[go: up one dir, main page]

EP0944769A1 - Brennstoffeinspritzventil - Google Patents

Brennstoffeinspritzventil

Info

Publication number
EP0944769A1
EP0944769A1 EP98947358A EP98947358A EP0944769A1 EP 0944769 A1 EP0944769 A1 EP 0944769A1 EP 98947358 A EP98947358 A EP 98947358A EP 98947358 A EP98947358 A EP 98947358A EP 0944769 A1 EP0944769 A1 EP 0944769A1
Authority
EP
European Patent Office
Prior art keywords
valve
fuel injection
inner pole
injection valve
jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98947358A
Other languages
English (en)
French (fr)
Other versions
EP0944769B1 (de
Inventor
Ferdinand Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0944769A1 publication Critical patent/EP0944769A1/de
Application granted granted Critical
Publication of EP0944769B1 publication Critical patent/EP0944769B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0667Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature acting as a valve or having a short valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow

Definitions

  • the invention relates to a fuel injector according to the preamble of the main claim.
  • a metallic base body of the valve is formed in one part or two parts without a non-magnetic intermediate part.
  • the base body comprises the sections inlet connector, magnetic inner pole (core) and valve seat support.
  • the base body takes over the guidance of an armature, by means of which a valve closing body interacting with a valve seat can be actuated.
  • the base body has a magnetic throttle point, which has a significantly smaller wall thickness than the wall thicknesses of the upstream core and the downstream valve seat support.
  • an electromagnetically actuated fuel injector in which an inner core and an outer magnet housing are provided.
  • the magnet housing is designed so that a step between the core and the magnet housing Coil space for receiving a magnetic coil is formed.
  • the coil space is closed on the one hand above the magnet coil with a cover element and on the other hand below the magnet coil with a non-magnetic intermediate part.
  • two additional components are required in addition to the core and the magnet housing.
  • the fuel injector according to the invention with the characterizing features of the main claim has the advantage of a particularly simple and inexpensive to manufacture, but by no means
  • the inner pole and the valve jacket are shaped such that the valve jacket at least partially radially surrounds the inner pole, so that an intermediate space is formed between the two, in which the solenoid coil is inserted.
  • the magnet coil is embedded safely and reliably, since it is completely surrounded by the valve jacket in the circumferential direction and the space is delimited axially above and below the magnet coil by metallic contact of the valve jacket and the inner pole.
  • This direct metallic contact of the valve jacket with the inner pole and the associated closed coil space ensure that no further intermediate components are required in a cost-effective, material-saving and component-reducing manner.
  • the configuration allows the best possible selection of materials for the manufacture of the inner pole and valve jacket while maintaining the required soft magnetic properties.
  • the measures listed in the subclaims allow advantageous developments and improvements of the fuel injector specified in the main claim.
  • Fuel injection valve can be produced by means of extrusion molding, which can be carried out particularly cheaply as cold forming.
  • Steels with low tensile strengths (unalloyed steels) as well as steels with high tensile strengths (high-alloy steels) are suitable for cold extrusion.
  • Unalloyed steels definitely reach strength values (tensile strength, hardness) of alloyed steels in the annealed condition after cold extrusion.
  • the great advantage of extruding the inner pole is that it is less
  • FIG. 1 shows a first example of a fuel injector and FIG. 2 shows a second example of a fuel injector.
  • the electromagnetically actuated valve shown in FIG. 1 in the form of a
  • Fuel injection valve for fuel injection systems of mixture-compressing, spark-ignited internal combustion engines has a tubular, extruded core 2, which is surrounded by a magnetic coil 1 and serves as a fuel inlet connection, as a so-called
  • Inner pole A coil body 3 made of plastic takes up a winding of the magnetic coil 1.
  • the core 2 has a concise taper in its wall thickness in the axial extent of the magnet coil 1.
  • a thin-walled magnetic throttle point 8 is connected in the direction downstream from Rome.
  • This magnetic throttle body 8, which is also tubular, but has a much thinner wall than the wall thicknesses of the core 2 upstream and downstream of the throttle body 8 seen in the axial direction represents the transition from an elongated upper core part 9, which forms the inlet connector in particular, to a lower, comparatively short core end 10.
  • the wall thickness of the thin-walled magnetic choke point 8 is e.g. between 0.2 and 0.5 mm, while the wall thicknesses of the upstream and downstream regions of the core 2 to achieve an optimal magnetic flux, for example in the
  • the annular cross-sectional areas of the core 2 in front of and behind the throttle point 8 have e.g. a size of 20 to 30 mm. These sizes are only for the better
  • the three essential sections 9, 8, 10 of the core 2 are all formed concentrically with a valve longitudinal axis 12.
  • metal, non-magnetic intermediate parts are provided in a large part of the known injection valves of the prior art, which ensure magnetic separation of the core 2 and a downstream connection part serving as valve seat support, but which are dispensed with in the present fuel injection valves can be.
  • the core or inlet connector 2 is made by means of extrusion.
  • extrusion the punch and die form a gap.
  • the stamp presses the workpiece material through the mold gap, the corresponding cross section giving shape.
  • the extrusion of the core 2 is carried out, for example, as cold forming of a corresponding steel.
  • Cold extrusion is unalloyed Steel grades with tensile strengths of 350 N / mm 2 up to high-alloy steels with tensile strengths of 800 N / mm are possible.
  • the fuel injection valve has a thin-walled, sleeve-shaped valve jacket 14, which is preferably produced by deep drawing and serves as a housing, as part of the magnetic circuit and as a valve seat support, which at least partially radially as a component with a larger diameter than that of the core 2 surrounds.
  • the solenoid 1 with its coil body 3 is embedded between the valve jacket 14 and the core 2 in an annular space 15 provided for this purpose.
  • a longitudinal opening 18 extends into which at least the core end 10 projects in such a way that it bears against the inner wall of the valve jacket 14.
  • the core end 10 is used for
  • valve needle 19 which is connected to a e.g. tubular connecting part 20 is equipped, an armature 22 being attached to its upstream end and a spherical valve closing body 23 being attached to its downstream end.
  • armature 22 being attached to its upstream end
  • armature 22 being attached to its upstream end
  • spherical valve closing body 23 being attached to its downstream end.
  • five flats 24 are provided on the circumference of the valve closing body 23, which is connected to the connecting part 20 by welding, for the fuel to flow past.
  • the fuel injector is actuated electromagnetically in a known manner.
  • the electromagnetic circuit with the solenoid 1, the core 2, the valve jacket 14 and the armature 22 is used.
  • the armature 22 is with the end of the valve closing body 23 facing away Connecting part 20 also connected by a weld seam and aligned with the core part 9 or the stop surface 6 of the core 2.
  • a cylindrical valve seat body 29, which has a valve seat surface 30, is tightly mounted in the longitudinal opening 18 in the downstream end of the valve jacket 14 facing away from the core 2, for example by welding.
  • Longitudinal valve axis 12 is a guide opening 32 of the valve seat body 29.
  • a guide surface 36 is provided, the z. B. is produced by turning and also serves the axial guidance of the valve needle 19, here opposite the core 2 in the region of the throttle point 8.
  • the at least one guide surface 36 can, for. B. as a circumferential continuous guide ring or as a plurality of circumferentially spaced guide surfaces.
  • the spherical valve closing body 23 interacts with the valve seat surface 30 of the valve seat body 29 that tapers in the shape of a truncated cone in the direction of flow.
  • the valve seat body 29 On its end face facing away from the valve closing body 23, the valve seat body 29 is firmly connected to a spray-perforated disk 34, for example in the form of a pot.
  • the spray orifice plate 34 has at least one, for example four, spray openings 35 formed by eroding or stamping.
  • the insertion depth of the valve seat body 29 determines the size of the stroke of the valve needle 19.
  • the one end position of the valve needle 19 when the magnet coil 1 is not energized is determined by the valve closing body 23 resting on the valve seat surface 30 of the valve seat body 29, while the other end position of the valve needle 19 is fixed
  • the armature 22 abuts the hard-chromed stop surface 6 of the shoulder 5 of the core 2, for example.
  • a e.g. arranged in the form of an O-ring sealing ring 37 which ensures a seal of the coil space.
  • the annular chamber serving to receive the sealing ring 37 is limited by the underside of the coil former 3, the inner wall of the valve jacket 14, which is stepped in this area and tapers in diameter in the downstream direction, and the outer circumference of the core end 10, which serves on the inside for the anchor guide.
  • a fuel filter 40 protrudes into the flow bore 38 of the core 2 at its end on the inlet side and provides for the filtering out of those fuel components which, because of their size, could cause blockages or damage in the injection valve.
  • the core (inner pole, inlet connector) 2 is largely enclosed with a plastic encapsulation 42 above a radially outwardly extending collar 41, which closes off the space 15 accommodating the magnetic coil 1 at the top.
  • This plastic encapsulation 42 includes, for example, an injection-molded electrical connector 43 which, for example, projects radially outward directly above the collar 41 of the core 2 and the upper end of the valve jacket 14 facing the inlet end of the injection valve.
  • the connector 43 made of plastic includes, for example, two metallic contact pins 44 which are directly connected to the winding of the magnetic coil 1.
  • the contact pins 44 protrude toward the connector 43 out of the coil body 3 through a recess 47 in the collar 41. In this recess 47 are the
  • Contact pins 44 are overmolded with plastic, since the plastic overmolding 42 e.g. extends into the space 15 accommodating the magnetic coil 1 between the valve jacket 14 and the core 2, so that this space 15 is largely injection molded with plastic in addition to the coil body 3.
  • the valve jacket 14 is by several circumferentially attached, e.g. welding spots 45 generated by means of a laser are attached to the collar 41 of the core 2. This fixed connection does not have to fulfill any sealing functions. However, a circumferential, continuous weld 45 can also be provided.
  • the deep-drawn valve jacket 14 has, near its downstream end, a circumferential annular bead 49, which is formed by folding and is perpendicular to the axial extension of the valve jacket 14, while the valve jacket 14 has an outwardly facing collar 50 in the form of a bulge at its immediate downstream end .
  • the annular bead 49 and the collar 50 together with the outer wall of the valve jacket 14 in this area an annular groove 51 in which a sealing ring 52 is arranged for sealing against a valve seat.
  • the fuel injection valve according to FIG. 2 also has the tubular, extruded core 2 which is surrounded by the magnet coil 1, but which is not as immediate as in the example shown in FIG. 1
  • Fuel inlet connector is used, but is formed in one piece downstream with the valve seat support 14 ', which together form the component referred to as valve tube 55.
  • the thin-walled magnetic throttle point 8 follows in the downstream direction.
  • This wall which is substantially thinner than the wall thicknesses of the valve tube 55 upstream and downstream of the throttle point 8, represents the transition of the core 2 to the valve seat support 14 'seen in the axial direction.
  • the extruded valve seat support 14' has one near its downstream end Annular groove 51, in which a sealing ring 52 is arranged for sealing against a valve seat.
  • the fuel injector Concentric to the longitudinal axis of the valve 12, the fuel injector has the thin-walled, sleeve-shaped, preferably produced by deep drawing and as a housing, as part of the magnetic circuit and as
  • the solenoid 1 with its coil body 3 is in turn embedded between the valve jacket 14 and the valve tube 55 in an annular space 15 provided for this purpose.
  • valve tube 55 again has an inner longitudinal opening 18 through which the fuel flows.
  • the valve needle 19 is arranged, which is formed at least by the armature 22 and the spherical valve closing body 23 attached to its downstream end.
  • the valve needle is shortened compared to the first exemplary embodiment, since a connecting part 20 is dispensed with.
  • the valve inlet connector 56 as part of the valve jacket 14 is largely enclosed with the plastic encapsulation 42.
  • This plastic encapsulation 42 includes a molded-on electrical connector 43 which, for example, projects radially outward immediately above a radial shoulder 59 of the valve jacket 14.
  • valve jacket 14 has a larger diameter in the area of extension of the solenoid 1 than in the area of the valve inlet connector 56, which ultimately creates the space 15 for receiving the solenoid 1.
  • the connector 43 made of plastic includes, for example, two metallic contact pins 44 which are directly connected to the winding of the magnetic coil 1. The contact pins 44 protrude to
  • valve jacket 14 is e.g. a plurality of circumferentially attached welding spots 45 ′ generated by means of a laser or a continuous circumferential weld seam are attached to the valve tube 55. This fixed connection does not have to perform a sealing function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Die Erfindung betrifft ein Brennstoffeinspritzventil, das einen sich über seine gesamte axiale Länge erstreckenden metallenen Grundkörper besitzt, der wiederum aus einem Kern/Innenpol (2) und einem Ventilmantel (14) besteht. Der Innenpol (2) ist dabei mittels Fliesspressen hergestellt und umfasst einen Ventileinlassstutzen, den eigentlichen Kern (2) des elektromagnetischen Kreises, eine magnetische Drosselstelle (8) und einen Bereich zur Führung eines Ankers (22). Dagegen ist der Ventilmantel (14) mittels Tiefziehen hergestellt. Der Ventilmantel (14) dient neben der Funktion als Gehäusebauteil auch als Ventilsitzträger. Zwischen dem Ventilmantel (14) und dem Innenpol (2) ist ein Zwischenraum (15) gebildet, in dem eine mittels eines Dichtrings (37) abgedichtete und damit trockene Magnetspule (1) angeordnet ist. Das Brennstoffeinspritzventil eignet sich besonders für den Einsatz in Brennstoffeinspritzanlagen von gemischverdichtenden fremdgezündeten Brennkraftmaschinen.

Description

Brennstoffeinspritzventil
Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs.
Aus der DE-OS 195 03 821 ist bereits ein elektromagnetisch betätigbares Brennstoffeinspritzventil bekannt, bei dem ein metallener Grundkörper des Ventils einteilig oder zweiteilig ohne unmagnetisches Zwischenteil ausgebildet ist. Der Grundkörper umfaßt dabei die Abschnitte Einlaßstutzen, magnetischer Innenpol (Kern) und Ventilsitzträger. Zudem übernimmt der Grundkörper die Führung eines Ankers, durch den ein mit einem Ventilsitz zusammenwirkender Ventilschließkörper betätigbar ist. Des weiteren besitzt der Grundkörper eine magnetische Drosselstelle, die eine deutlich kleinere Wandungsstärke hat als die Wandstärken des stromaufwärts liegenden Kerns und des stromabwärts folgenden Ventilsitzträgers .
Bekannt ist außerdem aus der DE-OS 195 37 382 bereits ein elektromagnetisch betätigbares Brennstoffeinspritzventil, bei dem ein innerer Kern sowie ein äußeres Magnetgehäuse vorgesehen sind. Das Magnetgehäuse ist dabei derart gestuft ausgeführt, daß zwischen dem Kern und dem Magnetgehäuse ein Spulenraum zur Aufnahme einer Magnetspule gebildet ist. Der Spulenraum wird dabei einerseits oberhalb der Magnetspule mit einem Deckelelement und andererseits unterhalb der Magnetspule mit einem nichtmagnetischen Zwischenteil abgeschlossen. Zum Schließen des Magnetkreises bzw. zum Verhindern eines magnetischen Kurzschlusses sowie zum Begrenzen des Spulenraums werden also zusätzlich zum Kern und zum Magnetgehäuse zwei weitere Bauteile benötigt.
Vorteile der Erfindung
Das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Haup anspruchs hat den Vorteil einer besonders einfachen und kostengünstigen Herstellbarkeit, durch die jedoch in keinster Weise
Ventilfunktionen beeinträchtigt werden. In vorteilhafter Weise sind der Innenpol und der Ventilmantel derart ausgeformt, daß der Ventilmantel den Innenpol zumindest teilweise radial mit Abstand umgibt, so daß zwischen beiden ein Zwischenraum gebildet ist, in dem die Magnetspule eingebracht ist. Die Magnetspule ist sicher und zuverlässig eingebettet, da sie in Umfangsrichtung vollständig vom Ventilmantel umgeben ist und der Zwischenraum axial oberhalb und unterhalb der Magnetspule durch metallischen Kontakt des Ventilmantels und des Innenpols abgegrenzt ist. Dieser unmittelbare metallische Kontakt des Ventilmantels mit dem Innenpol und der damit verbundene abgeschlossene Spulenraum sorgen dafür, daß in kostengünstiger, materialsparender und bauteilreduzierender Weise keine weiteren Zwischenbauteile erforderlich sind. Die Ausgestaltung erlaubt unter Beibehaltung der erforderlichen weichmagnetischen Eigenschaften die für die Herstellung von Innenpol und Ventilmantel bestmögliche Auswahl der Materialien. Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Brennstoffeinspritzventils möglich.
In vorteilhafter Weise ist der Innenpol des
Brennstoffeinspritzventils mittels Fließpressen herstellbar, was besonders günstig als Kaltumformen durchführbar ist. Zum Kaltfließpressen eignen sich Stähle mit geringen Zugfestigkeiten (unlegierte Stähle) ebenso wie Stähle mit großen Zugfestigkeiten (hochlegierte Stähle) . Unlegierte Stähle erreichen nach dem Kaltfließpressen durchaus Festigkeitswerte (Zugfestigkeit, Härte) von legierten Stählen im geglühten Zustand. Aus Gründen der magnetischen Eigenschaften des Innenpols kann es zweckmäßig sein, den entsprechend fließgepreßten Innenpolrohling nachfolgend zu glühen. Die Betrachtung der Zugfestigkeiten ist dann nicht notwendig, da die geforderten Festigkeitswerte auf jeden Fall erreicht werden. Als großer Vorteil des Fließpressens des Innenpols bleibt festzuhalten, daß ein geringerer
Materialeinsatz gegenüber bekannten Drehteilen nötig ist, woraus sich deutliche Kostenvorteile ergeben.
Besonders kostengünstig ist es, neben dem fließgepreßten Innenpol einen tiefgezogenen Ventilmantel vorzusehen, der mit dem Innenpol fest verbunden ist und mit diesem zusammen einen metallenen Grundkörper bildet, der sich über die gesamte axiale Länge des Ventils erstreckt.
Aufgrund des metallischen Kontakts des Ventilmantels mit dem Innenpol ist es besonders vorteilhaft, am Innenpol eine magnetische Drosselstelle vorzusehen, so daß der magnetische Kreis über Ventilmantel, Innenpol und Anker um die magnetische Drosselstelle herum geschlossen wird. Auf nichtmagnetische Zwischenteile kann so verzichtet werden. Die Abdichtung des Spulenraums mit der folglich trocken vorliegenden Magnetspule erfolgt mittels eines zwischen Innenpol und Ventilmantel vorgesehenen Dichtrings, der an der der festen Verbindung von Ventilmantel und Innenpol axial gegenüberliegenden Seite der Magnetspule angeordnet ist .
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigen Figur 1 ein erstes Beispiel eines Brennstoffeinspritzventils und Figur 2 ein zweites Beispiel eines Brennstoffeinspritzventils .
Beschreibung der Ausführungsbeispiele
Das in der Figur 1 beispielsweise dargestellte elektromagnetisch betätigbare Ventil in der Form eines
Brennstoffeinspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen hat einen von einer Magnetspule 1 umgebenen, als Brennstoffeinlaßstutzen dienenden, rohrförmigen, fließgepreßten Kern 2 als sogenannten
Innenpol. Ein Spulenkörper 3 aus Kunststoff nimmt eine Bewicklung der Magnetspule 1 auf. Der Kern 2 weist eine prägnante Verjüngung seiner Wandungsstärke im axialen Erstreckungsbereich der Magnetspule 1 auf. Ausgehend von einer Schulter 5 des Kerns, die als Anschlagfläche 6 fungiert, schließt sich in s romabwär iger Richtung eine dünnwandige magnetische Drosselstelle 8 an. Diese ebenfalls rohrförmige, jedoch eine wesentlich dünnere Wandung als die Wandungsstärken des Kerns 2 stromaufwärts und stromabwärts der Drosselstelle 8 aufweisende magnetische Drosselstelle 8 stellt in axialer Richtung gesehen den Übergang eines langgestreckten oberen Kernteils 9, das besonders den Einlaßstutzen bildet, zu einem unteren vergleichsweise kurz ausgebildeten Kernende 10 dar.
Die Wandungsstärke der dünnwandigen magnetischen Drosselstelle 8 beträgt z.B. zwischen 0,2 und 0,5 mm, während die Wandungsstärken der stromaufwärts und stromabwärts folgenden Bereiche des Kerns 2 zur Erzielung eines optimalen Magnetflusses beispielsweise in der
Größenordnung von 1 bis 3 , 5 mm liegen sollten, also ungefähr um den Faktor 5 bis 20 größer als an der Drosselstelle 8. Die ringförmigen Querschnittsflächen des Kerns 2 vor und hinter der Drosselstelle 8 haben z.B. eine Größe von 20 bis 30 mm . Diese Größenangaben dienen nur dem besseren
Verständnis und schränken die Erfindung in keiner Weise ein.
Die drei wesentlichen Abschnitte 9, 8, 10 des Kerns 2 sind allesamt konzentrisch zu einer Ventillängsachse 12 ausgebildet. Im Bereich der magnetischen Drosselstelle 8 sind bei einem Großteil der bekannten Einspritzventile des Standes der Technik metallene, unmagnetische Zwischenteile vorgesehen, die für eine magnetische Trennung des Kerns 2 und einem stromabwärts folgenden und als Ventilsitzträger dienenden Anschlußteil sorgen, auf die jedoch bei den vorliegenden Brennstoffeinspritzventilen verzichtet werden kann.
Der Kern bzw. Einlaßstutzen 2 ist mittels Fließpressen hergestellt. Beim Fließpressen bilden Stempel und Matrize einen Formspalt. Der Stempel preßt den Werkstückstoff durch den Formspalt, wobei der entsprechende Querschnitt formgebend ist. Das Fließpressen des Kerns 2 wird beispielsweise als Kaltumformen eines entsprechenden Stahls durchgeführt. Das Kaltfließpressen ist von unlegierten Stahlsorten mit Zugfestigkeiten von 350 N/mm2 bis zu hochlegierten Stählen mit Zugfestigkeiten von 800 N/mm möglich. Nach dem Fließpressen des Kerns 2 wird dieser beispielsweise geglüht und die gewünschte Kontur mittels spanender Nachbearbeitung hergestellt.
Ebenfalls konzentrisch zur Ventillängsachse 12 weist das Brennstoffeinspritzventil einen dünnwandigen, hülsenförmigen, vorzugsweise mittels Tiefziehen hergestellten und als Gehäuse, als Teil des Magnetkreises und als Ventilsitzträger dienenden Ventilmantel 14 auf, der den Kern 2 zumindest abschnittsweise radial als Bauteil mit größerem Durchmesser als dem des Kerns 2 umgibt. So ist beispielsweise die Magnetspule 1 mit ihrem Spulenkörper 3 zwischen dem Ventilmantel 14 und dem Kern 2 in einem dafür vorgesehenen ringförmigen Zwischenraum 15 eingebettet. In dem beispielsweise mehrfach gestuften Ventilmantel 14 verläuft eine Längsöffnung 18, in die zumindest das Kernende 10 derart hineinragt, daß es an der inneren Wandung des Ventilmantels 14 anliegt. Das Kernende 10 dient zur
Übertragung des Magnetflusses vom Ventilmantel 14 über einen radialen Luftspalt auf den Anker 22.
In der Längsöffnung 18 ist zudem eine Ventilnadel 19 angeordnet, die mit einem z.B. rohrförmigen Verbindungsteil 20 ausgestattet ist, wobei an seinem stromaufwärtigen Ende ein Anker 22 und an seinem stromabwärtigen Ende ein kugelförmiger Ventilschließkörper 23 befestigt sind. Am Umfang des beispielsweise durch Schweißen mit dem Verbindungsteil 20 verbundenen Ventilschließkörpers 23 sind beispielsweise fünf Abflachungen 24 zum Vorbeiströmen des Brennstoffs vorgesehen.
Die Betätigung des Brennstoffeinspritzventils erfolgt in bekannter Weise elektromagnetisch. Zur axialen Bewegung der Ventilnadel 19 und damit zum Offnen entgegen der Federkraft einer Rückstellfeder 25 bzw. Schließen des Einspritzventils dient der elektromagnetische Kreis mit der Magnetspule 1, dem Kern 2, dem Ventilmantel 14 und dem Anker 22. Der Anker 22 ist mit dem dem Ventilschließkörper 23 abgewandten Ende des Verbindungsteils 20 ebenfalls durch eine Schweißnaht verbunden und auf das Kernteil 9 bzw. die Anschlagfläche 6 des Kerns 2 ausgerichtet. In das stromabwärts liegende, dem Kern 2 abgewandte Ende des Ventilmantels 14 ist in der Längsöffnung 18 ein zylinderförmiger Ventilsitzkörper 29, der eine Ventilsitzfläche 30 aufweist, beispielsweise durch Schweißen dicht montiert.
Zur Führung des Ventilschließkörpers 23 während der Axialbewegung der Ventilnadel 19 entlang der
Ventillängsachse 12 dient eine Führungsöffnung 32 des Ventilsitzkörpers 29. Am äußeren Umfang des Ankers 22 ist z.B. eine Führungsfläche 36 vorgesehen, die z. B. durch Drehen hergestellt ist und die ebenfalls der axialen Führung der Ventilnadel 19, hier gegenüber dem Kern 2 im Bereich der Drosselstelle 8, dient. Die wenigstens eine Führungsfläche 36 kann z. B. als ein umlaufender durchgehender Führungsring oder als mehrere am Umfang mit einem Abstand zueinander ausgebildete Führungsflächen ausgeführt sein.
Der kugelförmige Ventilschließkörper 23 wirkt mit der sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitzfläche 30 des Ventilsitzkörpers 29 zusammen. An seiner dem Ventilschließkörper 23 abgewandten Stirnseite ist der Ventilsitzkörper 29 mit einer beispielsweise topfförmig ausgebildeten Spritzlochscheibe 34 fest verbunden. Die Spritzlochscheibe 34 besitzt wenigstens eine, beispielsweise vier durch Erodieren oder Stanzen ausgeformte Abspritzöffnungen 35. Die Einschubtiefe des Ventilsitzkörpers 29 bestimmt die Größe des Hubs der Ventilnadel 19. Dabei ist die eine Endstellung der Ventilnadel 19 bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließkörpers 23 an der Ventilsitzfläche 30 des Ventilsitzkörpers 29 festgelegt, während sich die andere Endstellung der Ventilnadel 19 bei erregter Magnetspule 1 durch die Anlage des Ankers 22 an der z.B. hartverchromten Anschlagfläche 6 der Schulter 5 des Kerns 2 ergibt.
Im Zwischenraum 15 zwischen dem Ventilmantel 14 und dem Kern 2 ist unterhalb des Spulenkörpers 3 ein z.B. in Form eines O-Rings ausgebildeter Dichtring 37 angeordnet, der für eine Abdichtung des Spulenraums sorgt. Die der Aufnahme des Dichtrings 37 dienende Ringkammer wird durch die Unterseite des Spulenkörpers 3 , die innere Wandung des in diesem Bereich gestuften und sich in stromabwärtiger Richtung im Durchmesser verjüngenden Ventilmantels 14 und den äußeren Umfang des Kernendes 10, das innenseitig der Ankerführung dient, begrenzt.
Eine in eine konzentrisch zur Ventillängsachse 12 verlaufende Strömungsbohrung 38 des Kerns 2 eingeschobene Einstellhülse 39, die beispielsweise aus gerolltem Federstahlblech ausgeformt ist, dient zur Einstellung der Federvorspannung der an der Einstellhülse 39 anliegenden Rückstellfeder 25, die sich wiederum mit ihrer gegenüberliegenden Seite an dem Verbindungsteil 20 der Ventilnadel 19 abstützt. Ein Brennstoffilter 40 ragt in die Strömungsbohrung 38 des Kerns 2 an dessen Zulaufseitigem Ende hinein und sorgt für die Herausfiltrierung solcher Brennstoffbestandteile, die aufgrund ihrer Größe im Einspritzventil Verstopfungen oder Beschädigungen verursachen könnten. Der Kern (Innenpol, Einlaßstutzen) 2 ist weitgehend oberhalb eines radial nach außen stehenden Kragens 41, der den die Magnetspule 1 aufnehmenden Zwischenraum 15 nach oben hin abschließt, mit einer Kunststoffumspritzung 42 umschlossen. Zu dieser Kunststoffumspritzung 42 gehört beispielsweise ein mitangespritzter elektrischer Anschlußstecker 43, der z.B. unmittelbar oberhalb des Kragens 41 des Kerns 2 und des dem zulaufseitigen Ende des Einspritzventils zugewandten oberen Endes des Ventilmantels 14 radial nach außen ragt. Zu dem aus Kunststoff gefertigten Anschlußstecker 43 gehören beispielsweise zwei metallische Kontaktstifte 44, die unmittelbar mit der Wicklung der Magnetspule 1 in Verbindung stehen. Die Kontaktstifte 44 ragen zum Anschlußstecker 43 hin aus dem Spulenkörper 3 heraus durch eine Ausnehmung 47 im Kragen 41. In dieser Ausnehmung 47 liegen die
Kontaktstif e 44 von Kunststoff umspritzt vor, da sich die Kunststoffumspritzung 42 z.B. bis in den die Magnetspule 1 aufnehmenden Zwischenraum 15 zwischen Ventilmantel 14 und Kern 2 hinein erstreckt, so daß dieser Zwischenraum 15 zusätzlich zum Spulenkörper 3 weitgehend mit Kunststoff ausgespritzt ist. Nahe des Anschlußsteckers 43 ist der Ventilmantel 14 durch mehrere umfänglich angebrachte, z.B. mittels eines Lasers erzeugte Schweißpunkte 45 am Kragen 41 des Kerns 2 befestigt. Diese feste Verbindung muß keine Dichtfunktiσn erfüllen. Es kann jedoch auch eine umlaufende, durchgehende Schweißnaht 45 vorgesehen sein.
Der tiefgezogene Ventilmantel 14 weist nahe seines stromabwärtigen Endes eine durch Faltung gebildete, senkrecht zur axialen Erstreckung des Ventilmantels 14 nach außen stehende, umlaufende Ringwulst 49 auf, während der Ventilmantel 14 an seinem unmittelbaren stromabwärtigen Ende einen nach außen stehenden Kragen 50 in Form einer Auftulpung besitzt. Die Ringwulst 49 und der Kragen 50 bilden zusammen mit der äußeren Wandung des Ventilmantels 14 in diesem Bereich eine Ringnut 51, in der ein Dichtring 52 zur Abdichtung gegenüber einer Ventilaufnahme angeordnet ist .
Im zweiten Ausführungsbeispiel der nachfolgenden Figur 2 sind die gegenüber dem in Figur 1 dargestellten Ausführungsbeispiel gleichbleibenden bzw. gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet. Der Hauptunterschied zum ersten Ausführungsbeispiel besteht darin, daß nun ein den einen Innenpol darstellender Kern 2, die magnetische Drosselstelle 8 und ein den Ventilsitzträger 14' bildendes Ventilrohr 55 mittels Fließpressen herstellbar ist, während der eigentliche Ventilmantel 14 einteilig mit einem Ventileinlaßstutzen 56 als tiefgezogenes Bauteil ausgebildet ist.
Das Brennstoffeinspritzventil gemäß Figur 2 besitzt ebenfalls den von der Magnetspule 1 umgebenen, rohrförmigen, fließgepreßten Kern 2, der jedoch nicht wie bei dem in Figur 1 dargestellten Beispiel als unmittelbarer
Brennstoffeinlaßstutzen dient, dafür jedoch einteilig mit dem Ventilsitzträger 14' stromabwärts ausgebildet ist, die zusammen das als Ventilrohr 55 bezeichnete Bauteil bilden. Ausgehend von der Schulter 5 des Kerns, die als Anschlagfläche 6 fungiert, schließt sich in stromabwärtiger Richtung die dünnwandige magnetische Drosselstelle 8 an. Diese eine wesentlich dünnere Wandung als die Wandungsstärken des Ventilrohrs 55 stromaufwärts und stromabwärts der Drosselstelle 8 aufweisende magnetische Drosselstelle 8 stellt in axialer Richtung gesehen also den Übergang des Kerns 2 zu dem Ventilsitzträger 14' dar. Der fließgepreßte Ventilsitzträger 14' weist nahe seines stromabwärtigen Endes eine Ringnut 51, in der ein Dichtring 52 zur Abdichtung gegenüber einer Ventilaufnähme angeordnet ist, auf. Konzentrisch zur Ventillängsachse 12 weist das Brennstoffeinspritzventil den dünnwandigen, hülsenförmigen, vorzugsweise mittels Tiefziehen hergestellten und als Gehäuse, als Teil des Magnetkreises und als
Ventileinlaßstutzen 56 dienenden Ventilmantel 14 auf, der das Ventilrohr 55 zumindest abschnittsweise radial als Bauteil mit größerem Durchmesser als dem des Ventilrohrs 55 umgibt. So ist die Magnetspule 1 mit ihrem Spulenkörper 3 wiederum zwischen dem Ventilmantel 14 und dem Ventilrohr 55 in einem dafür vorgesehenen ringförmigen Zwischenraum 15 eingebettet. In dem Ventileinlaßstutzen 56 des Ventilmantels 14 verläuft eine Strömungsbohrung 38, in die zumindest das obere Kernteil 9 derart hineinragt, daß es an der inneren Wandung des Ventileinlaßstutzens 56 anliegt.
Andererseits weist wiederum das Ventilrohr 55 eine innere Längsöffnung 18 auf, die vom Brennstoff durchströmt wird. In der Längsöffnung 18 ist die Ventilnadel 19 angeordnet, die wenigstens von dem Anker 22 und dem an seinem stromabwärtigen Ende befestigten kugelförmigen Ventilschließkörper 23 gebildet wird. Die Ventilnadel ist gegenüber dem ersten Ausführungsbeispiel verkürzt ausgebildet, da auf ein Verbindungsteil 20 verzichtet wird.
Der für eine Abdichtung des Spulenraums zur Erzielung einer trockenen Magnetspule 1 benötigte Dichtring 37, der z.B. in Form eines O-Rings ausgebildet ist, ist bei diesem Ausführungsbeispiel nicht im Zwischenraum 15 angeordnet. Trotzdem liegt der Dichtring 37 zwischen dem Ventilmantel 14 und dem Ventilrohr 55 vor, und zwar genauer gesagt zwischen dem Ventileinlaßstutzen 56 und dem oberen Kernteil 9 des Kerns 2. Eine der Aufnahme des Dichtrings 37 dienende umlaufende Ringnut 58 ist dafür am äußeren Umfang des Kerns 2 vorgesehen. Der Ventileinlaßstutzen 56 als Teil des Ventilmantels 14 ist weitgehend mit der Kunststoffumspritzung 42 umschlossen. Zu dieser Kunststoffumspritzung 42 gehört ein mitangespritzter elektrischer Anschlußstecker 43, der z.B. unmittelbar oberhalb einer Radialschulter 59 des Ventilmantels 14 radial nach außen ragt. Mit der Radialschulter 59 wird erreicht, daß der Ventilmantel 14 im Erstreckungsbereich der Magnetspule 1 einen größeren Durchmesser besitzt als im Bereich des Ventileinlaßstutzens 56, wodurch letztlich der Zwischenraum 15 zur Aufnahme der Magnetspule 1 geschaffen ist. Zu dem aus Kunststoff gefertigten Anschlußstecker 43 gehören beispielsweise zwei metallische Kontaktstifte 44, die unmittelbar mit der Wicklung der Magnetspule 1 in Verbindung stehen. Die Kontaktstifte 44 ragen zum
Anschlußstecker 43 hin aus dem Spulenkörper 3 heraus durch die Ausnehmung 47 in der Radialschulter 59.
Im Bereich des Ventilsitzträgers 14' unterhalb des Zwischenraums 15 ist der Ventilmantel 14 durch z.B. mehrere umfänglich angebrachte, mittels eines Lasers erzeugte Schweißpunkte 45' oder eine durchgehend umlaufende Schweißnaht am Ventilrohr 55 befestigt. Diese feste Verbindung muß keine Dichtfunktion erfüllen.

Claims

Patentansprüche
1. Brennstoffeinspritzventil mit einer Ventillängsachse (12) , mit einem elektromagnetischen Kreis, der wenigstens eine Magnetspule (1) , einen metallenen Innenpol (2) , einen metallenen Ventilmantel (14) und einen Anker (22) umfaßt, wobei der Innenpol (2) und der Ventilmantel (14) derart ausgeformt sind, daß der Ventilmantel (14) den Innenpol (2) zumindest teilweise radial mit Abstand umgibt, so daß zwischen beiden (2, 14) ein Zwischenraum (15) gebildet ist, in dem die Magnetspule (1) eingebracht ist, die in Umfangsrichtung vollständig vom Ventilmantel (14) umgeben ist, und wobei durch den Anker (22) ein mit einer festen Ventilsitzflache (30) zusammenwirkender Ventilschließkörper (23) betätigbar ist, dadurch gekennzeichnet, daß der Innenpol (2) und der Ventilmantel (14) zusammen den Zwischenraum (15) axial oberhalb und unterhalb der Magnetspule (1) begrenzen, wobei zwischen dem Innenpol (2) und dem Ventilmantel (14) sowohl oberhalb als auch unterhalb der Magnetspule (1) metallischer Kontakt besteht und der Innenpol (2) und der Ventilmantel (14) wenigstens in einem der beiden Kontaktbereiche fest miteinander verbunden sind.
2. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß der Innenpol (2) mittels Fließpressen hergestellt ist.
3. Brennstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Ventilmantel (14) mittels Tiefziehen hergestellt ist.
4. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Innenpol (2) mit einer dünnwandigen magnetischen Drosselstelle (8) ausgebildet ist, an der sich sowohl in stromaufwärtiger als auch in stromabwärtiger Richtung Bereiche anschließen, die eine deutlich größere Wandungsstärke haben als die der Drosselstelle (8) .
5. Brennstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, daß die Wandstärke der Drosselstelle (8) zwischen 0,2 und 0,5 mm beträgt.
6. Brennstoffeinspritzventil nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Drosselstelle (8) in einem axialen Erstreckungsbereich des Innenpols (2) ausgebildet ist, der durch den Zwischenraum (15) vom Ventilmantel (14) beabstandet vorliegt.
7. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Innenpol (2) derart ausgeformt ist, daß er als Kern des Magnetkreises, als Ventileinlaßstutzen und als Ankerführung dient.
8. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Innenpol (2) als Ventilrohr (55) derart ausgeformt ist, daß er als Kern des Magnetkreiseε, als Ventilsitzträger (14') und als Ankerführung dient .
9. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Ventilmantel (14) zugleich als Ventilsitzträger ausgebildet ist.
10. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 6 oder 8, dadurch gekennzeichnet, daß der Ventilmantel (14) zugleich als Ventileinlaßstutzen (56) ausgebildet ist.
11. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der die Magnetspule
(1) aufnehmende Zwischenraum (15) mittels eines zwischen Innenpol (2) und Ventilmantel (14) vorgesehenen Dichtrings (37) abgedichtet ist.
12. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß sich der Innenpol (2) und der Ventilmantel (14) zusammen über die gesamte axiale Länge des Ventils erstrecken.
13. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß der Innenpol (2) oberhalb der Magnetspule (1) mit einem radial nach außen stehenden Kragen (41) ausgebildet ist, der eine Ausnehmung (47) besitzt, durch die hindurch Kontaktstifte (44) von der Magnetspule (1) zu einem elektrischen Anschlußstecker (43) verlaufen.
14. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß der Ventilmantel (14) oberhalb der Magnetspule (1) mit einer Radialschulter (59) ausgebildet ist, die eine Ausnehmung (47) besitzt, durch die hindurch Kontaktstifte (44) von der Magnetspule (1) zu einem elektrischen Anschlußstecker (43) verlaufen.
EP98947358A 1997-10-10 1998-07-28 Brennstoffeinspritzventil Expired - Lifetime EP0944769B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19744739A DE19744739A1 (de) 1997-10-10 1997-10-10 Brennstoffeinspritzventil
DE19744739 1997-10-10
PCT/DE1998/002134 WO1999019620A1 (de) 1997-10-10 1998-07-28 Brennstoffeinspritzventil

Publications (2)

Publication Number Publication Date
EP0944769A1 true EP0944769A1 (de) 1999-09-29
EP0944769B1 EP0944769B1 (de) 2003-05-07

Family

ID=7845129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98947358A Expired - Lifetime EP0944769B1 (de) 1997-10-10 1998-07-28 Brennstoffeinspritzventil

Country Status (10)

Country Link
US (1) US6186472B1 (de)
EP (1) EP0944769B1 (de)
JP (1) JP4180122B2 (de)
KR (1) KR100573190B1 (de)
CN (1) CN1138915C (de)
AT (1) ATE239867T1 (de)
BR (1) BR9806699A (de)
DE (2) DE19744739A1 (de)
ES (1) ES2199465T3 (de)
WO (1) WO1999019620A1 (de)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047907A (en) 1997-12-23 2000-04-11 Siemens Automotive Corporation Ball valve fuel injector
US20010002680A1 (en) 1999-01-19 2001-06-07 Philip A. Kummer Modular two part fuel injector
JP2001012636A (ja) 1999-06-29 2001-01-16 Aisan Ind Co Ltd 複数のソレノイドと共通筒を有する燃料噴射装置
DE19932761A1 (de) * 1999-07-14 2001-01-18 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19932762A1 (de) * 1999-07-14 2001-01-18 Bosch Gmbh Robert Verfahren zur Einstellung des Ventilhubs eines Einspritzventils
US6409145B1 (en) 2000-02-28 2002-06-25 Delphi Technologies, Inc. Plunger assembly having a preset spring force pre-load
US6676044B2 (en) * 2000-04-07 2004-01-13 Siemens Automotive Corporation Modular fuel injector and method of assembling the modular fuel injector
US6481646B1 (en) 2000-09-18 2002-11-19 Siemens Automotive Corporation Solenoid actuated fuel injector
DE10051016A1 (de) * 2000-10-14 2002-04-18 Bosch Gmbh Robert Brennstoffeinspritzventil
JP3734702B2 (ja) * 2000-10-17 2006-01-11 株式会社日立製作所 電磁式燃料噴射弁
JP3791591B2 (ja) * 2000-11-29 2006-06-28 株式会社デンソー 燃料噴射弁とそのスプリング力調整用のアジャストパイプ及びその圧入方法
US6811091B2 (en) 2000-12-29 2004-11-02 Siemens Automotive Corporation Modular fuel injector having an integral filter and dynamic adjustment assembly
US6550690B2 (en) 2000-12-29 2003-04-22 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having an integral filter and dynamic adjustment assembly
US6695232B2 (en) 2000-12-29 2004-02-24 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a lift set sleeve
US6508417B2 (en) 2000-12-29 2003-01-21 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a lift set sleeve
US6536681B2 (en) 2000-12-29 2003-03-25 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and O-ring retainer assembly
US6568609B2 (en) 2000-12-29 2003-05-27 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and o-ring retainer assembly
US6502770B2 (en) 2000-12-29 2003-01-07 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6523756B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a lift set sleeve
US6523760B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6533188B1 (en) 2000-12-29 2003-03-18 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and dynamic adjustment assembly
US6520421B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having an integral filter and o-ring retainer
US6523761B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a lift set sleeve
US6708906B2 (en) 2000-12-29 2004-03-23 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6547154B2 (en) 2000-12-29 2003-04-15 Siemens Automotive Corporation Modular fuel injector having a terminal connector interconnecting an electromagnetic actuator with a pre-bent electrical terminal
US6511003B2 (en) 2000-12-29 2003-01-28 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6655609B2 (en) 2000-12-29 2003-12-02 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and o-ring retainer assembly
US6565019B2 (en) 2000-12-29 2003-05-20 Seimens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and O-ring retainer assembly
US6520422B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6698664B2 (en) 2000-12-29 2004-03-02 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and dynamic adjustment assembly
US6499668B2 (en) 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6769636B2 (en) 2000-12-29 2004-08-03 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having an integral filter and O-ring retainer assembly
US6607143B2 (en) 2000-12-29 2003-08-19 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a lift set sleeve
DE10108464A1 (de) * 2001-02-22 2002-09-05 Bosch Gmbh Robert Brennstoffeinspritzventil
US6687997B2 (en) 2001-03-30 2004-02-10 Siemens Automotive Corporation Method of fabricating and testing a modular fuel injector
US6676043B2 (en) 2001-03-30 2004-01-13 Siemens Automotive Corporation Methods of setting armature lift in a modular fuel injector
US7093362B2 (en) 2001-03-30 2006-08-22 Siemens Vdo Automotive Corporation Method of connecting components of a modular fuel injector
US6904668B2 (en) 2001-03-30 2005-06-14 Siemens Vdo Automotive Corp. Method of manufacturing a modular fuel injector
DE10142302A1 (de) 2001-08-29 2003-03-20 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10152172A1 (de) * 2001-10-23 2003-04-30 Bosch Gmbh Robert Magnetventil
DE10159909A1 (de) * 2001-12-06 2003-06-18 Bosch Gmbh Robert Brennstoffeinspritzventil-Zündkerze-Kombination
DE10261610A1 (de) * 2002-12-27 2004-07-08 Robert Bosch Gmbh Ventil zum Steuern eines Fluids
DE10332348A1 (de) * 2003-07-16 2005-02-03 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102004047041B4 (de) * 2004-09-28 2017-06-14 Robert Bosch Gmbh Brennstoffeinspritzventil
KR100663934B1 (ko) 2004-11-30 2007-01-03 한국델파이주식회사 차량용 연료분사장치
DE102005037319A1 (de) * 2005-08-04 2007-02-08 Robert Bosch Gmbh Brennstoffeinspritzventil
US7617991B2 (en) * 2006-03-31 2009-11-17 Delphi Technologies, Inc. Injector fuel filter with built-in orifice for flow restriction
JP4143097B2 (ja) * 2006-04-28 2008-09-03 三菱電機株式会社 電磁式燃料噴射弁
DE102007051585A1 (de) 2007-10-29 2009-04-30 Robert Bosch Gmbh Kraftstoffeinspritzventil
DE102007051584A1 (de) 2007-10-29 2009-04-30 Robert Bosch Gmbh Kraftstoffeinspritzventil
JP2009138614A (ja) * 2007-12-05 2009-06-25 Mitsubishi Heavy Ind Ltd 蓄圧式燃料噴射装置の燃料噴射弁
DE102009000872B4 (de) 2009-02-16 2018-05-30 Robert Bosch Gmbh Einspritzventil
JP5035369B2 (ja) * 2010-03-11 2012-09-26 トヨタ自動車株式会社 燃料噴射ノズル
CN101818711B (zh) * 2010-06-03 2012-02-08 无锡开普动力有限公司 电控喷油器的喷射阀
DE102010040898A1 (de) * 2010-09-16 2012-03-22 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102010040916A1 (de) * 2010-09-16 2012-03-22 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102010040910A1 (de) * 2010-09-16 2012-03-22 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102011075408B4 (de) 2011-05-06 2018-08-02 Robert Bosch Gmbh Ventil zum Zumessen eines strömenden Mediums
DE102012204299A1 (de) * 2012-03-19 2013-09-19 Robert Bosch Gmbh Magnetischer Aktor, Ventil, sowie Verwendung eines Materials bei magnetischen Aktoren
US10107243B2 (en) 2014-10-28 2018-10-23 Mitsubishi Electric Corporation Fuel injection valve
DE102016208288A1 (de) 2016-05-13 2017-11-16 Robert Bosch Gmbh Injektor mit verbessertem Magnetaktor
CN110566388A (zh) * 2019-09-23 2019-12-13 南岳电控(衡阳)工业技术股份有限公司 一种甲醇喷射器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3701872A1 (de) * 1987-01-23 1988-08-04 Pierburg Gmbh Elektromagnetisch getaktetes einspritzventil fuer gemischverdichtende brennkraftmaschinen
DE3825134A1 (de) * 1988-07-23 1990-01-25 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil und verfahren zur herstellung
DE4008675A1 (de) * 1990-03-17 1991-09-19 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
IT1256933B (it) * 1992-08-07 1995-12-27 Weber Srl Valvola dosatrice e polverizzatrice di carburante ad azionamento elettromagnetico.
DE4416610A1 (de) * 1994-05-11 1995-11-16 Bosch Gmbh Robert Brennstoffeinspritzventil
DE4432525A1 (de) * 1994-09-13 1996-03-14 Bosch Gmbh Robert Verfahren zur Herstellung eines Magnetkreises für ein Ventil
DE19503821A1 (de) 1995-02-06 1996-08-08 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
DE19503820C2 (de) * 1995-02-06 2003-10-16 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung einer Führung an einem Ventil
DE19537382A1 (de) 1995-10-07 1997-04-10 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil, insbesondere Brennstoffeinspritzventil
JP3338614B2 (ja) * 1996-06-03 2002-10-28 愛三工業株式会社 燃料噴射弁
DE19712589C1 (de) * 1997-03-26 1998-06-04 Bosch Gmbh Robert Brennstoffeinspritzventil und Verfahren zur Herstellung einer Ventilnadel eines Brennstoffeinspritzventils
DE19712590A1 (de) * 1997-03-26 1998-10-01 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
US5820099A (en) * 1997-05-20 1998-10-13 Siemens Automotive Corporation Fluid migration inhibitor for fuel injectors
DE19727414A1 (de) * 1997-06-27 1999-01-07 Bosch Gmbh Robert Verfahren zur Herstellung einer Magnetspule für ein Ventil und Ventil mit einer Magnetspule
DE19729304A1 (de) * 1997-07-09 1999-01-14 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9919620A1 *

Also Published As

Publication number Publication date
ATE239867T1 (de) 2003-05-15
DE19744739A1 (de) 1999-04-15
WO1999019620A1 (de) 1999-04-22
DE59808268D1 (de) 2003-06-12
CN1241241A (zh) 2000-01-12
US6186472B1 (en) 2001-02-13
BR9806699A (pt) 2000-02-29
EP0944769B1 (de) 2003-05-07
KR20000069385A (ko) 2000-11-25
JP4180122B2 (ja) 2008-11-12
CN1138915C (zh) 2004-02-18
ES2199465T3 (es) 2004-02-16
KR100573190B1 (ko) 2006-04-24
JP2001505979A (ja) 2001-05-08

Similar Documents

Publication Publication Date Title
EP0944769B1 (de) Brennstoffeinspritzventil
EP0720691B1 (de) Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung
EP0865574B1 (de) Brennstoffeinspritzventil und verfahren zur herstellung
EP0685643B1 (de) Ventilnadel für ein elektromagnetisch betätigbares Ventil
EP0871822B1 (de) Elektromagnetisch betätigbares ventil
EP0772738B1 (de) Elektromagnetisch betätigbares ventil
DE69505830T2 (de) Gehäuse für eine magnetspule eines elektromagnetisch betätigten kraftstoffeinspritzventils
EP1789673B1 (de) Einspritzventil zur kraftstoffeinspritzung
EP0934459A1 (de) Brennstoffeinspritzventil
DE19712590A1 (de) Elektromagnetisch betätigbares Ventil
EP0865573A1 (de) Ventilnadel für ein einspritzventil
WO1996008647A1 (de) Verfahren zur herstellung eines magnetkreises für ein ventil
WO2007073964A1 (de) Elektromagnetisch betätigbares ventil
EP0496844B1 (de) Verfahren zur einstellung eines ventils und ventil
EP0937200B1 (de) Elektromagnetisch betätigbares ventil
EP0525377A1 (de) Ventil
EP0659235B1 (de) Elektromagnetisch betätigbares brennstoffeinspritzventil
EP1062422A1 (de) Verfahren zur montage einer ventilbaugruppe eines brennstoffeinspritzventils
EP0925441B1 (de) Elektromagnetisch betätigbares ventil
DE19925984A1 (de) Brennstoffeinspritzventil und Verfahren zu dessen Herstellung
DE4424463A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES GB IT

17P Request for examination filed

Effective date: 19991022

17Q First examination report despatched

Effective date: 20010914

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE ES GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59808268

Country of ref document: DE

Date of ref document: 20030612

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2199465

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040716

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040722

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040726

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050728

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050728

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110727

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150925

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59808268

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201