectional view.
- a sensor unit applied to a feed pipe 10 is denoted overall by 12.
- the outside of the sensor unit 12 is designed as an outer electrode 12a or first sensor, and the inside as an inner electrode 12b or second sensor.
- the respective electrodes are applied to a selectively ion-conducting material.
- An evaluation device that is operatively connected to the sensor unit or its sensors is not shown.
- the membranes applied on the inside and outside are selectively conductive with respect to an ionized gas occurring in the atmospheres to be considered, as will now be explained with reference to FIG. 2.
- a manifold pipe in which the sensor unit according to the invention is arranged, is designated by 14.
- the arrow P 1 indicates that fresh air (from the left in the illustration in FIG. 2) enters the manifold tube 14.
- An exhaust gas recirculation line is designated 16, via which exhaust gases of an engine (not shown) can be returned to the intake tract or the manifold pipe 14. It can be seen that the recirculated exhaust gas (illustrated by arrow P3) via a first feed line 17a and a second feed line line 17b is introduced into the manifold tube 14.
- the exhaust gas flowing in via the feed line 17b flows (in a mouth region 17c) against a baffle plate 18 and mixes with the fresh air flowing in here.
- the sensor unit 12 is acted upon on the outside by a fresh air exhaust gas atmosphere and on the inside by an exhaust gas atmosphere.
- the sensor device according to the invention can use any type of sensor.
- resistive oxygen sensors amperometric oxygen sensors, amperometric NOX sensors and other gas sensors which are selective for a component present in the exhaust gas.
- the sensor unit 12 is arranged essentially centrally in the elbow pipe 14. As a result of this measure, the outside of the sensor is subjected to the maximum flow rate of the fresh air exhaust gas flow, which effectively reduces the response time of the sensor unit.
- a preferred embodiment of the sensor unit according to the invention is finally described with reference to FIG. 3.
- the sensor-sensitive area of the inner electrode 12b is axial with respect to the outer electrode 12a, i.e. in Main direction of extension of the sensor unit 12 or in the flow direction P4, shortened. This ensures that the fresh air / exhaust gas mixture flowing back into the interior of the sensor unit does not influence the measurement result.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Vorrichtung zur Bestimmung einer Abgasrückführrate (AGR) einer Brennkraftmaschine, mit einer Sensoreinheit, welche in einem ersten Bereich mit einer Abgasatmosphere in einer Abgasrückführungsleitung, und in einem zweiten Bereich mit einer Abgas-Frischluft-Atmosphäre in einer Einlassleitung der Brennkraftmaschine stromabwärtig einer Einmündung der Abgasrückführungleitung beaufschlagbar ist, wobei die Sensoreinheit rohrförmig ausgebildet ist, wobei eine Innenseite der Sensoreinheit mit der Abgasatmosphäre, und eine Aussenseite der Sensoreinheit mit der Abgas-Frischluft-Atmosphäre beaufschlagbar ist oder umgekehrt.
Description
Vorrichtung zur Bestimmung der Abgasrückführungsrate einer Brennkraftmaschine
Die vorliegende Erfindung betrifft eine Vorrichtung zur Bestimmung der Abgasrückführungsrate einer Brennkraftmaschine nach dem Oberbegriff des Patentanspruchs 1.
Eine bekannte Möglichkeit zur Absenkung von NOX-Emissionen bei Otto- oder Dieselmotoren besteht in der Abgasrückführung (AGR) . Durch Zumischen von Abgasen zur Frischluft vor der Verbrennung wird insbesondere die temperaturabhängige NOX- Emission reduziert. Üblicherweise wird durch eine Abgasrückführungsleitung aus einer Abgasleitung der Brennkraftmaschine Abgas in eine Einlassleitung zugegeben. Die Rückführungsrate des Abgases, das heißt die Menge des anteilig dem Frischluftstrom in der Einlassleitung beigemischten Abgasstroms im Verhältnis zur Verbrennungsluftmenge, wird von einer Reglereinheit unter Angleichung an betriebspunktabhängig vorgegebene Soll-Werte geregelt. Einer Erhöhung der Abgasrückführungsrate mit dem Ziel einer weiteren Reduzierung der NOX-Emission wird beispielsweise eine betriebspunktabhängig unterschiedliche Grenze gesetzt, nämlich durch die oberhalb bestimmter Rückführungsraten zunehmende Ruß- bzw. Partikelemission, den Kraftstoffverbrauch sowie durch die Verschlechterung der Laufruhe der Brennkraftmaschine.
Die Durchführung einer Regelung der Abgasrückführungsrate erfordert die laufende Erfassung der jeweiligen Rückführungsverhältnisse beim Betrieb der Brennkraftmaschine.
Aus der EP 057 46 14 AI ist ein Verfahren zur Regelung der Abgasrückführungsrate bekannt, welches zur Bestimmung des Ist-Wertes des rückgeführten Abgasmassenstroms den Druckabfall an einer Venturi-Düse in dem Abgasrückführungskanal misst und aus der Druckdifferenz den Durchfluss ermittelt.
Aus der DE 100 070 10 AI ist eine Sensoreinheit zur Bestimmung der Abgasrückführungsrate einer Brennkraftmaschine bekannt. Die Sensoreinheit ist einerseits mit der Abgasatmosphäre innerhalb der Abgasrückführungsleitung beaufschlagt, und andererseits mit der innerhalb der Einlassleitung der Brennkraftmaschine nach Einmündung der Abgasrückführungsleitung vorhandenen Atmosphäre aus Abgas und Frischluft beaufschlagt, wobei die beiden, die Sensoreinheit beaufschlagenden Gasatmosphären getrennt von einander gehalten werden.
Aus der DE 197 34 494 Cl ist ein Verfahren zum Betrieb einer Brennkraftmaschine unter Rückführung von Abgasen aus einer Abgasleitung durch einen Abgasrückführungskanal in eine Einlassleitung bekannt. Um eine maximale Emissionssenkung durch Abgasrückführung mit einer möglichst genauen Erfassung und Regelung der Abgasrückführungsraten zu ermöglichen, ist dort vorgesehen, dass in den Gasströmen jeweils vor und nach der Einmündung des Abgasrückführungskanals in die Einlassleitung der jeweilige Sauerstoffgehalt mittels Sensoren gemessen wird und die Reglereinheit aus den Messergebnissen die Rückführrate exakt ermittelt.
Für die Bestimmung der AGR-Rate ist es notwendig, eine möglichst schnelle Antwort auf Konzentrationsänderungen an einem
eingesetzten Sensor zu erhalten, um mit einer Motorsteuerung den Schadstoffausstoß zu regeln bzw. zu begrenzen.
Für einen Einsatz in einem Kraftfahrzeug stellt eine herkömmlich vorgesehene Platzierung eines Sensors an der Wand des Ansaugkrümmers insofern ein Problem dar, als ein derart positionierter Sensor nicht in der Lage ist, optimal auf schnelle Änderungen beispielsweise einer NOX-Konzentration zu reagieren, da die Strömungsgeschwindigkeit des zu detektierenden Gases an der Wand des Krümmers gegen Null geht. Aus diesem Grund wird sich unter anderem eine Änderung der Gaszusammensetzung in einer Zeitverzögerung des Sensorsignals auswirken, da die gesamte Sensoroberfläche mit der neuen bzw. geänderten Gaszusammensetzung angeströmt werden muss.
Aufgabe der Erfindung ist es, eine AGR-Rate in möglichst einfacher Weise mit größtmöglicher Genauigkeit zu ermitteln.
Diese Aufgabe wird gelöst durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 1.
Mittels der erfindungsgemäßen Maßnahme, eine rohrformig bzw. tubular ausgebildete Sensoreinheit zu verwenden, ist es in konstruktiv einfacher Weise möglich, die sensorempfindlichen Bereiche der Sensoreinheit mit Abstand zu Wandungsbereichen jeweiliger Strömungsleitungen zu positionieren, so dass aufgrund einer derartigen Anordnung der sensorempfindlichen Bereiche an Orten größerer Durchflussmengen Änderungen der Gaskonzentrationen gegenüber herkömmlichen Lösungen wesentlich schneller detektiert werden können. Rohrformig ausgebildete Sensoreinheiten zeichnen sich ferner durch eine große mechanische Stabilität aus. Herkömmliche planare Sensoren wurden in einer entsprechenden Halterung gasdicht eingebettet. Bei Betrieb wurden planare Sensoren bei thermozyklischen Belas-
tungswechseln hohen mechanischen Belastungen, bedingt durch unterschiedliche thermische Ausdehnungskoeffizienten von Halter- und Sensormaterial, ausgesetzt. Hierdurch verursachte mechanische Spannungen können zu einem Versagen des Sensors aufgrund von Rissbildungen führen. Bei der erfindungsgemäß rohrformig ausgebildeten AGR-Sensoreinheit kann eine Rissbildung durch thermozyklische Belastungswechsel weitgehend vermieden werden. Ferner werden aufwendige Dichtungen bei einer rohrformig ausgebildeten Sensoreinheit nicht benötigt.
Vorteilhafte Ausgestaltungen der erfindungsgemäßen Vorrichtung sind Gegenanstand der Unteransprüche.
Es erweist sich als zweckmäßig, dass die Sensoreinheit innenseitig und/oder außenseitig in Dünnschicht- oder Dickschichttechnik ausgebildete Elektroden aufweist. Beispielsweise mit einer Abscheidung einer Sensor-Dünnschicht auf einem porösen Trägersubstrat können die Herstellungskosten sehr gering gehalten werden. Beispielhaft sei auf das sogenannte Dip- Coating-Verfahren aus einem Sol hingewiesen. Dieses Verfahren ist ein nasschemisches, sehr preiswert realisierbares Verfahren zur Herstellung von keramischen Dünnschichten. Ferner sei auf EVD-Verfahren (Electrochemical-Vapour-Deposition) und PVD-Verfahren (Plasma-Vapour-Deposition) hingewiesen.
Es ist bevorzugt, die Anordnung der Sensoreinheit im wesentlichen mittig in der Einlassleitung, insbesondere einem Ansaugkrümmer, vorzusehen. Mit dieser Maßnahme sind die sensorempfindlichen Bereiche der Sensoreinheit in einfacher Weise an Orten der größten Durchflussmengen positionierbar, womit sehr genaue Messungen möglich sind.
Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung weist ein außenseitig ausgebildeter sensoremp-
findlicher Bereich der Sensoreinheit in Strömungsrichtung wenigstens einer der beaufschlagenden Atmosphären eine größere Erstreckung auf als ein innenseitig ausgebildeter sensorempfindlicher Bereich. Diese Maßgabe ist beispielsweise durch eine zylinderförmige Sensoreinheit realisierbar, bei dem der außenseitig ausgebildete sensorempfindliche Bereich eine größere axiale Länge aufweist als der innenseitig ausgebildete sensorempfindliche Bereich. Hierdurch kann eine Beeinflussung eines innenseitigen sensoraktiven Materials aufgrund einer Rückströmung einer die Sensoreinheit außenseitig beaufschlagenden Atmosphäre wirksam vermieden werden.
Es erweist sich als zweckmäßig, die Sensoreinheit innenseitig und/oder außenseitig mit einer NO-selektiven Membran auszubilden. Ein derartiges sensorempfindliches Material erweist sich als relativ preiswert bereitstellbar und ermöglicht in einfacher Weise genaue Messungen.
Es ist schließlich bevorzugt, im Bereich der Einmündung der Abgasrückführungsleitung in die Einlassleitung eine Prallplatte anzuordnen. Mit einer derartigen Platte, auf welche das in die Einlassleitung strömende Abgas trifft, ist eine besonders gute Vermischung von Abgas und Frischluft erzielbar. Zweckmäßigerweise strömt das in die Einlassleitung strömende Abgas zunächst entgegen der Strömungsrichtung der Frischluft und trifft hierbei auf die Prallplatte.
Die Erfindung wird, nun aufgrund der beigefügten Zeichnung weiter beschrieben.
Dabei zeigen:
Fig. 1 eine schematische seitliche Schnittansicht einer bevorzugten Ausführungsform der erfindungsgemäßen Vor-
richtung, bei der eine Sensoreinheit auf ein Trägerrohr aufgebracht ist,
Fig. 2 eine schematische seitliche Ansicht der Sensoreinheit gemäß Figur 1 in einer bevorzugten Positionierung in einem Ansaugkrümmer, und
Fig. 3 eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Sensoreinheit in schematischer seitlicher Schnittansicht.
In Figur 1 ist eine auf einem Zuleitungsrohr 10 aufgebrachte Sensoreinheit insgesamt mit 12 bezeichnet. Die Außenseite der Sensoreinheit 12 ist als äußere Elektrode 12a bzw. erster Sensor, und die Innenseite als innere Elektrode 12b bzw. zweiter Sensor ausgebildet. Die jeweiligen Elektroden sind auf einem selektiv ionenleitenden Material aufgebracht. Eine mit der Sensoreinheit bzw. deren Sensoren in Wirkverbindung stehende Auswerteeinrichtung ist nicht dargestellt.
Die innenseitig und außenseitig aufgebrachten Membranen sind selektiv leitend bezüglich eines in den zu betrachtenden Atmosphären vorkommenden ionisierten Gases ausgebildet, wie nun anhand der Figur 2 weiter erläutert werden soll.
In Figur 2 ist ein Krümmerrohr, in welchem die erfindungsgemäße Sensoreinheit angeordnet ist, mit 14 bezeichnet. Mittels des Pfeiles Pl ist angedeutet, dass Frischluft (in der Darstellung der Figur 2 von links) in das Krümmerrohr 14 eintritt. Eine Abgasrückführleitung ist mit 16 bezeichnet, über welche Abgase eines (nicht dargestellten) Motors in den Ansaugtrakt bzw. das Krümmerrohr 14 rückführbar sind. Man erkennt, dass das rückgeführte Abgas (mittels Pfeil P3 veranschaulicht) über eine erste Zuleitung 17a und eine zweite Zu-
leitung 17b in das Krümmerrohr 14 eingebracht wird. Das über die Zuleitung 17b einströmende Abgas strömt (in einem Einmündungsbereich 17c) gegen eine Prallplatte 18 und vermischt sich mit der hier einströmenden Frischluft.
An das Ende der Zuleitung 17a schließt sich das bereits unter Bezugnahme auf Figur 1 beschriebene Zuleitungsrohr 10 an, auf welches die Sensoreinheit 12 aufgebracht ist.
Anhand der Figur 2 erkennt man unmittelbar, dass die Sensoreinheit 12 außenseitig durch eine Frischluft-Abgasatmosphäre, und innenseitig durch eine Abgas-Atmosphäre beaufschlagt wird.
Es sei angemerkt, dass die erfindungsgemäße Sensoreinrichtung beliebige Arten von Sensoren verwenden kann. Zusätzlich zu den erwähnten Sensoren auf selektiver Ionenleiterbasis sei auf resistive SauerstoffSensoren, amperometrische Sauerstoffsensoren, amperometrische NOX-Sensoren sowie sonstige Gassensoren, die auf eine im Abgas vorhandene Komponente selektiv sind, hingewiesen.
Wie aus Figur 2 ferner zu erkennen ist, ist die Sensoreinheit 12 im wesentlichen mittig in dem Krümmerrohr 14 angeordnet. Durch diese Maßnahme wird der Sensor außenseitig mit der maximalen Strömungsgeschwindigkeit der Frischluft-Abgas- Strömung beaufschlagt, wodurch in wirksamer Weise die Ansprechzeit der Sensoreinheit verringert wird.
Unter Bezugnahme auf Figur 3 wird schließlich eine bevorzugte Ausführungsform der erfindungsgemäßen Sensoreinheit beschrieben. Man erkennt hier die mit einer ionenselektiven Membran beschichtete innenseitige Elektrode 12b und die entsprechende außenseitige Elektrode 12a, welche (beispielsweise bei einer
Anordnung, wie sie in Figur 2 beschrieben ist) innenseitig durch eine Abgasatmosphäre, und außenseitig durch eine Abgas- Frischluft-Atmosphäre beaufschlagt wird. Zur Vermeidung, dass eine Rückströmung der Abgas-Frischluft-Atmosphäre entgegen der (hier mittels Pfeil P4 angedeuteten) Hauptströmungsrichtung zurück in den Innenbereich der Sensoreinheit eine Verfälschung des Messergebnisses bewirkt, ist der sensorempfindliche Bereich der Innenelektrode 12b gegenüber der Außenelektrode 12a axial, das heißt in Haupterstreckungsrichtung der Sensoreinheit 12 bzw. in Strömungsrichtung P4, verkürzt ausgebildet. Somit kann gewährleistet werden, dass in den Innenbereich der Sensoreinheit zurückströmendes Frischluft- Abgas-Gemisch das Messergebnis nicht beeinflusst.
Claims
1. Vorrichtung zur Bestimmung einer Abgasruckfuhrrate (AGR) einer Brennkraftmaschine, mit einer Sensoreinheit (12), welche in einem ersten Bereich mit einer Abgasatmosphäre in einer Abgasrückführungsleitung (16,17b), und in einem zweiten Bereich mit einer Abgas-Frischluft-Atmosphäre in einer Einlassleitung (14) der Brennkraftmaschine stromabwartig einer Einmündung (17c) der Abgasrückführungleitung
(16) beaufschlagbar ist, d a d u r c h g e k e n n z e i c h n e t , dass die Sensoreinheit (12) rohrformig ausgebildet ist, wobei eine Innenseite (12b) der Sensoreinheit (12) mit der Abgasatmosphäre, und eine Außenseite (12a) der Sensoreinheit (12) mit der Abgas-Frischluft-Atmosphäre beaufschlagbar ist oder umgekehrt.
2. Vorrichtung nach Anspruch 1 d a d u r c h g e k e n n z e i c h n e t , dass die Sensoreinheit innenseitig und/oder außenseitig Elektroden aufweist, die unter Verwendung einer Dünnschicht- oder Dickschichttechnik hergestellt sind.
3. Vorrichtung nach einem der Ansprüche 1 oder 2 g e k e n n z e i c h n e t d u r c h , eine Anordnung der Sensoreinheit (12) im wesentlichen mittig in der Einlassleitung (14) , insbesondere in einem Ansaugkrümmerrohr .
4. Vorrichtung nach einem der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass ein außenseitig ausgebildeter sensorempfindlicher Bereich der Sensoreinheit in Strömungsrichtung wenigstens einer der beaufschlagenden Atmosphären eine größere Erstreckung aufweist als ein innenseitig ausgebildeter sensorempfindlicher Bereich.
5. Vorrichtung nach einem der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Sensoreinheit (12) innenseitig und/oder außenseitig mit einer NO-selektiven Membran beschichtet ist.
6. Vorrichtung nach einem der vorstehenden Ansprüche, g e k e n n z e i c h n e t d u r c h , eine im Bereich der Einmündung (17c) der Abgasrückführungsleitung (17b) in die Einlassleitung (14) vorgesehene Prallplatte (18) .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10233362 | 2002-07-23 | ||
DE10233362A DE10233362A1 (de) | 2002-07-23 | 2002-07-23 | Vorrichtung zur Bestimmung der Abgasrückführungsrate einer Brennkraftmaschine |
PCT/EP2003/007031 WO2004009981A2 (de) | 2002-07-23 | 2003-07-02 | Vorrichtung zur bestimmung der abgasrückführungsrate einer brennkraftmaschine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1525386A2 true EP1525386A2 (de) | 2005-04-27 |
Family
ID=30128264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03764934A Withdrawn EP1525386A2 (de) | 2002-07-23 | 2003-07-02 | Vorrichtung zur bestimmung der abgasrückführungsrate einer brennkraftmaschine |
Country Status (5)
Country | Link |
---|---|
US (1) | US7100431B2 (de) |
EP (1) | EP1525386A2 (de) |
JP (1) | JP2005533957A (de) |
DE (1) | DE10233362A1 (de) |
WO (1) | WO2004009981A2 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090084193A1 (en) * | 2007-09-27 | 2009-04-02 | Victor Cerabone | Apparatus for measuring an exhaust gas recirculation flow of an internal combustion engine |
DE102010007154B4 (de) * | 2010-02-05 | 2018-05-03 | Continental Automotive Gmbh | Strömungsleitvorrichtung |
US8528530B2 (en) | 2010-06-30 | 2013-09-10 | General Electric Company | Diesel engine system and control method for a diesel engine system |
US9976499B2 (en) | 2010-09-23 | 2018-05-22 | General Electric Company | Engine system and method |
US20140150528A1 (en) * | 2012-11-30 | 2014-06-05 | Engine Control and Monitoring | Simplified method for measuring concentration of various exhaust gas mixture components utilizing dissimilar sensors |
US20140216130A1 (en) * | 2013-02-04 | 2014-08-07 | Engine Control and Monitoring | Simplified method for measuring concentrations of exhaust gas components |
US20140216131A1 (en) * | 2013-02-04 | 2014-08-07 | Engine Control and Monitoring | Simplified method for measuring concentrations of exhaust gas components utilizing differential measurement across an absorber |
JP6677202B2 (ja) * | 2017-03-28 | 2020-04-08 | トヨタ自動車株式会社 | インテークマニホールド |
DE102018203327A1 (de) * | 2018-03-06 | 2019-09-12 | Bayerische Motoren Werke Aktiengesellschaft | Brennkraftmaschine mit einer Abgasrückführeinrichtung |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55104757U (de) * | 1979-01-17 | 1980-07-22 | ||
JP3375645B2 (ja) * | 1991-05-14 | 2003-02-10 | 株式会社日立製作所 | 内燃機関の制御装置 |
US5203313A (en) | 1992-06-19 | 1993-04-20 | Bundy Corporation | EGR venturi coupler |
DE19734494C1 (de) | 1997-08-08 | 1998-10-08 | Daimler Benz Ag | Verfahren zum Betrieb einer Brennkraftmaschine |
US5996337A (en) * | 1998-02-06 | 1999-12-07 | Engelhard Corporation | Dynamic calorimetric sensor system |
US6824661B2 (en) * | 1999-09-23 | 2004-11-30 | Ceramphysics, Inc. | Combined oxygen and NOx sensor |
DE10007010C2 (de) * | 2000-02-16 | 2003-04-17 | Daimler Chrysler Ag | Sensoreinheit zur Bestimmung der Abgasrückführungsrate einer Brennkraftmaschine |
IT1319919B1 (it) * | 2000-02-25 | 2003-11-12 | Iveco Fiat | Collettore di aspirazione per un motore endotermico. |
JP3709373B2 (ja) * | 2001-12-19 | 2005-10-26 | 株式会社日立製作所 | 流量計測装置 |
US6810725B2 (en) * | 2003-02-28 | 2004-11-02 | Cummins Inc. | Exhaust gas recirculation measurement device |
-
2002
- 2002-07-23 DE DE10233362A patent/DE10233362A1/de not_active Withdrawn
-
2003
- 2003-07-02 JP JP2004522202A patent/JP2005533957A/ja active Pending
- 2003-07-02 EP EP03764934A patent/EP1525386A2/de not_active Withdrawn
- 2003-07-02 WO PCT/EP2003/007031 patent/WO2004009981A2/de not_active Application Discontinuation
-
2005
- 2005-01-19 US US11/039,652 patent/US7100431B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2004009981A2 * |
Also Published As
Publication number | Publication date |
---|---|
DE10233362A1 (de) | 2004-02-12 |
WO2004009981A3 (de) | 2004-07-08 |
JP2005533957A (ja) | 2005-11-10 |
US7100431B2 (en) | 2006-09-05 |
US20050145022A1 (en) | 2005-07-07 |
WO2004009981A2 (de) | 2004-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69106029T2 (de) | Gerät und Verfahren zur Reduzierung von Schadstoffemission im Abgas der Brennkraftmaschine eines Kraftfahrzeuges. | |
EP0896139B1 (de) | Verfahren zum Betrieb einer Brennkraftmaschine | |
DE3023430C2 (de) | Vorrichtung zur Rückkopplungsregelung der Gemischzufuhr einer Brennkraftmaschine | |
DE19827469A1 (de) | Gaskonzentrationsmeßverfahren und ein vorteilhafterweise bei dieser Messung verwendeter Verbundgassensor | |
DE19852015A1 (de) | Flussratensensor | |
DE3023429A1 (de) | Vorrichtung zur rueckkopplungs- regelung des luft-brennstoff-verhaeltnisses einer brennkraftmaschine | |
DE2752877A1 (de) | Verfahren und rueckkopplungs-regelvorrichtung fuer die rueckfuehrung von auspuffgasen | |
DE2557936A1 (de) | Regelungssystem fuer ein luft- kraftstoff-gemisch | |
DE19912317C2 (de) | Verfahren zur Regelung des Anteils der einer Brennkraftmaschine rückgeführten Abgasmenge | |
EP1525386A2 (de) | Vorrichtung zur bestimmung der abgasrückführungsrate einer brennkraftmaschine | |
WO2007101566A1 (de) | Abgasturbolader für eine brennkraftmaschine | |
EP0192084B1 (de) | Verfahren zur Messung des Sauerstoffgehaltes im Abgas von Brennkraftmaschinen | |
DE10211781B4 (de) | Verfahren und Einrichtung zur Überwachung und Regelung des Betriebes einer Brennkraftmaschine mit reduzierter NOx-Emission | |
DE3634163C2 (de) | ||
EP0252316B1 (de) | Brennkraftmaschine mit Druckwellenlader und Lamda-Sonde | |
EP2035785A1 (de) | Messvorrichtung zur messung der durchflussrate eines verbrennungsgas-gemisches, aufweisend eine korrektureinrichtung | |
DE2604231A1 (de) | Vorrichtung zur durchfuehrung eines verfahrens zur regelung des einer brennkraftmaschine zugefuehrten kraftstoff- luft-gemisches durch zufuhr von zusatzluft | |
DE102005004319A1 (de) | Bestimmung des Luftmassenstroms in Kraftfahrzeugen | |
EP1926899A1 (de) | Verfahren und vorrichtung zur bestimmung der gaskomponenten im abgas eines verbrennungsmotors | |
WO1999000592A1 (de) | Verfahren und vorrichtung zur steuerung von brennkraftmaschinen | |
DE10339967A1 (de) | Mehrschicht-Gassensorelement | |
DE10018308B4 (de) | Verfahren zur Regelung des Anteils der einer Brennkraftmaschine rückgeführten Abgasmenge | |
DE3028128C2 (de) | System zum Regeln des Luft-Brennstoff-Verhältnisses eines Verbrennungsmotors | |
DE10007010C2 (de) | Sensoreinheit zur Bestimmung der Abgasrückführungsrate einer Brennkraftmaschine | |
DE3140444A1 (de) | Gas-sensor mit in perforierter haube eingeschlossenem spuerelement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050112 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20061003 |