[go: up one dir, main page]

EP0344644A2 - Mineralöle mit verbessertem Fliessverhalten - Google Patents

Mineralöle mit verbessertem Fliessverhalten Download PDF

Info

Publication number
EP0344644A2
EP0344644A2 EP89109550A EP89109550A EP0344644A2 EP 0344644 A2 EP0344644 A2 EP 0344644A2 EP 89109550 A EP89109550 A EP 89109550A EP 89109550 A EP89109550 A EP 89109550A EP 0344644 A2 EP0344644 A2 EP 0344644A2
Authority
EP
European Patent Office
Prior art keywords
degrees
oils
ppm
crystallization
paraffin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89109550A
Other languages
English (en)
French (fr)
Other versions
EP0344644A3 (de
Inventor
Michael Dr. Müller
Horst Dr. Pennewiss
Heinz Dr. Grünig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roehm GmbH Darmstadt
Original Assignee
Roehm GmbH Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roehm GmbH Darmstadt filed Critical Roehm GmbH Darmstadt
Publication of EP0344644A2 publication Critical patent/EP0344644A2/de
Publication of EP0344644A3 publication Critical patent/EP0344644A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic

Definitions

  • the invention relates to mineral oils, in particular crude oils, vacuum gas oils or residual oils with improved flow behavior.
  • the cold behavior of petroleum and petroleum products is decisively influenced by the paraffins they contain.
  • the paraffins crystallize on cooling. As a result, the fluidity of the oils is reduced or completely prevented.
  • the paraffins generally dissolve in the oil matrix when heated.
  • the dewaxing of the oils can be used to improve the low-temperature flow properties.
  • pour point improvers From an empirical point of view, the mode of action of such pour point improvers appears to be linked to the presence of certain structural elements, namely sufficiently long alkyl groups to grow from nucleation Paraffin crystals to be installed and the presence of side chains or side groups at greater distances to disrupt the crystal growth. (See Ullmanns Encyklopadie der Technische Chemie, 4th edition, volume 20, Verlag Chemie 1981, p. 548 ff).
  • the scarcity of resources leads to an increasing exploitation of oil deposits, the processing of which poses greater technological problems than a few years or decades ago. Some of these problems are related to the overall higher, but different, paraffin content of the individual crude oil sources. It has therefore proven to be increasingly difficult to provide additives which control the properties of the crude oils in the desired sense in at least a representative majority of the deposits. If possible, these additives should be inexpensive to manufacture and should be usable within the framework of the usual technologies.
  • the present invention is therefore based on the object of providing flow improvers for crude oils in the broadest sense, for vacuum gas oils or residual oils places that, in relation to certain characteristics of these oils, reliably meet the requirements for flow improvers for these oils.
  • the paraffins contained in the oils crystallize on cooling while releasing heat.
  • the heat released can be recorded by means of differential thermal analysis (DTA) or preferably differential scanning calorimetry (DSC) as an exothermic peak and thus the start of paraffin crystallization can be correctly determined, while the determinations based on visual observation of the "wax appearance point" or the "cloud point””generally fail with dark products and residues.
  • DTA differential thermal analysis
  • DSC differential scanning calorimetry
  • the determination of the start of the paraffin crystallization of the mineral oils is expediently carried out by means of "differential scanning calorimetry (DSC)".
  • DSC differential scanning calorimetry
  • the standard condition used, under which the start of paraffin crystallization at ⁇ 30 degrees C was determined, is a cooling rate of the oil sample of 10 o K / min.
  • the cloud point of a 0.1% solution (% by weight) of the polymer in isooctane is defined according to DIN 51 597 used.
  • the polyalkyl (meth) acrylates or polydialkyl fumarates P are examples of the polyalkyl (meth) acrylates or polydialkyl fumarates P.
  • the polyalkyl (meth) acrylates PI to be used according to the invention differ on the basis of the definition made from the customary polyalkylacrylates of the prior art (see above) with C18-C24-alkyl radicals whose association temperature (start of crystallization) is approximately 20 degrees C.
  • the polyalkyl (meth) acrylates required according to the invention with an association temperature ⁇ 15 degrees C are polymers of esters of acrylic or methacrylic acid with longer-chain alkanols (from C8 and up to C40), including those with C16-C24-alkyl radicals, but the selection is taken such that said criterion of the association temperature is met.
  • the following selection criteria can be used: - Polymerization or copolymerization of esters of acrylic acid with alkyl radicals ⁇ 18 C atoms, in particular 12 to 18 C atoms. - Polymerization or copolymerization of esters of meth acrylic acid instead of acrylic acid, especially with C12 - C40 alkyl radicals. - Copolymerization with monomers that are not capable of side chain crystallization, in particular with alkyl radicals ⁇ C10 or branched alkyl radicals with C3 to C40.
  • polymers PI or P-II are generally in the range from 5,000 to 1,000,000, preferably from 10,000 to 500,000. In general, compliance with the molecular weight range is ensured by using regulators known per se, for example of the sulfur regulator type . (See Th. Völker, H.
  • Mercaptans such as dodecyl mercaptan in amounts of 0.01 to 2% by weight, based on the monomers, are particularly mentioned.
  • the molecular weights are determined by means of gel permeation chromatography, using polymethyl methacrylate as the calibration substance (see Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Ed Ed. 18, pg. 209 749, J. Wiley 1982).
  • the polydialkyl fumarates P-II which are also to be used according to the invention, correspond in terms of their preparation and molecular weight to those used in the prior art (cf. T. Otsu et al., Mem.Fac.Eng., Osaka, City Univ. 23 , 79-91 (1982); Y. Murata et al., Chem. Econom., Eng. Rev. 17 (10) 18-22 (1985).
  • the alkyl radicals correspond to those customary for the (meth) acrylic acid esters, ie those with up to 40 C atoms, preferably 8-40 C atoms, in particular 18-40 C atoms.
  • the starting monomers are known per se or they can be prepared in a manner known per se, for example by transesterification of lower (meth) acrylates such as, for example, the methyl or ethyl ester with the higher alcohols.
  • the polymers can be prepared following the radical polymerization processes of the prior art. (See H. Rauch-Puntigam, TH. Völker, Acryl- und Methacryl für n-silicon, Springer-Verlag, Berlin 1967).
  • An inert medium is preferred as the polymerization medium, preferably of the mineral oil type itself, for example 100 N oil.
  • Possible reaction vessels are those which are usually used and which are expediently equipped with a stirrer, heating device, thermometer, reflux condenser and metering line; preferably one works under an inert gas such as carbon dioxide.
  • the usual free radical initiators are preferably peresters, peroxides or azo compounds, for example tert. Butyl perbenzoate, tert. Butyl perpivalate in the usual Concentrations, for example 0.1-5% by weight, preferably 0.3-1% by weight, based on the total amount of monomers.
  • the process is started at elevated temperature, preferably from 60 degrees C, in particular at 70 ⁇ 5, whereupon initiator is added and the temperature reaches a peak which can be above 80 degrees C, for example 140 ⁇ 10 degrees C. If necessary, a temperature range suitable for postpolymerization can be achieved by heating and / or adding initiator. In general, the polymerization is completed in about 5 hours.
  • the mineral oils are The mineral oils.
  • the mineral oils or mineral oil products are by definition those in which the start of paraffin crystallization is at a temperature of less than / equal to 30 degrees C.
  • the mineral oils to be used according to the invention are understood to mean, for example: - Raw oils - Vacuum gas oils with a boiling point of 320 to 500 degrees C at normal pressure (true boiling point) - Residual oils (distillation residues that would distill over 350 degrees C). (See Winnacker-kuchler, Chemische Technologie, Volume 5, 4th edition, Carl Hanser Verlag, Kunststoff 1981).
  • the mineral oils in the polymers P are 1 - 10,000, preferably 50 to 2,000 ppm, in adaptation to the provenances, whose diligence properties need to be improved.
  • the polymers P can advantageously be diluted with a suitable compatible solvent, for example a hydrocarbon such as xylene, toluene, kerosene, SHELLSOL®.
  • a suitable compatible solvent for example a hydrocarbon such as xylene, toluene, kerosene, SHELLSOL®.
  • the solution thus obtained can then be used in the preparation of the mineral oil mixtures. In special cases, this solution can be added to the crude oil directly at the probe head or in the pipeline.
  • the polymers P are mixed, preferably in the form of the solutions mentioned, the mineral oils such as crude oils, Vacuum gas oils or residual oils expediently at an elevated temperature, for example at 40 to about 80 degrees C. The effect of the flow-improving additives is retained over the period that is normally required.
  • a 0.1% by weight solution of the polyalkyl (meth) acrylate or the polydialkyl fumarate P in isooctane is prepared at 80 ° C. and transferred to a sample vessel with a jacket vessel. The solution is cooled by placing it in a temperature-controlled cooling bath. At intervals of 1 degree C, a check is carried out to see whether the solution becomes cloudy. Upon the occurrence of the very first light haze of the onset of crystallization of the polymers is reached.
  • the measurement is started at 80 - 100 degrees C.
  • the cooling rate is 10 K / min.
  • the start of crystallization is the temperature at which the exothermic peak begins, the so-called "onset" temperature.
  • the sample was taken from the cold bath at intervals of 1 degree C and opened Flowability checked.
  • the fixed points are the temperatures at which the oil stops flowing.
  • the automatic measuring device from Herzog, Lauda (Federal Republic of Germany) can advantageously be used.
  • 100 N oil is understood to mean a base oil with a viscosity of 4 mm2 / sec at 100 degrees C, as is customary in public circles.
  • the viscosity ⁇ sp / c is determined in accordance with DIN 1342 or 51 562 in chloroform at 20 degrees C.
  • the cloud point (CP) determination was given above.
  • the polymers PI-1 to PI-4 and VI-1 and VI-2 were added as a 10% stock solution in xylene to the crude oils at 80 degrees C. All dosages relate to polymer.
  • the fixed points were determined in accordance with DIN 51 597 using an automatic measuring device from Herzog, Lauda.
  • the start of paraffin crystallization (CP) of the crude oils was determined by means of DSC at a cooling rate of 10 K / min.
  • North Sea crude oil with an n-alkane content of 14.7% has a CP of 47 degrees C, i.e. greater than 30 degrees C.
  • Benchmark without addition + 27 + 1000 ppm PI-1 + 26 + 1000 ppm PI-2 + 27 + 1000 ppm PI-3 + 27 + 1000 ppm VI-2 ⁇ 0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Paraffinhaltige Mineralöle aus der Gruppe der Rohöle, Vakuumgasöle und Rückstandsöle, die verbesserte Fließeigenschaften besitzen, wobei den Mineralölen gemeinsam ist, daß der Beginn der Paraffinkristallisation bei einer Temperatur kleiner/gleich 30 Grad C liegt und daß sie einen Gehalt von 1 - 10 000 ppm mindestens eines Polymeren P, ausgewählt aus der Klasse der Polyalkyl(meth)acrylate oder der Polydialkylfumarate besitzen, deren Kristallisationsbeginn unterhalb 15 Grad C liegt.

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft Mineralöle, insbesondere Rohöle, Vakuumgasöle oder Rückstandsöle mit verbessertem Fließverhalten.
  • Stand der Technik
  • Das Kälteverhalten von Erdölen und Erdölprodukten wird enstcheidend durch die darin enthaltenen Paraffine beeinflußt. Die Paraffine kristallisieren beim Abkühlen aus. Dadurch wird die Fließfähigkeit der Öle herabgesetzt bzw. ganz verhindert. Die Paraffine gehen im allgemeinen beim Erwärmen wieder in der Ölmatrix in Lösung . Zur Verbesserung der Tieftemperatur-Fließeigenschaften bietet sich die Entparaffinierung der Öle an. Die Technik hat ferner Additive, sogenannte "Pour-Erniedriger", entwickelt, die den "Pour Point" (= Temperatur, bei der das Öl gerade noch fließt,vgl. DIN 51 597) bereits in Konzentrationen zwischen 0,55 und 1 Gew.-% wirksam herab­setzen. Deren Wirkweise wurde mit etwa folgender Modell­vorstellung gedeutet: Paraffin-ähnliche Verbindungen werden in die wachsenden Paraffinkristallflächen eingebaut und verhindern so das Weiterwachsen der Kristalle und die Bildung ausgedehnter Kristallverbände. Empirisch gesehen scheint die Wirkungsweise derartiger Pour-Point-­Verbesserer an das Vorhandensein bestimmter Struktur­elemente gebunden zu sein, nämlich hinreichend langer Alkylgruppen, um von der Keimbildung ab in die wachsenden Paraffinkristalle eingebaut zu werden sowie die Anwesenheit von Seitenketten bzw. Seitengruppen in größeren Abständen um das Kristallwachstum zu stören. (Vgl. Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Band 20, Verlag Chemie 1981, S. 548 ff).
  • In der Praxis haben neben Ethylen-Vinylacetat-Copolymeren (EVA-Copolymere) und langkettigen Polyalkylfumaraten hauptsächlich Polyalkylacrylate mit C₁₈-C₂₄-Alkylresten Anwendung als Rohölfließverbesserer gefunden.
    Am Anfang der Entwicklung dürfte dabei die Lehre der DE-A 17 70 695 aus dem Jahre 1959 gestanden haben, welche die Verwendung langkettiger (C>12) Polyalkyl(meth)acrylate als Rohölfließverbesserer empfiehlt.
  • Aufgabe und Lösung
  • Die Verknappung der Ressourcen führt dazu, daß zunehmend Ölvorkommen ausgebeutet werden, deren Verarbeitung größere technologische Probleme aufwirft als noch vor einigen Jahren oder Jahrzehnten. Teilweise hängen diese Probleme mit dem insgesamt höheren aber unter sich differierenden Paraffingehalt der einzelnen Rohölprovenienzen zusammen. Es erweist sich daher als zunehmend schwieriger, Additive zur Verfügung zu stellen, die bei wenigstens einer repräsentativen Mehrheit der Vorkommen die Eigenschaften der Rohöle im gewünschten Sinne steuern. Diese Additive sollten nach Möglichkeit kostengünstig herzustellen und im Rahmen der üblichen Technologien anwendbar sein. Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, Fließverbesserer für Rohöle im weitesten Sinne, für Vakuumgasöle oder Rückstandsöle zur Verfügung zu stellen, die in Relation zu bestimmten Kenn-Daten dieser Öle die Anforderungen an Fließverbesserer für eben diese Öle zuverlässig erfüllen. Als eine solche Kenndate wurde der temperaturabhängige Beginn der Paraffin-­Kristallisation in den Ölen erkannt. (Zu den Bestimmungsmethoden vgl. A. Ecker in "Erdöl und Kohle" Bd. 38 (6) 281 (1985); A. Ecker, Erdöl, Erdgas 101, 154 (1985); C.S. Moynihan et al. Thermochimica Acta 52, 131 (1982). R.L. Blaine, NGLI-Spokesman, June 1976).
  • Die in den Ölen enthaltenen Paraffine kristallieren beim Abkühlen unter Wärmefreisetzung aus. Die freigesetzte Wärme kann mittels Differentialthermoanalyse (DTA) bzw. vorzugsweise Differential Scanning Calorimetry (DSC) als exothermer Peak erfasst und damit der Beginn der Paraffinkristallisation einwandfrei bestimmt werden, während die auf visueller Beobachtung basierenden Bestimmungen des "Wax Appearance Point" oder des "Cloud Point" bei dunklen Produkten und bei Rückständen gemeinhin versagen. Es wurde nun gefunden, daß Mineralöle aus der Gruppe der Rohöle, Vakuumgasöle und Rückstandsöle, bei denen der Beginn der Paraffinkristallisation bei einer Temperatur kleiner/gleich 30 Grad C liegt und die einen Gehalt von 1 - 10 000 ppm mindestens eines Polymerisats P - ausgewählt aus der Gruppe der Polyalkyl(meth)acrylate oder der Polydialkylfumarate - deren Kristallisationsbeginn - gemessen als Cloud Point einer 0,1 %-igen Lösung (Gew.-%) des Polyalkyl(meth)acrylats bzw. Polydialkylfumarats in Isooctan nach DIN 51 597 bzw. ASTM D 97-66 unterhalb 15 Grad C liegt, besitzen, verbesserte, den Forderungen der Technik in der Regel genügende Eigenschaften, insbesondere ein verbessertes Fließverhalten aufweisen.
  • Die Bestimmung des Beginns der Paraffinkristallisation der Mineralöle wird im Zusammenhang der vorliegenden Erfindung zweckmäßig mittels "Differential Scanning Calorimetry (DSC)" vorgenommen.
    (Vgl. oben "Zu den Bestimmungsmethoden")
    Die angewendete Standardbedingung, unter welcher der Beginn der Paraffinkristallisation bei ≦ 30 Grad C festgelegt wurde ist eine Abkühlrate der Ölprobe von 10 oK/min.
    Zur Festlegung des Beginns der Kristallisation der erfindungsgemäß zu verwendenden Polyalkyl(meth)acrylate P-I bzw. der Polyalkyldifumarate P-II wird definitionsgemäß die Bestimmung des Cloud Point einer 0,1 %-igen Lösung (Gew.-%) des Polymeren in Isooctan nach DIN 51 597 herangezogen.
  • Die Polyalkyl(meth)acrylate bzw. Polydialkylfumarate P.
  • Die erfindungsgemäß zur verwendenden Polyalkyl(meth)acrylate P-I unterscheiden sich aufgrund der getroffenen Definition von den gebräuchlichen Polyalkylacrylaten des Standes der Technik (s. oben) mit C₁₈-C₂₄-Alkylresten deren Assoziationstemperatur (Kristallisationsbeginn) bei ca. 20 Grad C liegt. Die erfindungsgemäß geforderten Polyalkyl(meth)acrylate mit einer Assoziationstemperatur < 15 Grad C stellen Polymerisate von Estern der Acryl- bzw. der Methacrylsäure mit längerkettigen Alkanolen (ab C₈ und bis C₄₀) also auch solche mit C₁₆-C₂₄-Alkylresten dar, wobei aber die Auswahl so getroffen wird, daß besagtes Kriterium der Assoziationstemperatur erfüllt wird. Dabei kann von folgenden Auswahlkriterien Gebrauch gemacht werden:
    - Polymerisation oder Copolymerisation von Estern der Acrylsäure mit Alkylresten < 18 C-Atomen, insbesondere 12 bis 18 C-Atomen.
    - Polymerisation oder Copolymerisation von Estern der Methacrylsäure anstatt der Acrylsäure, insbesondere mit C12 - C40-Alkylresten.
    - Copolymerisation mit Monomeren, die nicht zur Seitenkettenkristallisation befähigt sind, insbesondere mit Alkylresten < C10 oder verzweigten Alkylresten mit C3 bis C40.
  • Beispielsweise erfüllen folgende Polymertypen die besagte Bedingung:
    Polytalgfettacrylat (C16 - C18-Alkylacrylat) = P-I-1
    Polybehenylmethacrylat (C18-C24-Alkylmethacrylat) = P-I-2
    Copolymerisat aus Behenylacrylat (C18-C24-Alkylacrylat) und Isodecylacrylat = P-I-3.
    Die Molgewichte der Polymerisate P-I bzw. P-II liegen im allgemeinen im Bereich 5 000 bis 1 000 000, vorzugsweise 10 000 bis 500 000. Im allgemeinen wird die Einhaltung des Molgewichtsbereichs durch die Verwendung an sich bekannter Regler, beispielsweise vom Typ der Schwefelregler sichergestellt. (Vgl. Th. Völker, H. Rauch-Puntigam, Acryl- und Methacrylverbindungen, Springer-Verlag 1967). Besonders genannt seien Mercaptane wie Dodecylmercaptan in Mengen von 0,01 bis 2 Gew.-% bezogen auf die Monomeren. Die Bestimmung der Molgewichte geschieht mittels Gelpermeationschromatographie, mit Polymethylmethacrylat als Eichsubstanz (vgl. Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd. Ed. Vol. 18, pg. 209 749, J. Wiley 1982).
  • Die ebenfalls erfindungsgemäß zu verwendenden Polydialkylfumarate P-II entsprechen von der Herstellung und dem Molekulargewicht her den im Stand der Technik verwendeten (vgl. T. Otsu et al., Mem.Fac.Eng., Osaka, City Univ. 23, 79-91 (1982); Y. Murata et al., Chem.Econ., Eng. Rev. 17 (10) 18-22 (1985).
    Die Alkylreste entsprechen den für die (Meth)acrylsäureestern gebräuchlichen, d.h. solchen mit bis zu 40 C-Atomen, vorzugsweise 8 - 40 C-Atomen, insbesondere 18 - 40 C-Atomen.
    Die Ausgangsmonomeren sind an sich bekannt bzw. sie können in an sich bekannter Weise, beispielsweise durch Umesterung niederer (Meth)acrylate wie z.B. des Methyl- oder Ethylesters mit den höheren Alkoholen hergestellt werden. Die Herstellung der Polymeren kann im Anschluß an die radikalischen Polymerisationsverfahren des Standes der Technik durchgeführt werden. (Vgl. H. Rauch-Puntigam, TH. Völker, Acryl- und Methacrylverbindungen, Springer-Verlag, Berlin 1967). Als Polymerisationsmedium empfiehlt sich ein inertes Medium vorzugsweise vom Typ der Mineralöle selbst, beispielsweise 100 N-Öl.
    Als Reaktionsgefäße kommen die gewöhnlich verwendeten, die zweckmäßig mit Rührer, Heizvorrichtung, Thermometer, Rückflußkühler und Dosierleitung ausgestattet sind, in Frage; vorzugsweise arbeitet man unter einem inerten Gas wie z.B. Kohlendioxid. Ferner bedient man sich der üblichen Radikal-Initiatoren vorzugsweise Perester, Peroxide oder Azoverbindungen, beispielsweise tert. Butylperbenzoat, tert. Butylperpivalat in den üblichen Konzentrationen beispielsweise 0,1 - 5 Gew.-% vorzugsweise 0,3 bis 1 Gew.-% bezogen auf die Gesamtmenge der Monomeren. Im allgemeinen wird das Verfahren bei erhöhter Temperatur vorzugsweise ab 60 Grad C, insbesondere bei 70 ± 5 begonnen, worauf Initiator zugesetzt wird und die Temperatur eine Spitze erreicht, die oberhalb 80 Grad C, beispielsweise 140 ± 10 Grad C liegen kann. Gegebenenfalls kann durch Erwärmen und/oder Initiatorzugabe ein für die Nachpolymerisation geeigneter Temperaturbereich erreicht werden. Im allgemeinen ist die Polymerisation innerhalb von ca. 5 Stunden abgeschlossen.
  • Die Mineralöle
  • Bei den Mineralölen bzw. Mineralölprodukten, deren Eigenschaften, insbesondere deren temperaturabhängiges Fleißverhalten durch die vorliegende Erfindung verbessert wird, handelt es sich definitionsgemäß um solche bei denen der Beginn der Paraffinkristallisation bei einer Temperatur kleiner/gleich 30 Grad C liegt.
    Im Sinne der vorliegenden Erfindung seien unter den erfindungsgemäß einzusetzenden Mineralölen verstanden z.B.:
    - Roherdöle
    - Vakuumgasöle mit einer Siedelage 320 bis 500 Grad C bei Normaldruck (True Boiling Point)
    - Rückstandsöle (Destillationsrückstände, die über 350 Grad C destillieren würden).
    (Vgl. Winnacker-Küchler, Chemische Technologie, Band 5, 4. Auflage, Carl Hanser Verlag, München 1981).
    Es sind also demnach nicht umfasst: Mineralöle bzw. Erdölprodukte mit einem Beginn der Paraffinkristallisation bei einer Temperatur größer 30 Grad C.
    Das Einsetzen der Paraffinkristallisation (CP) in Abhängigkeit von der Temperatur ist für die Mineralölprovenienzen bzw. die infrage kommenden Erdölprodukte eine wichtige Kenngröße, deren Bestimmung der Fachmann routinemäßig durchführt. Das bevorzugte Bestimmungsverfahren ist - wie bereits erwähnt - die DSC.
  • Definitionsgemäß beträgt der Gehalt der Mineralöle an den Polymerisaten P 1 - 10 000, vorzugsweise 50 bis 2 000 ppm, in Anpassung an die Provenienzen, deren Fleißeigenschaften es zu verbessern gilt.
  • Ausführung der Erfindung
  • Die Polymerisate P können nach erfolgter Polymerisation vorteilhaft mit einem geeigneten verträglichen Lösungsmittel, beispielsweise einem Kohlenwasserstoff wie Xylol, Toluol, Kerosin, SHELLSOL® verdünnt werden. Die so erhaltene Lösung kann dann bei der Herstellung der Mineralölgemische angewendet werden. Im speziellen Fall kann diese Lösung dem Rohöl direkt am Sondenkopf oder in der Pipeline zudosiert werden.
    Man mischt die Polymerisate P, vorzugsweise in Form der genannten Lösungen den Mineralölen wie Rohölen, Vakuumgasölen bzw. Rückstandsölen zweckmäßig bei erhöherter Temperatur, beispielsweise bei 40 bis ca. 80 Grad C zu.
    Die Wirkung der fließverbessernden Additive bleibt über den normalerweise zu fordernden Zeitraum erhalten. Neben den erfindungsgemäßen Polymeren P bedarf es in der Regel keines weiteren Zusatzes von Fließverbesserern.
  • Vorteilhafte Wirkungen
  • Wie bereits erläutert, kommt es bei der gegenwärtigen diffizilen Rohstoffsituation darauf an, das richtige Additiv für die richtige Erdölprovenienz bzw. das richtige Erdölprodukt zur Verfügung zu haben.
    Insbesondere war die Vorstellung wenig ermutigend, es bleibe nichts anderes übrig als eben für jede Provenienz das geeignete Additiv mittels "Trial and Error" herauszufinden. Es kann daher als äußerst wertvoll betrachtet werden, daß mit der vorliegenden Erfindung Kriterien für die Anwendbarkeit spezifischer Additive und die Charakterisierung eben solcher geeigneter Additive geliefert werden. Selbst wenn die erfindungsgemäß zu verwendenden Polymerisate P eine nur gleichgute Wirkung wie Additive des Standes der Technik aufweisen, so würde dies doch wegen der sehr viel günstigeren Rohstoffbasis bzw. der eindeutig besseren Kostensituation - verglichen mit etwa den C18-C24-Polyacrylsäureestern - eine erhebliche Verbesserung bedeuten.
    Tatsächlich läßt sich aber zumindest in einer Reihe untersuchter Rohöle (die dem geforderten Kriterium entsprechen) eine qualitativ bessere Wirkung nachweisen. Dieser Effekt ist umso erstaunlicher, als die Polymerisate P in Rohölen mit höheren Temperaturen des Beginns der Paraffinkristallisation als 30 Grad C wenig bis überhaupt nicht wirksam sind.
  • BEISPIELE A. Bestimmung des Kristallisationsbeginns der Polymeren P (Cloud Point)/Visuell
  • Die Bestimmung wird in Anlehnung an DIN 51 597 bzw. ASTM D 97-66 vorgenommen:
    Man stellt eine 0,1 Gew.-%-ige Lösung des Polyalkyl(meth)acrylats, bzw. des Polydialkylfumarats P in Isooctan bei 80 Grad C her und überführt sie in ein Probegefäß mit Mantelgefäß. Die Lösung wird durch Einstellen in ein temperaturreguliertes Kühlbad abgekühlt. In Abständen von 1 Grad C wird in Durchsicht geprüft, ob die Lösung trübe wird. Beim Auftreten der aller­ersten leichten Trübung ist der Kristallisationsbeginn der Polymeren erreicht.
  • B. Bestimmung des Kristallisationsbeginns der Mineralöle/DSC (vgl. dazu DIN 51 005).
  • Die Messung wird bei 80 - 100 Grad C begonnen. Die Abkühlrate beträgt 10 K/min. Der Kristallisationsbeginn ist die Temperatur bei der der exotherme Peak beginnt, die sogenannte "onset"-Temperatur.
  • C. Bestimmung des Festpunkts der erfindungsgemäßen Mineralölmischungen (in Anlehung an DIN 51 597 bzw. ASTM D 97-66)
  • Abweichend von der DIN-Norm wurde die Probe in Abständen von 1 Grad C dem Kältebad entnommen und auf Fließfähigkeit geprüft. Angegeben sind die Festpunkte also die Temperaturen, bei denen das Öl nicht mehr fließt. Zur Anwendung kann vorteilhaft das automatische Meßgerät der Fa. Herzog, Lauda (Bundesrepublik Deutschland) kommen.
  • D. Herstellung der Polymerisate P.
  • Unter 100 N-Öl sei ein Grundöl mit der Viskosität 4 mm²/sec bei 100 Grad C verstanden, wie in Verkehrskreisen üblich.
    Die Bestimmung der Viskosität η sp/c erfolgt nach DIN 1342 bzw. 51 562 in Chloroform bei 20 Grad C.
    Die Bestimmung des Cloud Point (CP) wurde oben angegeben.
  • Beispiel 1: Herstellung von Polytalgfettacrylat P-I-1
  • In einem 150 l-Kessel werden 85 kg Talgfettacrylat (C16-­18-Acrylat), 15 kg 100 N-Öl und 0,425 kg Dodecylmercaptan vorgelegt. Die Mischung wird durch Zugabe von CO₂-Eis entgast und anschließend auf 70 Grad C erwärmt. Dann werden 0,425 kg t-Butylperpivalat zugegeben. Die Temperatur steigt auf 148 Grad C an. 1 und 2 Stunden nach Erreichen der Temperaturspitze werden bei 130 Grad C jeweils 0,17 kg Dodecylmercaptan und 0,085 kg t-­Butylperbenzoat zugegeben. Nach 5 Stunden ist die Polymerisation abgeschlossen.
    Mw (GPC, PMMA-Eichung) = 118.000 g/mol
    ηsp/c (CHCl₃, 20 Grad C) = 21 ml/g
    EP (0,1 % in Isooctan) = +10 Grad C.
  • Beispiel 2: Herstellung von Polybehenylmethacrylat P-I-2
  • In einem 100 l-Rührkessel werden 30 kg Behenylmethacrylat (C18-24-Methacrylat), 30 kg 100 N-Öl und 0,60 kg Dodecylmercaptan vorgelegt. Nach Entgasen der Mischung mit CO₂-Eis wird auf 70 Grad C erwärmt und 0,60 kg t-­Butylperpivalat werden zugegeben. 2 Stunden nach Erreichen der Temperaturspitze von 96,5 Grad C wird auf 130 Grad C erwärmt und 0,03 kg Dodecylmercaptan und 0,06 kg t-­Butylperbenzoat werden zugegeben. Nach 5 Stunden ist die Polymerisation abgeschlossen.
    Mw (GPC, Pmma-Eichung) = 24.300 g/mol
    η sp/c (CHCl₃, 20 Grad C) = 11 ml/g
    CP (0,1 % in Isooctan) = -2 Grad C.
  • Beispiel 3: Herstellung eines Copolymeren aus Behenyl- und Isodecylacrylat P-I-3
  • In einem 100 l-Rührkessel werden 30 kg 100 N-Öl, 21 kg Behenylacrylat (C18-24-Acrylat) und 9 kg Isodecylacrylat vorgelegt. Nach Zugabe von 0,60 kg Dodecylmercaptan wird mit CO₂-Eis entgast und anschließend auf 70 Grad C erwärmt. Durch Zugabe von 0,12 kg t-Butylperpivalat wird die Polymerisation initiiert. Nach Erreichen der Temperaturspitze von 83 Grad C wird auf 130 Grad C erwärmt und durch Zugabe von 0,03 kg Dodecylmercaptan und 0,06 kg t-Butylperbenzoat nachpolymerisiert. Nach 3 Stunden ist die Nachpolymerisation abgeschlossen.
    Mw (GPC, PMMA-Eichung) = 24.900 g/mol
    η sp/c (CHCl₃, 20 Grad C) = 10,1 ml/g
    CP (0,1 % in Isooctan) = +1,5 Grad C.
  • Beispiel 4 (Vergleich): Herstellung von Polybehenylacrylat V-I-1
  • In einem 100 l-Rührkessel werden 51 kg Behenylacrylat (C18-24-Acrylat, 9 kg 100 N-Öl und 0,051 kg Dodecylmercaptan vorgelegt, mit CO₂-Eis entgast und auf 70 Grad C erwärmt. Anschließend werden 0,191 kg t-­Butylperpivalat und 0,115 kg t-Butylperbenzoat zugegeben, um die Polymerisation zu starten. 1 Stunde nach Erreichen der Temperaturspitze von 134 Grad C wird mit 0,077 kg Dodecylmercaptan und 0,051 kg t-Butylperbenzoat versetzt und bei 130 Grad C 3 Stunden lang nachpolymerisiert.
    Mw (GPC, PMMA-Eichung) = 560.000 g/mol
    η sp/c (CHCl₃, 20 Grad C) = 48 ml/g
    CP (0,1 % Isooctan) = 19,5 Grad C
  • Beispiel 5 (Vergleich): Herstellung von Polybehenylacrylat V-I-2
  • In einem 150 l-Rührkessel werden 45 kg Behenylacrylat, 45kg 100 N-Öl und 0,675 kg Dodecylmercaptan vorgelegt und mit CO₂-Eis entgast. Nach Erwärmen auf 70 Grad C werden 0,18 kg t-Butylperpivalat zugegeben. Nach Erreichen der Temperaturspitze von 120 Grad C wird auf 130 Grad C erwärmt und es werden 0,045 kg Dodecylmercaptan und 0,09 kg t-Butylperoctoat zugegeben. Nach 5 Stunden ist die Polymerisation beendet.
    Mw (GPC, PMMA, Eichung) = 23.200 g/mol
    η sp/c (CHCl₃, 20 Grad C) = 11 ml/g
    CP (0,1 % in Isooctan) = 20,5 Grad C.
  • E. Wirkungsbeispiele Beispiele 6 - 11:
  • Die Polymere P-I-1 bis P-I-4 sowie V-I-1 und V-I-2 wurden als 10 %-ige Stammlösung in Xylol den Rohölen bei 80 Grad C zugesetzt. Alle Dosierungen beziehen sich auf Polymerisat. Die Festpunkte wurden in Anlehnung an DIN 51 597 mit einem automatischen Meßgerät der Fa. Herzog, Lauda, bestimmt. Der Beginn der Paraffinkristallisation (CP) der Rohöle wurde mittels DSC bei einer Abkühlrate von 10 K/min bestimmt.
  • Beispiel 6:
  • Australisches Rohöl, 43,8 % n-Alkan-Gehalt, CP = 25 Grad C.
    Festpunkt
    ohne Zusatz + 21
    1000 ppm P-I-1 + 11
    1000 ppm P-I-2 + 12
    1000 ppm P-I-3 + 13
    1000 ppm P-I-1 : P-I-2 = 1 : 1 + 12
    1000 ppm V-I-1 + 15
    1000 ppm V-I-2 + 16
  • Beispiel 7:
  • Pakistanisches Rohöl, 34,3 % n-Alkan-Gehalt, CP = 22 Grad C.
    Festpunkt
    Zusatzmenge 100 ppm 500 ppm
    P-I-1 + 12 + 7
    P-I-2 + 9 + 7
    P-I-3 + 8 + 6
    V-I-2 + 18 +16
    ohne Zusatz +21
  • Beispiel 8:
  • Süddeutsches Rohöl, 22,7 % n-Alkan-Gehalt, CP = 29 Grad C.
    Festpunkt
    Zusatzmenge 100 200 500 1000 ppm
    P-I-1 + 13 +9 +6 +4
    P-I-2 +7 +4
    P-I-3 +9 +7
    V-I-2 + 15 +11 +8 +5
    ohne Zusatz +21
  • Beispiel 9:
  • Pakistanisches Rohöl, 25,3 % n-Alkan-Gehalt, CP = 24 Grad C.
    Festpunkt
    ohne Zusatz + 21
    100 ppm P-I-1 + 7
    100 ppm P-I-2 + 3
    100 ppm P-I-3 + 4
    100 ppm V-I-1 + 12
    100 ppm V-I-2 + 12
  • Beispiel 10 (Vergleich):
  • Im Unterschied zu den Beispielen 6 - 9 hat das Nordseerohöl mit einem n-Alkan-Gehalt von 14,7 % einen CP von 47 Grad C, also größer als 30 Grad C.
    Festpunkt
    ohne Zusatz + 27
    + 1000 ppm P-I-1 + 26
    + 1000 ppm P-I-2 + 27
    + 1000 ppm P-I-3 + 27
    + 1000 ppm V-I-2 ± 0
  • Beispiel 11 (Vergleich):
  • Bombay High Crude, n-Alkan-Gehalt 22,6 %, CP = 38 Grad C, also ebenfalls größer als 30 Grad C.
    Festpunkt
    ohne Zusatz + 30
    + 150 ppm P-I-1 + 30
    + 150 ppm P-I-2 + 30
    + 150 ppm P-I-3 + 30
    + 150 ppm V-I-1 + 9
    + 150 ppm V-I-2 + 11
  • Beispiel 12 (Vergleich):
  • Afrikanisches Rohöl mit 10,6 % n-Alkan-Gehalt, CP = 35 Grad C.
    Festpunkt
    ohne Zusatz + 24
    + 250 ppm P-I-1 + 20
    + 250 ppm P-I-2 + 21
    + 250 ppm V-I-1 + 10
  • Beispiel 13:
  • Norddeutsches Vakuumgasöl, 2,2 % n-Alkan-Gehalt, CP = 12 Grad C.
    Festpunkt
    ohne Zusatz + 19
    1 000 ppm P-I-1 - 2
    1 000 ppm P-I-2 - 5
    1 000 ppm P-I-3 - 5
    1 000 ppm P-I-1 : P-I-2 = 1 : 1 - 2
    1 000 ppm P-I-1 : P-I-3 = 1 : 1 - 3
    1 000 ppm P-I-2 : P-I-3 = 1 : 1 - 5
    1 000 ppm V-I-1 + 2
    1 000 ppm V-I-2 + 5

Claims (3)

1. Paraffinhaltige Mineralöle aus der Gruppe der Rohöle, Vakuumgasöle und Rückstandsöle, die verbesserte Fließeigenschaften besitzen,
dadurch gekennzeichnet,
daß den Mineralölen gemeinsam ist, daß der Beginn der Paraffinkristallisation bei einer Temperatur kleiner/gleich 30 Grad C liegt und daß sie einen Gehalt von 1 - 10 000 ppm mindestens eines Polymeren P, ausgewählt aus der Klasse der Polyalkyl(meth)acrylate oder der Polydialkylfumarate besitzen, deren Kristallisationsbeginn unterhalb 15 Grad C liegt.
2. Mineralöle gemäß Anspruch 1, dadurch gekennzeichnet, daß die Bestimmung der Paraffinkristallisation mittels Differential Scanning Calorimetry (DSC) mit einer Abkühlrate von 10 K/min vorgenommen wird.
3. Mineralöle gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der Beginn der Kristallisation der Polymeren P als "Cloud Point" einer 0,1 %-igen Lösung des Polymeren in Isooctan nach DIN 51 597 bestimmt wird.
EP89109550A 1988-05-31 1989-05-26 Mineralöle mit verbessertem Fliessverhalten Withdrawn EP0344644A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3818438 1988-05-31
DE19883818438 DE3818438A1 (de) 1988-05-31 1988-05-31 Mineraloele mit verbessertem fliessverhalten

Publications (2)

Publication Number Publication Date
EP0344644A2 true EP0344644A2 (de) 1989-12-06
EP0344644A3 EP0344644A3 (de) 1990-03-28

Family

ID=6355478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89109550A Withdrawn EP0344644A3 (de) 1988-05-31 1989-05-26 Mineralöle mit verbessertem Fliessverhalten

Country Status (4)

Country Link
EP (1) EP0344644A3 (de)
JP (1) JPH0229494A (de)
CA (1) CA1325396C (de)
DE (1) DE3818438A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407906A1 (de) * 1989-07-14 1991-01-16 Röhm Gmbh Mineralöle mit verbessertem Fliessverhalten
US5281329A (en) * 1989-07-14 1994-01-25 Rohm Gmbh Method for improving the pour point of petroleum oils
EP0626442A1 (de) * 1993-05-24 1994-11-30 The Lubrizol Corporation Mit einem Stockpunkterniedrigtem behandelte Fettsäureester, als biologisch abbaubare Verbrennungsmotorkraftstoffe
CN1037854C (zh) * 1990-08-18 1998-03-25 成都科技大学 含蜡原油用流动性改进剂及其制备方法和用途
WO1998021446A1 (en) * 1996-11-14 1998-05-22 Bp Exploration Operating Company Limited Inhibitors and their uses in oils
GB2334258A (en) * 1996-11-14 1999-08-18 Bp Exploration Operating Inhibitors and their uses in oils

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1553794A (de) * 1966-10-14 1969-01-17
FR1572843A (de) * 1967-07-24 1969-06-27
DE1770695A1 (de) * 1967-07-07 1971-11-25 Shell Int Research Rohoel mit verbesserten Fliesseigenschaften
FR2207937A1 (de) * 1972-11-29 1974-06-21 Texaco Development Corp

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2560588A (en) * 1945-12-29 1951-07-17 Standard Oil Dev Co Mineral oil containing polymers of esters of fumaric acid
US3904385A (en) * 1972-05-08 1975-09-09 Texaco Inc Polyacrylates and waxy residual fuel compositions thereof
DE3607444A1 (de) * 1986-03-07 1987-09-10 Roehm Gmbh Additive fuer mineraloele mit stockpunktverbessernder wirkung
JPS63245489A (ja) * 1987-03-31 1988-10-12 Dai Ichi Kogyo Seiyaku Co Ltd 低温流動性を改良した原油組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1553794A (de) * 1966-10-14 1969-01-17
DE1770695A1 (de) * 1967-07-07 1971-11-25 Shell Int Research Rohoel mit verbesserten Fliesseigenschaften
FR1572843A (de) * 1967-07-24 1969-06-27
FR2207937A1 (de) * 1972-11-29 1974-06-21 Texaco Development Corp

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERDOEL ERDGAS, Band 5, Nr. 101, Mai 1985, Seiten 154-159; A. ECKER: "Kälteverhalten von Erdölprodukten - Thermoanalytische Untersuchungen" *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407906A1 (de) * 1989-07-14 1991-01-16 Röhm Gmbh Mineralöle mit verbessertem Fliessverhalten
US5281329A (en) * 1989-07-14 1994-01-25 Rohm Gmbh Method for improving the pour point of petroleum oils
CN1037854C (zh) * 1990-08-18 1998-03-25 成都科技大学 含蜡原油用流动性改进剂及其制备方法和用途
EP0626442A1 (de) * 1993-05-24 1994-11-30 The Lubrizol Corporation Mit einem Stockpunkterniedrigtem behandelte Fettsäureester, als biologisch abbaubare Verbrennungsmotorkraftstoffe
WO1998021446A1 (en) * 1996-11-14 1998-05-22 Bp Exploration Operating Company Limited Inhibitors and their uses in oils
GB2334258A (en) * 1996-11-14 1999-08-18 Bp Exploration Operating Inhibitors and their uses in oils
GB2334258B (en) * 1996-11-14 2001-05-16 Bp Exploration Operating Inhibitors and their uses in oils

Also Published As

Publication number Publication date
DE3818438A1 (de) 1989-12-07
CA1325396C (en) 1993-12-21
JPH0229494A (ja) 1990-01-31
EP0344644A3 (de) 1990-03-28

Similar Documents

Publication Publication Date Title
EP0236844B1 (de) Verwendung von additiven für Mineralöle mit stockpunktverbessernder Wirkung
EP0126363B1 (de) Verwendung von Copolymeren aus Estern und Amiden der Acryl- und/oder Methacrylsäure als Stockpunkterniedriger für Paraffinlösungen
DE3613247C2 (de) Konzentrierte Emulsionen aus Ethylen-Vinylacetat-Copolymeren, Verfahren zu deren Herstellung und deren Verwendung als Stockpunktverbesserer
EP0922716B1 (de) Verfahren zur Herstellung von Ethylen-Terpolymeren und deren Verwendung als Zusatz zu Mineralöl und Mineralöldestillaten
EP0807642B1 (de) Terpolymerisate des Ethylens, ihre Herstellung und ihre Verwendung als Additive für Mineralöldestillate
EP0493769A1 (de) Terpolymerisate des Ethylens, ihre Herstellung und ihre Verwendung als Additive für Mineralöldestillate
WO1999027037A1 (de) Additiv für biodiesel und biobrennstofföle
EP2935345B1 (de) Polymerformulierungen in lösemitteln mit hohem flammpunkt, verfahren zu deren herstellung und deren verwendung als pour-point-depressants für rohöle, mineralöle oder mineralölprodukte
EP0332002A2 (de) Verwendung ausgewählter Copolymeren der Acryl- und/oder Methacrylsäureester als Fliessverbesserer in paraffinreichen Erdölen und Erdölfraktionen (II)
EP0406684B1 (de) Additive für Dieselkraftstoff
DE19802689A1 (de) Verfahren zur Verbesserung der Kaltfließeigenschaften von Brennstoffölen
EP0890589B1 (de) Lösungen oder Dispersionen auf Basis von Copolymere von Olefinen und ungesättigten Carbonsäureestern und ihre Verwendung als Mineralöladditive
EP3394122B1 (de) Polymerzusammensetzungen mit verbesserter handhabbarkeit
EP0344644A2 (de) Mineralöle mit verbessertem Fliessverhalten
DE4138429A1 (de) Verfahren zur herstellung von kompositionen mit verbessertem tieftemperaturverhalten
EP0931824B1 (de) Verfahren zur Verbesserung der Kaltfliesseigenschaften von Brennstoffölen
EP0061696A2 (de) Verfahren zur Verbesserung der Fliessfähigkeit von Mineralölen
EP0332000B1 (de) Verwendung ausgewählter Copolymertypen der Acryl- und/oder Methacrylsäureester als Fliessverbesserer in paraffinreichen Erdölen und Erdölfraktionen (I)
DD236940A5 (de) Additivkonzentrat zur einbeziehung in erdoel-destillatbrennstoffe
EP0892012B1 (de) Fliessverbesserer für Mineralöle
EP0890633B1 (de) Verwendung von Copolymeren aus Ethylen und ungesättigten Carbonsäureestern in Mitteldestillaten zur Verbesserung der Kaltfliesseigenschaften
EP0407906B1 (de) Mineralöle mit verbessertem Fliessverhalten
EP0523672B1 (de) Copolymere aus ethylenisch ungesättigten Carbonsäureestern mit Polyoxyalkylenethern von niederen, ungesättigten Alkoholen als Fliessverbesserer für paraffinhaltige Öle
WO2021058228A1 (de) Polymerzusammensetzungen und ihre verwendung als pour point depressant in paraffinhaltigen kohlenwasserstoffölen
DE4333680A1 (de) Copolymerisate auf Ethylenbasis und ihre Verwendung als Fließverbesserer in Erdölmitteldestillaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900412

17Q First examination report despatched

Effective date: 19901116

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19961120