[go: up one dir, main page]

DE69615554T2 - Auf pyridin enthaltende zweizähnige liganden basierender übergangsmetallkatalysator - Google Patents

Auf pyridin enthaltende zweizähnige liganden basierender übergangsmetallkatalysator

Info

Publication number
DE69615554T2
DE69615554T2 DE69615554T DE69615554T DE69615554T2 DE 69615554 T2 DE69615554 T2 DE 69615554T2 DE 69615554 T DE69615554 T DE 69615554T DE 69615554 T DE69615554 T DE 69615554T DE 69615554 T2 DE69615554 T2 DE 69615554T2
Authority
DE
Germany
Prior art keywords
catalyst
cyclopentadienyl
titanium
alkyl
independently selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69615554T
Other languages
English (en)
Other versions
DE69615554D1 (de
Inventor
Mary Cocoman
V Cribbs
Ramesh Krishnamurti
Sandor Nagy
A Tyrell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equistar Chemicals LP
Original Assignee
Equistar Chemicals LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equistar Chemicals LP filed Critical Equistar Chemicals LP
Publication of DE69615554D1 publication Critical patent/DE69615554D1/de
Application granted granted Critical
Publication of DE69615554T2 publication Critical patent/DE69615554T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/49Hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • B01J2531/56Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • B01J2531/57Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/66Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/226Sulfur, e.g. thiocarbamates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/04Cp or analog not bridged to a non-Cp X ancillary anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Pyridine Compounds (AREA)

Description

    Hintergrund der Erfindung
  • Die Erfindung betrifft Katalysatoren, die bei der Polymerisation von α- Olefinen von Nutzen sind. Insbesondere betrifft die Erfindung die Polymerisation von Ethylen unter Verwendung von Übergangsmetallkatalysatoren mit zweizähnigen Liganden, die Pyridin- oder Chinolinanteile enthalten.
  • Bis vor kurzem wurden Polyolefine hauptsächlich unter Verwendung von herkömmlichen Ziegler-Katalysatorsystemen hergestellt. Ein Ziegler-Katalysator besteht in charakteristischer Weise aus einer ein Übergangsmetall enthaltenden Verbindung und einer oder mehreren metallorganischen Verbindungen. Zum Beispiel hat man Polyethylen hergestellt, indem man Ziegler-Katalysatoren wie Titantrichlorid und Diethylaluminiumchlorid oder eine Mischung aus Titantetrachlorid, Vanadiumoxytrichlorid und Triethylaluminium verwendet hat. Diese Katalysatoren sind zwar preiswert, haben aber eine geringe Aktivität, weshalb sind in hohen Konzentration verwendet werden müssen. Der Katalysatorrückstand in den Polymeren verursacht eine gelbe oder graue Färbung und eine schlechte UV-Beständigkeit und Langzeitstabilität, und Chlorid enthaltene Rückstände können Korrosion in den Gerätschaften für die Polymerverarbeitung verursachen. Aus diesem Grunde ist es manchmal notwendig, entweder Katalysatorrückstände aus dem Polymer zu entfernen oder dem Polymer Neutralisierungsmittel und Stabilisatoren hinzuzufügen, um die schädlichen Wirkungen der Rückstände zu beseitigen. Dadurch erhöhen sich die Herstellungskosten. Ferner produzieren Ziegler-Katalysatoren Polymere mit einer breiten Verteilung der relativen Molekülmassen, was für manche Anwendungen wie beispielsweise das Spritzgussverfahren unerwünscht ist. Sie können auch schlecht α-Olefin-Comonomere einlagern, wodurch die Steuerung der Polymerdichte erschwert wird. Große Mengen an zusätzlichem Comonomer können erforderlich sein, um eine bestimmte Dichte zu erreichen, und viele höhere α-Olefine wie zum Beispiel Oct-1-en können, wenn überhaupt, nur auf sehr niedrigem Niveau eingelagert werden. Verbesserungen bei Ziegler-Katalysatorsystemen sind in dem US-Patent 3,900,452 beschrieben. Dieses Patent beschreibt die Herstellung von Copolymeren durch die Verwendung eines Katalysators, der von einem Reaktionsprodukt von Pyridin und Titantetrachlorid abgeleitet wird. Das Titan in dem TiCl&sub3;-Pyridinat des US-Patents 3,900,452 bildet eine Nichtsigma-(oder dative)Bindung mit dem Stickstoff an dem heterozyklischen Ring.
  • Wenngleich Ziegler-Katalysatorsysteme seit ihrer Entdeckung erheblich verbessert wurden, werden diese Katalysatoren nun durch die kürzlich entdeckten Metallocen-Katalysatorsysteme ersetzt. Ein Metallocen-Katalysator besteht in charakteristischer Weise aus einer Übergangsmetallverbindung, die einen oder mehrere Cyclopentadienylring-Liganden hat. Metallocene besitzen eine geringe Aktivität, wenn sie mit metallorganischen Verbindungen wie Aluminiumalkyls verwendet werden, die man bei traditionellen Ziegler-Katalysatoren verwendet. Sie zeigen aber eine sehr hohe Aktivität, wenn sie mit Aluminoxanen als Cokatalysatoren verwendet werden. Die Aktivität ist generell so hoch, dass Katalysatorrückstände nicht aus dem Polymer entfernt werden müssen. Ferner produzieren sie Polymere mit hohem Molekulargewicht und einer engen Verteilung der relativen Molekülmassen. Sie können auch α-Olefin-Comonomere gut einlagern.
  • Allerdings neigen Metallocen-Katalysatoren bei höheren Temperaturen zur Produktion von Polymeren mit niedrigerem Molekulargewicht. Dadurch sind sie für die Gasphasen- und Schlammpolymerisationen von Ethylen nützlich, die bei etwa 80ºC bis etwa 95ºC durchgeführt werden, aber im allgemeinen arbeiten sie nicht gut, wenn die Temperaturen erhöht werden. Die Polymerisation von Ethylen in Lösung ist wünschenswert, da sie eine hohe Flexibilität für die Herstellung von Polymeren über einen weiten Bereich von Molekülgewichten und Dichten sowie die Verwendung einer großen Vielfalt verschiedener Comonomere ermöglicht. Die Lösungspolymerisation erlaubt die Produktion von Polymeren, die für viele verschiedene Anwendungen nützlich sind. Zum Beispiel lässt sich sowohl eine Polyethylenfolie (PE-Folie) mit hohem Molekulargewicht und hoher Dichte herstellen, die als Trennfolie für Lebensmittelverpackungen nützlich ist, als auch eine PE-Folie mit niedrigem Molekulargewicht und geringer Dichte, die über eine gute Zähigkeit und eine hohe Schlagfestigkeit verfügt.
  • Zusammenfassung der Erfindung
  • Wir haben neue zweizähnige Pyridin-Übergangsmetallverbindungen entdeckt, die über eine exzellente Aktivität bzw. Wirksamkeit als α-Olefin-Polymerisationskatalysatoren verfügen. Wir haben auch entdeckt, dass zweizähnige Chinolin-Übergangsmetallverbindungen, denen bis dato keinerlei katalytische Eigenschaften beigemessen wurden, ebenfalls exzellente Polymerisationskatalysatoren für α-Olefine sind. Diese Katalysatoren produzieren Polymere mit Eigenschaften, die jenen von Polymeren, die mit Verwendung von Metallocen-Katalysatoren produziert werden, sehr nahe kommen. Das heißt die Polymere haben eine enge Verteilung der relativen Molekülmassen und eine uniforme Comonomereinlagerung.
  • Beschreibung der bevorzugten Ausführungsformen
  • Die Übergangsmetallkatalysatoren vorliegender Erfindung, die den auf zweizähnigem Pyridin basierenen Liganden enthalten, haben die allgemeine Formel
  • wobei Y ist O, S, NR;
  • jedes R wird unabhängig ausgewählt aus Hydrogen oder Alkyl von C&sub1; bis C&sub8;, jedes R' wird unabhängig ausgewählt aus R, Aryl von C&sub6; bis C&sub1;&sub6;, Halogen oder CF&sub3;, M ist Titanium, Zirconium oder Hafnium, jedes X wird unabhängig ausgewählt aus Halogen, Alkyl von C&sub1; bis C&sub6;, Alkoxy von C&sub1; bis C&sub6; oder
  • L ist X, Cyclopentadienyl, C&sub1; bis C&sub6;-Alkyl-substituiertes Cyclopentadienyl, Indenyl, Fluorenyl oder
  • und "n" ist 1 bis 4.
  • In der Formel ist die Y-Gruppe vorzugsweise Sauerstoff, da solche Verbindungen leichter herzustellen sind. Aus dem gleichen Grund ist die X-Gruppe vorzugsweise Halogen, speziell Chlor, und die M-Gruppe ist vorzugsweise Titanium.
  • Die Herstellung von zweizähnigen Pyridinkomplexen ist in den Beispielen dargestellt, aber allgemein können sie hergestellt werden, indem ein substituierter Pyridinvorläufer, der ein Säureproton hat, mit einer Verbindung der Formel MX&sub3;L in Anwesenheit eines HX-Fängers reagiert wird. Die Reaktion ist stöchiometrisch, und es werden stöchiometrische Mengen des Fängers bevorzugt. Beispiele für geeignete Fänger bzw. Spülmittel enthalten Verbindungen, die stärker basisch sind als das substituierte Pyridin wie Triethylamin, Pryridin, Natriumhydrid und Butyllithium. Wenn der Fänger eine stärkere Base ist als das substituierte Pyridin, kann man aus dem substituierten Pyridin ein Salz herstellen und damit beginnen. Während die Reaktion vorzugsweise in einem Lösungsmittel durchgeführt wird, ist nur eine Teillöslichkeit der Reaktionspartner notwendig. Ein aprotisches Solvens wie Tetrahydrofuran (THF), Ether, Toluen oder Xylen kann bei 0,2 bis 20 Gew.-% an Feststoffen und vorzugsweise bei 5 bis etwa 10 Gew.-% an Feststoffen verwendet werden. Die Reaktion kann bei etwa -78ºC bis etwa Raumtemperatur stattfinden. Während des Ablaufs der Reaktion wird ein Niederschlag gebildet, und das Produkt kann mit Toluen, Methylen, Chlorid, Diethylether oder einem ähnlichen Extraktionsmittel ausgeschüttelt werden.
  • Da der Katalysator normalerweise in Verbindung mit einem metallorganischen Cokatalysator verwendet wird, wird es bevorzugt, den Katalysator in einem Lösungsmittel aufzulösen, in dem auch der Cokatalysator lösbar ist. Wenn zum Beispiel Methylaluminoxan (MAO) oder Polymethylaluminoxan (PMAO) der Cokatalysator sind, dann könnte Toluen, Xylen, Benzen oder Ethylbenzen als Lösungsmittel verwendet werden. Der bevorzugte Cokatalysator ist MAO, da es zu einer hohen Wirksamkeit und zu einem Polymer führt, das eine enge Verteilung der relativen Molekülmassen aufweist. Das Molverhältnis des metallorganischen Cokatalysators zu dem Katalysator bei Verwendung in einer Polymerisation liegt allgemein in dem Bereich von 0,1 : 1 bis 100.000 : 1 und reicht vorzugsweise von 1 : 1 bis 10.000 : 1.
  • Ein alternativer Cokatalysator ist ein saures Salz, das ein nichtkoordinierendes inertes Anion enthält (siehe US-PS 5,064,802). Das saure Salz ist allgemein eine nichtnucleophile Verbindung, die aus umfangreichen Liganden besteht, die an einem Boron- oder Aluminiumatom hängen, wie beispielsweise Lithium-tetrakis(pentafluorophenyl)borat, Lithium-tetrakis(pentafluorophenyl)aluminat, Anilin-tetrakis(pentafluorophenyl)borat und Gemischen davon. Man glaubt, dass das Anion, welches sich bei der Reaktion dieser Verbindungen mit dem Katalysator ergibt, sich schwach koordinativ an dem metallhaltigen Kation anlagert. Das Molverhältnis des sauren Salzes zu dem Katalysator kann von etwa 0,01 : 1 bis etwa 1000 : 1 reichen, beträgt aber vorzugsweise etwa 1 : 1 bis 10 : 1. Während es keine Einschränkungen für das Verfahren zur Herstellung eines aktiven Katalysatorsystems aus dem Katalysator und dem sauren Salz gibt, werden diese vorzugsweise in einem inerten Lösungsmittel bei Temperaturen im Bereich von etwas -78ºC bis etwa 150ºC gemischt. Falls gewünscht, können sie aber auch in Anwesenheit eines Monomers gemischt werden. Das saure Salz kann in Kombination mit den an früherer Stelle beschriebenen metallorganischen Cokatalysatoren verwendet werden.
  • Der Katalysator und der Cokatalysator können auf einem Träger wie beispielsweise Kieselsäuregel, Tonerde, Siliciumdioxid, Magnesia oder Titandioxid verwendet werden, doch werden solche Träger nicht bevorzugt, weil sie Verunreinigungen in dem Polymer zurücklassen können. Abhängig von dem angewandten Verfahren kann aber ein Träger erforderlich sein. Zum Beispiel ist ein Träger generell erforderlich bei den Gaspolymerisationsverfahren und bei den Schlammpolymerisationsverfahren, um die Partikelgröße des hergestellten Polymers zu steuern und um eine Verschmutzung der Reaktorwände zu verhindern. Um einen Träger zu verwenden, werden der Katalysator und der Cokatalysator in dem Lösungsmittel aufgelöst und beispielsweise durch Verdampfen des Lösungsmittels auf das Trägermaterial kondensiert. Der Cokatalysator kann auch auf dem Träger abgelagert werden oder er kann getrennt von dem Trägerkatalysator in den Reaktor aufgegeben werden.
  • Der Katalysator wird in der üblichen Weise bei der Polymerisation von olefinischen Kohlenwasserstoffmonomeren verwendet. Während ungesättigte Monomere wie Styren durch die Verwendung der erfindungsgemäßen Katalysatoren polymerisiert werden können, ist die Erfindung besonders nützlich für das Polymerisieren von α-Olefinen wie Propylen, But-1-en, Hex-1-en, Oct-1-en und speziell Ethylen.
  • Der Katalysator ist auch nützlich bei der üblichen Copolymerisation von Gemischen ungesättigter Monomere wie Ethylen, Propylen, But-1-en, Hex-1-en, Oct-1-en und dergleichen; Gemischen aus Ethylen und di- Olefinen wie Buta-1,3-dien, Hexa-1,4-dien, Hexa-1,5-dien und dergleichen; und Gemischen aus Ehtylen und ungesättigten Comonomeren wie Norbornen, Ethyliden-norbornen, Vinyl-norbornen, Norbornadien und dergleichen.
  • Die Katalysatoren gemäß der Erfindung können in einer Vielfalt von verschiedenen Polymerisationsverfahren verwendet werden. Sie sind verwendbar in einem Flüssigphasenpolymerisations-Verfahren (Schlamm, Lösung, Suspension, in Masse oder eine Kombination derselben), in einem Hochdruckflüssigphasen-Polymerisationsverfahren oder in einem Gasphasen-Polymerisationsverfahren. Diese Verfahren können in Serie oder als individuelle Verfahren einzeln angewandt werden. Der Druck in den Polymerisationsreaktionszonen kann von etwa 15 psia bis etwa 50.000 psia und die Temperatur von etwa -78ºC bis etwa 300ºC reichen.
  • Beispiel 1 Synthese von Bis(2-pyridinoxy)titanium-dichlorid
  • Einer Lösung von 0,02 Mol 2-Hydroxypyridin und 0,02 Mol Triethylamin in 50 ml THF wurde eine Lösung von 0,01 Mol Titaniumtetrachlorid tröpfchenweise bei 0ºC zugegeben und übernacht bei Raumtemperatur gerührt. Nach dem Filtrieren wurde die THF- Lösung verdampft, und das Produkt wurde aus dem Rückstand extrahiert. Das Produkt hat die Formel:
  • Beispiel II Herstellung von (Cyclopentadienyl)-(2-Pyridinoxy)titaniumdichlorid
  • Einer Lösung von 0,002 Mol Cyclopentadienyl-titaniumtrichlorid in 50 ml Ether wurde eine Lösung von 2-Hydroxypyridin (0,002 Mol) und Triethylamin (0,002 Mol) in 50 ml Ether bei 0ºC zugegeben und übernacht gerührt. Das Produkt wurde aus dem Etherfiltrat zurückgewonnen. Das Produkt hat die Formel:
  • Beispiel 3 Allgemeine Prozedur für die Herstellung von Chinolinoxy-Übergangsmetallkatalysatoren
  • Toluenschlämme von Lithiumsalzen verschiedener 6-Chinolinolderivate (hergestellt unter Verwendung von Butyllithium) wurden mit der entsprechenden Ttitanium- oder Zirconiumverbindung (Titaniumtetrachlorid, Zirconiumtetrachlorid, Cyclopentadienyl-titaniumtrichlorid oder Cyclopentadienyl-zirconiumtrichlorid) bei -78ºC kombiniert und übernacht bei Raumtemperatur gerührt. Die Komplexe wurden durch Ausschütteln mit Toluen oder Methylenchlorid aus dem Reaktionsgemisch gewonnen. Zur Herstellung von 8-Chinolinoxytitaniumtrichlorid (III),
  • wurde ein Schlamm von 0,01 Mol des Lithiumsalzes von 8-hydroxychinolin in 30 ml Toluen (hergestellt aus 1,45 g (0,01 Mol) Chinolinol und MeLi) bei -78ºC einer Lösung von 1,9 g (0,01 Mol) TiCl&sub4; in 20 ml Toluen zugegeben und übernacht bei Raumtemperatur gerührt. Der Niederschlag wurde separiert, mit Toluen gespült und mit 100 ml CH&sub2;Cl&sub2; ausgeschüttelt. Nachdem das Methylenchlorid entfernt worden war, wurde ein brauner mikrokristalliner Feststoff (0,7 g) isoliert.
  • Ähnlich wurde 8-(2-Methyl-5,7-dichlorochinolin)oxytitaniumtrichlorid (IV) (2,3 g)
  • hergestellt, beginnend mit einem Lithiumsalz, das aus 2,28 g (0,01 Mol) 5,7-Dichloro-2-methyl-8-Chinolinol hergestellt wurde.
  • Eine ähnliche Prozedur wurde angewandt, um 1,0 g des Vergleichskomplexes bis (8-(2-Methyl-5,7-dichlorochinolin)oxy)zirconiumdichlorid (V)
  • aus 2,28 g (0,01 Mol) 5,7-Dichloro-2-methyl-8-chinolinol und 1,165 g (0,005 Mol) Zirconiumtetrachlorid herzustellen.
  • Zur Herstellung von (Cyclopentadienyl)-(8-chinolinoxy)zirconiumdichlorid (VI)
  • und (Cyclopentadienyl)-(8-(2-methyl-5,7-dichlorochinolin)oxy)zirconiumdichlorid (VII)
  • wurden Lithiumsalze, die aus 1,45 g (0,01 Mol) 8-Chinolinol bzw. 1,15 g (0,005 Mol) 5,7-Dichloro-2-methyl-8-chinolinol hergestellt wurden, mit äquimolaren Mengen Cyclopentadienylzirconiumtrichlorid in Toluen bei -78ºC reagiert. Nach dem Rühren übernacht und dem Filtern wurden die Produkte (0,62 g von VI und 1,7 g von VII) aus der Toluenlösung isoliert.
  • Beispiel 4 Polymerisationen
  • Alle Polymerisationen in dieser Studie wurden in einem 1,7-l-Reaktor durchgeführt. Vor der Durchführung der Polymerisationen wurde der Reaktor durch Erwärmen auf 130ºC 30 Minuten lang unter einer Stickstoffspülung "ausgebacken". Ethylen, Hydrogen, Hexen, Buten und Stickstoff wurden behandelt, indem man sie durch Kolonnen mit 13X Molekularsieben leitete. Für eine typische Polymerisation wurde der Reaktor mit 0,850 l Hexan oder Toluen beschickt, und das erforderliche Volumen an verdünntem PMA = (AKZO) wurde mittels einer Spritze zugegeben. Die Zuführung der gewünschten Menge an Hydrogen zum Reaktor erfolgte durch Überwachung des Druckabfalls (ΔP) von einem 1- l-Behälter aus rostfreiem Stahl, der mit Hydrogen unter Druck gesetzt wurde. Eine Toluen-Katalysatorlösung wurde dem Reaktor durch Stickstoffüberdruck zugeführt. Der Reaktor wurde während des gesamten Ablaufs bei isothermischen Bedingungen gehalten. Ethylen wurde in den Reaktor aufgegeben und bei 150 psi gesteuert, wobei die Zufuhr nach Bedarf über einen Druckregler erfolgte. Nach erfolgter Stabilisierung von Temperatur und Druck wurde der Katalysatorschlamm in den Reaktor aufgegeben und die Polymerisation eingeleitet. Der Ethylenfluß wurde über einen Brooks-Mengenstrommesser überwacht.
  • Die Polymerisation wurde durch Entlüften des Reaktors beendet, und das Polymer wurde durch Filtration gewonnen. Das Polymer wurde durch die Zugabe von etwa 1000 ppm butyliertem Hydroxytoluen /hexan (BHT) stabilisiert und weiter bei 80ºC in einem Vakuumofen zwei Stunden lang von flüchtigen Bestandteilen befreit. Die Schmelzflusseigenschaften des Polymers wurden gemäß ASTM D-1238 bestimmt. Polymerdichten wurden an Formpressproben in einer Dichtegradientensäule gemäß ASTM D-1505 gemessen.
  • In der nachstehenden Tabelle sind die Reaktionsbedingungen angegeben.
  • In der Tabelle ist "Al/M" das Molverhältnis von Aluminium in PMAO zu den Mol des Metalls (Titanium oder Zirconium in dem Katalysator)*Vergleichsbeispiel
  • Die folgende Tabelle zeigt die Ergebnisse der Polymersiationen
  • *Vergleichsbeispiel
  • In der Tabelle sind kg/gm/h die Kilogramm Polymer, die pro Gramm Katalysator pro Stunde produziert werden. Der Schmelzindex des Polymers wurde gemäß ASTM D-1238, Bedingung E und Bedingung F gemessen. MI2 ist der mit einem 2,16 kg-Gewicht (Bedingung E) gemessene Schmelzindex. MI20 ist der mit einem 21,6 kg-Gewicht (Bedingung F) gemessene Schmelzindex. MFR ist das Verhältnis von MI20 zu MI2. Die Polymerdichte wurde gemäß ASTM D-1505 gemessen. Die Verteilung der relativen Molekülmassen des Polymers wurde mit einem Waters 150C Gelpermeationschromographen bei 135ºC mit 1,2,4-Dichlorobenzen als Lösungsmittel gemessen. Sowohl das Gewichtsmittelmolekulargewicht (Mw) als auch das Verhältnis von Mw zu Mn (Zahlenmittelmolekulargewicht) werden zur Charakterisierung der Verteilung der relativen Molekülmassen verwendet.
  • Die erfindungsgemäßen Katalysatoren ergaben eine gute Produktivität und Polymere mit einem hohen Molekulargewicht, wie das durch die sehr niedrigen MI-Werte bewiesen wird, und gleiches taten die Katalysatoren VI und VII sogar bei höheren Temperaturen (110ºC).

Claims (12)

1. Ein Katalysator mit der allgemeinen Formel
wobei Y in dieser Formel O, S, NR ist,
dabei ist jedes R unabhängig ausgewählt aus Hydrogen oder Alkyl von C&sub1; bis C&sub6;; M ist Titan, Zirkon oder Hafnium; jedes X ist unabhängig ausgewählt aus Halogen, Alkyl von C&sub1; bis C&sub6;, Alkoxy von C&sub1; bis C&sub6; oder
L ist X, Cyclopentadienyl, durch Alkyl von C&sub1; bis C&sub6; substituiertes Cyclopentadienyl, Indenyl, Fluorenyl, oder,
wobei jedes R' unabhängig ausgewählt ist aus R, Alkoxy von C&sub1; bis C&sub6;, Aryl von C&sub6; bis C&sub1;&sub6;, Halogen oder CF&sub3;; und
"n" ist 1 bis 4.
2. Katalysator nach Anspruch 1, bei welchem Y Sauerstoff ist.
3. Katalysator nach Anspruch 1, bei welchem X Halogen ist.
4. Katalysator nach Anspruch 3, bei welchem X Chlor ist.
5. Katalysator nach Anspruch 1, bei welchem R' sämtlich Hydrogen ist.
6. Katalysator nach Anspruch 1, bei welchem M Titan ist.
7. Katalysator nach Anspruch 1, bei welchem M Zirkon ist.
8. Katalysator nach Anspruch 1, welcher Bis(2-Pyridinoxy)titanium- Dichlorid oder (Cyclopentadienyl(2-Pyridinoxy)titanium-Dichlorid ist.
9. Verfahren zur Herstellung eines Poly-α-Olefins, umfassend das Polymerisieren eines α-Olefin-Monmers in Anwesenheit eines Katalysators der allgemeinen Formel
wobei Y in dieser Formel O, S, NR ist,
dabei ist jedes R unabhängig ausgewählt aus Hydrogen oder Alkyl von C&sub1; bis C&sub6;; M ist Titan, Zirkon oder Hafnium; jedes X ist unabhängig ausgewählt aus Halogen, Alkyl von C&sub1; bis C&sub6;, Alkoxy von C&sub1; bis C&sub6; oder
L ist X, Cyclopentadienyl, durch Alkyl von C&sub1; bis C&sub6; substituiertes Cyclopentadienyl, Indenyl, Fluorenyl oder
wobei jedes R' unabhängig ausgewählt wird aus R, Alkoxy von C&sub1; bis C&sub6;, Aryl von C&sub6; bis C&sub1;&sub6;, Halogen oder CF&sub3;; und
"n" ist 1 bis 4.
10. Verfahren nach Anspruch 9, bei welchem das α-Olefin-Monomer in Anwesenheit eines Cokatalysators weiter polymerisiert wird.
11. Verfahren nach Anspruch 10, bei welchem der Cokatalysator Methylaluminoxan, Polymethylaluminoxan oder ein saures Salz ist, das ein nichtkoordinierendes inertes Anion ist.
12. Verfahren nach Anspruch 11, bei welchem der Katalysator aus der Gruppe ausgewählt wird, die aus Bis(2-Pyridinoxy)titanium- Dichlorid, (Cyclopentadienyl)-(2-Pyridinoxy)titanium-Dichlorid und Gemischen davon besteht.
DE69615554T 1995-04-17 1996-03-18 Auf pyridin enthaltende zweizähnige liganden basierender übergangsmetallkatalysator Expired - Lifetime DE69615554T2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/423,232 US5637660A (en) 1995-04-17 1995-04-17 Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety
PCT/US1996/003656 WO1996033202A2 (en) 1995-04-17 1996-03-18 Transition metal catalyst based on bidentate ligands containing pyridine or quinoline moiety

Publications (2)

Publication Number Publication Date
DE69615554D1 DE69615554D1 (de) 2001-10-31
DE69615554T2 true DE69615554T2 (de) 2002-05-08

Family

ID=23678124

Family Applications (2)

Application Number Title Priority Date Filing Date
DE69615554T Expired - Lifetime DE69615554T2 (de) 1995-04-17 1996-03-18 Auf pyridin enthaltende zweizähnige liganden basierender übergangsmetallkatalysator
DE69635719T Expired - Lifetime DE69635719T2 (de) 1995-04-17 1996-03-18 Polymerisation von α-Olefinen in Gegenwart von Übergangsmetallkatalysatoren basierend auf Pyridin oder Chinolin enthaltenden zweizähnigen Liganden

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE69635719T Expired - Lifetime DE69635719T2 (de) 1995-04-17 1996-03-18 Polymerisation von α-Olefinen in Gegenwart von Übergangsmetallkatalysatoren basierend auf Pyridin oder Chinolin enthaltenden zweizähnigen Liganden

Country Status (12)

Country Link
US (3) US5637660A (de)
EP (2) EP0832089B1 (de)
JP (1) JPH11503785A (de)
KR (1) KR19990007920A (de)
CN (1) CN1068331C (de)
AU (1) AU5314496A (de)
BR (1) BR9608224A (de)
DE (2) DE69615554T2 (de)
ES (2) ES2164878T3 (de)
MX (1) MX9707982A (de)
RU (1) RU2169735C2 (de)
WO (1) WO1996033202A2 (de)

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637660A (en) * 1995-04-17 1997-06-10 Lyondell Petrochemical Company Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety
WO1997008179A1 (fr) * 1995-08-31 1997-03-06 Sumitomo Chemical Company, Limited Complexes de metaux de transition, catalyseur de polymerisation des olefines et procede de production de polymeres d'olefines
US5852146A (en) * 1996-06-27 1998-12-22 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers
WO1998016311A1 (en) * 1996-10-15 1998-04-23 Northwestern University Phenolate constrained geometry metallocene olefin polymerization catalyst, method of making, and method of using
US6432862B1 (en) * 1996-12-17 2002-08-13 E. I. Du Pont De Nemours And Company Cobalt catalysts for the polymerization of olefins
US6214761B1 (en) * 1996-12-17 2001-04-10 E. I. Du Pont De Nemours And Company Iron catalyst for the polymerization of olefins
US6417305B2 (en) * 1996-12-17 2002-07-09 E. I. Du Pont De Nemours And Company Oligomerization of ethylene
US6451938B1 (en) 1997-02-25 2002-09-17 Exxon Mobil Chemical Patents Inc. Polymerization catalyst system comprising heterocyclic fused cyclopentadienide ligands
TWI246520B (en) * 1997-04-25 2006-01-01 Mitsui Chemicals Inc Processes for olefin polymerization
US6096676A (en) * 1997-07-02 2000-08-01 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers
US6268447B1 (en) * 1998-12-18 2001-07-31 Univation Technologies, L.L.C. Olefin polymerization catalyst
US6103657A (en) 1997-07-02 2000-08-15 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers
US6136748A (en) * 1997-07-02 2000-10-24 Union Carbide Chemicals & Plastics Technology Corporation Catalyst composition for the polymerization of olefins
US7232871B2 (en) 1997-08-12 2007-06-19 Exxonmobil Chemical Patents Inc. Propylene ethylene polymers and production process
US6921794B2 (en) 1997-08-12 2005-07-26 Exxonmobil Chemical Patents Inc. Blends made from propylene ethylene polymers
US6635715B1 (en) 1997-08-12 2003-10-21 Sudhin Datta Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers
CN1067690C (zh) * 1998-03-04 2001-06-27 中国科学院化学研究所 一种间规聚合的催化剂体系及其制备方法和用途
GB9809207D0 (en) * 1998-04-29 1998-07-01 Bp Chem Int Ltd Novel catalysts for olefin polymerisation
DE69935815T2 (de) 1998-07-01 2007-12-27 Exxonmobil Chemical Patents Inc., Baytown Elastische Mischung mit Kristallpolymeren und kristallisierbaren Polymeren des Propens
US6303719B1 (en) 1998-12-18 2001-10-16 Univation Technologies Olefin polymerization catalyst system
US6333389B2 (en) * 1998-12-18 2001-12-25 Univation Technologies, Llc Olefin polymerization catalysts, their production and use
US6180552B1 (en) 1999-04-07 2001-01-30 Equistar Chemicals, L.P. Transition metal complexes containing neutral, multidentate azacyclic ligands
US6204216B1 (en) 1999-04-15 2001-03-20 Equistar Chemicals, L.P. Olefin polymerization catalysts containing amine derivatives
US6201076B1 (en) 1999-04-29 2001-03-13 Equistar Chemicals, L.P. Olefin polymerization process with fatty amine additives for improved activity and reduced fouling
US6020493A (en) * 1999-05-06 2000-02-01 Equistar Chemicals, Lp Single-site catalyst preparation
US6271325B1 (en) 1999-05-17 2001-08-07 Univation Technologies, Llc Method of polymerization
US6211311B1 (en) * 1999-05-25 2001-04-03 Equistar Chemicals, L.P. Supported olefin polymerization catalysts
US6291386B1 (en) 1999-05-25 2001-09-18 Equistar Chemicals, Lp Process for the in-situ preparation of single-site transition metal catalysts and polymerization process
US6239062B1 (en) 1999-09-02 2001-05-29 Equistar Chemicals, L.P. Olefin polymerization catalysts containing indolyl-amido ligands
US6194527B1 (en) 1999-09-22 2001-02-27 Equistar Chemicals, L.P. Process for making polyolefins
US6265504B1 (en) 1999-09-22 2001-07-24 Equistar Chemicals, Lp Preparation of ultra-high-molecular-weight polyethylene
US6232260B1 (en) 1999-10-14 2001-05-15 Equistar Chemicals, L.P. Single-site catalysts for olefin polymerization
US6228959B1 (en) 1999-10-15 2001-05-08 Equistar Chemicals, L.P. Single-site catalysts containing homoaromatic ligands
US6417304B1 (en) 1999-11-18 2002-07-09 Univation Technologies, Llc Method of polymerization and polymer produced therefrom
US6300438B1 (en) 1999-10-22 2001-10-09 Univation Technolgies, Llc Hafnium transition metal catalyst compounds, catalyst systems and their use in a polymerization process
US6265505B1 (en) 1999-11-18 2001-07-24 Univation Technologies, Llc Catalyst system and its use in a polymerization process
US6274684B1 (en) 1999-10-22 2001-08-14 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6271323B1 (en) 1999-10-28 2001-08-07 Univation Technologies, Llc Mixed catalyst compounds, catalyst systems and their use in a polymerization process
US6300439B1 (en) 1999-11-08 2001-10-09 Univation Technologies, Llc Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process
US6624107B2 (en) 1999-10-22 2003-09-23 Univation Technologies, Llc Transition metal catalyst compounds having deuterium substituted ligand and catalyst systems thereof
US6380328B1 (en) 1999-12-10 2002-04-30 Univation Technologies, Llc Catalyst systems and their use in a polymerization process
DE60025386T2 (de) * 1999-11-01 2006-09-21 W.R. Grace & Co.-Conn. Aktive, heterogene, geträgerte bi- oder tri-dendate polymerisationskatalysatoren
US6294626B1 (en) 1999-11-15 2001-09-25 Equistar Chemicals, Lp Olefin polymerization catalysts containing modified boraaryl ligands
US6281155B1 (en) 1999-11-19 2001-08-28 Equistar Chemicals, L.P. Supported olefin polymerization catalysts
US6281306B1 (en) 1999-12-16 2001-08-28 Univation Technologies, Llc Method of polymerization
US6239239B1 (en) * 2000-02-17 2001-05-29 Equistar Chemicals, L.P. Quinolinoxy and pyridinoxy single-site catalysts containing benzyl ligands
US6255415B1 (en) * 2000-02-29 2001-07-03 Equistar Chemicals, L.P. Ethylene polymerization process
US6476165B1 (en) 2000-03-08 2002-11-05 Equistar Chemicals, Lp Olefin polymerization process using fatty amine additives and boron-modified supported catalyst
US6498221B1 (en) * 2000-03-30 2002-12-24 Equistar Chemicals, Lp Single-site catalysts containing chelating N-oxide ligands
US6812304B2 (en) 2000-06-14 2004-11-02 Equistar Chemicals, Lp Process for producing improved premixed supported boraaryl catalysts
EP1303543A1 (de) * 2000-07-17 2003-04-23 Univation Technologies LLC Katalysatorsystem und seine verwendung in einem polymerisationsverfahren
US6433088B1 (en) 2000-08-04 2002-08-13 Equistar Chemicals, Lp Clear and printable polypropylene films
US6486270B1 (en) 2000-08-25 2002-11-26 Equistar Chemicals, Lp High molecular weight, medium density polyethylene
US6355733B1 (en) 2000-10-13 2002-03-12 Equistar Chemicals, Lp Polyethylene blends and films
US6414099B1 (en) 2000-10-18 2002-07-02 Equistar Chemicals, Lp Single-site catalysts based on caged diimide ligands
US6713577B2 (en) * 2000-11-07 2004-03-30 Symyx Technologies, Inc. Substituted pyridyl amine catalysts and processes for polymerizing and polymers
US6660678B1 (en) * 2000-11-21 2003-12-09 Equistar Chemicals, Lp Single-site catalysts for olefin polymerization
CA2430852A1 (en) * 2000-12-06 2002-06-13 Omlidon Technologies Llc Melt-processible, wear resistant polyethylene
EP1700870B9 (de) 2000-12-06 2009-09-02 Eidgenössische Technische Hochschule Zürich Schmelzverarbeitbares, verschleissfestes Polyethylen
WO2002053603A2 (en) 2000-12-28 2002-07-11 Univation Technologies, Llc Polymerization catalyst system, polymerization process and polymer therefrom
US6673882B2 (en) 2001-02-12 2004-01-06 Equistar Chemicals, Lp Supported single-site catalysts useful for olefin polymerization
US6664349B2 (en) 2001-03-29 2003-12-16 Equistar Chemicals, Lp Ethylene polymerization process
US6579957B2 (en) 2001-04-11 2003-06-17 Equistar Chemicals, Lp Single-site catalysts based on anionic thiopyran dioxide ligands
JP5156167B2 (ja) 2001-04-12 2013-03-06 エクソンモービル・ケミカル・パテンツ・インク プロピレン−エチレンポリマー及び製造法
US6391988B1 (en) 2001-04-18 2002-05-21 Equistar Chemicals L.P. Tris(pyrazoyl) based anions
US6583240B2 (en) 2001-05-23 2003-06-24 Equistar Chemicals, Lp Ethylene polymerization process
US6759361B2 (en) 2001-06-04 2004-07-06 Equistar Chemicals, Lp Aluminoboronate activators for single-site olefin polymerization catalysts
US6489414B1 (en) 2001-06-06 2002-12-03 Equistar Chemicals, Lp Chelating pyrimidines as ligands for single-site olefin polymerization catalysts
US6544918B1 (en) 2001-07-17 2003-04-08 Equistar Chemicals, Lp Olefin polymerization catalysts containing chelating dianionic ligands
US6583242B2 (en) 2001-08-02 2003-06-24 Equistar Chemicals, Lp Supported olefin polymerization catalysts
ES2312629T3 (es) * 2001-09-14 2009-03-01 Basell Polyolefine Gmbh Metodo para la polimerizacion de olefinas.
DE10145453A1 (de) * 2001-09-14 2003-06-05 Basell Polyolefine Gmbh Monocyclopentadienylkomplexe mit einem kondensierten Heterocyclus
US7439379B2 (en) * 2001-09-14 2008-10-21 Sumitomo Chemical Co., Ltd. Transition metal complex, catalyst for olefin polymerization, and process for producing olefin polymer with the same
CN1160381C (zh) * 2001-09-27 2004-08-04 中国石油化工股份有限公司 含双席夫碱配体的烯烃聚合催化剂及制备方法与应用
US6960635B2 (en) * 2001-11-06 2005-11-01 Dow Global Technologies Inc. Isotactic propylene copolymers, their preparation and use
SG147306A1 (en) * 2001-11-06 2008-11-28 Dow Global Technologies Inc Isotactic propylene copolymers, their preparation and use
EP1308450A3 (de) * 2001-11-06 2003-10-01 Symyx Technologies, Inc. Titan-substituierte Pyridyl-Amin-Komplexe, Katalysatoren, und Verfahren zur Polymerisierung von Ethylen und Styren
US6927256B2 (en) 2001-11-06 2005-08-09 Dow Global Technologies Inc. Crystallization of polypropylene using a semi-crystalline, branched or coupled nucleating agent
US6906160B2 (en) * 2001-11-06 2005-06-14 Dow Global Technologies Inc. Isotactic propylene copolymer fibers, their preparation and use
US6831187B2 (en) 2001-12-18 2004-12-14 Univation Technologies, Llc Multimetallic catalyst compositions for the polymerization of olefins
US6919467B2 (en) 2001-12-18 2005-07-19 Univation Technologies, Llc Imino-amide catalyst compositions for the polymerization of olefins
US6864205B2 (en) 2001-12-18 2005-03-08 Univation Technologies, Llc Heterocyclic-amide catalyst compositions for the polymerization of olefins
US7199255B2 (en) 2001-12-18 2007-04-03 Univation Technologies, Llc Imino-amide catalysts for olefin polymerization
US7001863B2 (en) 2001-12-18 2006-02-21 Univation Technologies, Llc Monoamide based catalyst compositions for the polymerization of olefins
US6586545B1 (en) 2001-12-20 2003-07-01 Equistar Chemicals, Lp Complexes based on four-membered cyclic anionic six-electron-donor ligands
US6596826B1 (en) 2001-12-20 2003-07-22 Equistar Chemicals, Lp Olefin polymerization catalysts containing 1,3-diboretanyl ligands
US6635728B2 (en) * 2002-01-10 2003-10-21 Equistar Chemicals, Lp Preparation of ultra-high-molecular-weight polyethylene
US6613841B2 (en) 2002-01-28 2003-09-02 Equistar Chemicals, Lp Preparation of machine direction oriented polyethylene films
US6780807B2 (en) 2002-02-04 2004-08-24 Equistar Chemicals L.P. Acyclic anionic six-electron-donor ancillary ligands
US6825296B2 (en) * 2002-03-29 2004-11-30 The University Of Hong Kong Catalyst component for olefin polymerization
US6693157B2 (en) * 2002-04-08 2004-02-17 Equistar Chemicals, Lp Olefin polymerization catalysts containing triquinane ligands
US6908972B2 (en) 2002-04-16 2005-06-21 Equistar Chemicals, Lp Method for making polyolefins
US7094723B2 (en) * 2002-04-18 2006-08-22 Equistar Chemicals Lp Catalysts containing at least one heterocyclic ligand for improving the catalysts' performance of olefin polymerization
US6642326B1 (en) 2002-05-03 2003-11-04 Equistar Chemicals, Lp Use of silanes to enhance activity in single-site polymerizations
US6649698B1 (en) 2002-05-17 2003-11-18 Equistar Chemicals, Lp Polyethylene blends
US6762255B2 (en) 2002-06-06 2004-07-13 Equistar Chemicals L.P. Prealkylated olefin polymerization catalysts and olefin polymerization employing such catalysts
US6630547B1 (en) 2002-06-11 2003-10-07 Equistar Chemicals, Lp Use of silanes to control molecular weight in olefin polymerizations
US7105672B2 (en) * 2002-08-19 2006-09-12 The University Of Hong Kong Cyclometallated catalysts
US6765074B2 (en) 2002-09-27 2004-07-20 Equistar Chemicals, Lp Olefin polymerization process
WO2005108442A1 (en) 2002-10-15 2005-11-17 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US7223822B2 (en) 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
US6884749B2 (en) 2002-10-17 2005-04-26 Equistar Chemicals L.P. Supported catalysts which reduce sheeting in olefin polymerization, process for the preparation and the use thereof
US6630548B1 (en) 2002-11-01 2003-10-07 Equistar Chemicals, Lp Static reduction
US7579407B2 (en) * 2002-11-05 2009-08-25 Dow Global Technologies Inc. Thermoplastic elastomer compositions
US7459500B2 (en) * 2002-11-05 2008-12-02 Dow Global Technologies Inc. Thermoplastic elastomer compositions
US6716936B1 (en) 2002-12-16 2004-04-06 Equistar Chemicals L.P. Cascaded boiling pool slurry reactors for producing bimodal low to medium density polyethylene polymers
US6713576B1 (en) 2003-02-25 2004-03-30 Equistar Chemicals, Lp Olefin polymerization catalysts based on convex, polcyclic ligands
RU2339650C2 (ru) 2003-03-21 2008-11-27 Дау Глобал Текнолоджиз, Инк. Способ полимеризации олефинов с регулируемой морфологией
US20070029528A1 (en) * 2003-04-04 2007-02-08 San Diego State University Foundation Compositions and methods for facilitating reaction at room temperature
US6710005B1 (en) * 2003-04-10 2004-03-23 Equistar Chemicals, Lp Aluminoxane modification
US6984599B2 (en) * 2003-04-23 2006-01-10 Equistar Chemicals, Lp Olefin polymerization catalysts based on hydroxyl-depleted calixarene ligands
US6774078B1 (en) 2003-04-23 2004-08-10 Equistar Chemicals, Lp Olefin polymerization catalysts based on annulated cyclopentadienyl ligands
US6953764B2 (en) * 2003-05-02 2005-10-11 Dow Global Technologies Inc. High activity olefin polymerization catalyst and process
US6995216B2 (en) * 2003-06-16 2006-02-07 Equistar Chemicals, Lp Process for manufacturing single-site polyolefins
US6767975B1 (en) * 2003-07-14 2004-07-27 Equistar Chemicals, Lp Olefin polymerization with pyridine moiety-containing singe-site catalysts
US6930156B2 (en) * 2003-10-22 2005-08-16 Equistar Chemicals, Lp Polymer bound single-site catalysts
US20050148742A1 (en) * 2004-01-02 2005-07-07 Hagerty Robert O. Method for controlling sheeting in gas phase reactors
US20070073012A1 (en) * 2005-09-28 2007-03-29 Pannell Richard B Method for seed bed treatment before a polymerization reaction
US7985811B2 (en) * 2004-01-02 2011-07-26 Univation Technologies, Llc Method for controlling sheeting in gas phase reactors
US7011892B2 (en) * 2004-01-29 2006-03-14 Equistar Chemicals, Lp Preparation of polyethylene films
US20050200046A1 (en) * 2004-03-10 2005-09-15 Breese D. R. Machine-direction oriented multilayer films
US7037987B2 (en) * 2004-03-26 2006-05-02 Rohn And Haas Company Olefin polymerization catalyst and polymerization process
ATE488360T1 (de) * 2004-04-05 2010-12-15 Leucadia Inc Abbaubares netz
US7598328B2 (en) * 2004-04-07 2009-10-06 Dow Global Technologies, Inc. Supported catalysts for manufacture of polymers
US7175918B2 (en) * 2004-04-27 2007-02-13 Equistar Chemicals, Lp Polyolefin compositions
US7459510B2 (en) * 2004-06-21 2008-12-02 Exxonmobil Chemical Patents Inc. Polymerization process
US8440125B2 (en) * 2004-06-28 2013-05-14 Equistar Chemicals, Lp Polyethylene films having high resistance to deformation or elongation
CA2473378A1 (en) * 2004-07-08 2006-01-08 Nova Chemicals Corporation Novel borate activator
US7125939B2 (en) * 2004-08-30 2006-10-24 Equistar Chemicals, Lp Olefin polymerization with polymer bound single-site catalysts
US7402546B2 (en) * 2004-09-23 2008-07-22 Equistar Chemicals, Lp Magnesium chloride support
WO2006049699A1 (en) 2004-10-29 2006-05-11 Exxonmobil Chemical Patents Inc Catalyst compound containing divalent tridentate ligand
WO2006066126A2 (en) * 2004-12-16 2006-06-22 Symyx Technologies, Inc. Phenol-heterocyclic ligands, metal complexes, and their uses as catalysts
US8034461B2 (en) * 2005-02-09 2011-10-11 Equistar Chemicals, Lp Preparation of multilayer polyethylene thin films
US20060177641A1 (en) * 2005-02-09 2006-08-10 Breese D R Multilayer polyethylene thin films
JP4991691B2 (ja) * 2005-03-09 2012-08-01 エクソンモービル・ケミカル・パテンツ・インク オレフィンのオリゴマー化
US7414006B2 (en) * 2005-03-09 2008-08-19 Exxonmobil Chemical Patents Inc. Methods for oligomerizing olefins
US9469739B2 (en) 2005-04-07 2016-10-18 Aspen Aerogels, Inc. Microporous polyolefin-based aerogels
US8461223B2 (en) * 2005-04-07 2013-06-11 Aspen Aerogels, Inc. Microporous polycyclopentadiene-based aerogels
DE112006001733T5 (de) 2005-07-01 2008-07-31 Albemarle Corporation Aluminoxanatsalzzusammensetzungen mit verbesserter Stabilität in aromatischen und aliphatischen Lösungsmitteln
US7232604B2 (en) * 2005-07-28 2007-06-19 Equistar Chemicals, Lp Flame retardant crosslinkable compositions and articles
US7273914B2 (en) * 2005-08-03 2007-09-25 Equistar Chemicals, Lp Olefin polymerization methods
US7091291B1 (en) 2005-11-23 2006-08-15 Equistar Chemicals, Lp Olefin polymerization process
US7608327B2 (en) * 2005-12-20 2009-10-27 Equistar Chemicals, Lp High tear strength film
EP1803747A1 (de) 2005-12-30 2007-07-04 Borealis Technology Oy Oberflächemodifizierte Polymerisationskatalysatoren zur Herstellung von Polyolefinfilmen mit niedrigem Gelgehalt
US8003839B2 (en) * 2006-02-03 2011-08-23 Exxonmobil Chemical Patents Inc. Process for generating linear apha olefin comonomers
US8076524B2 (en) * 2006-02-03 2011-12-13 Exxonmobil Chemical Patents Inc. Process for generating alpha olefin comonomers
US7982085B2 (en) * 2006-02-03 2011-07-19 Exxonmobil Chemical Patents Inc. In-line process for generating comonomer
US8404915B2 (en) * 2006-08-30 2013-03-26 Exxonmobil Chemical Patents Inc. Phosphine ligand-metal compositions, complexes, and catalysts for ethylene trimerizations
WO2008085657A1 (en) * 2007-01-08 2008-07-17 Exxonmobil Chemical Patents Inc. Chromium complexes of pyridine bis (oxazoline)- ligands for ethylene dimeri zation
WO2008085658A1 (en) * 2007-01-08 2008-07-17 Exxonmobil Chemical Patents Inc. Methods for oligomerizing olefins with chromium pyridine thioether catalysts
EP2114974A1 (de) * 2007-01-08 2009-11-11 ExxonMobil Chemical Patents Inc. Verfahren zur oligomerisierung von olefinen mit chrom-pyridinether-katalysatoren
EP2104679A1 (de) * 2007-01-08 2009-09-30 ExxonMobil Chemical Patents Inc. Verfahren zur oligomerisierung von olefinen mit chrom-pyridinmonooxazolin-katalysatoren
US20080163978A1 (en) * 2007-01-09 2008-07-10 Botros Maged G Process for producing multi-layer structures having improved metal adhesion
US7794848B2 (en) * 2007-01-25 2010-09-14 Equistar Chemicals, Lp MDO multilayer polyethylene film
BRPI0703586B1 (pt) 2007-10-19 2018-02-06 Braskem S.A Catalisador metaloceno suportado, e, copolímeros de etileno com alfa-olefinas de alto e ultra alto peso molecular
US20090286944A1 (en) * 2008-05-15 2009-11-19 Symyx Technologies, Inc. Select phenol-heterocycle ligands, metal complexes formed therefrom, and their uses as catalysts
KR101142117B1 (ko) * 2008-09-25 2012-05-09 에스케이이노베이션 주식회사 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체 제조방법
KR101142122B1 (ko) * 2008-09-30 2012-05-09 에스케이이노베이션 주식회사 새로운 전이금속 촉매계 및 이를 이용한 에틸렌 단독중합체또는 에틸렌과 α-올레핀의 공중합체 제조방법
WO2010056822A2 (en) * 2008-11-13 2010-05-20 Conwed Plastics Llc Oxo-biodegradable netting
EP2408684B1 (de) * 2009-03-20 2013-08-21 Basf Se Biologisch abbaubares material aus einem polymer enthaltenden porösen metallorganischen gerüstmaterial
WO2010110801A1 (en) 2009-03-27 2010-09-30 Exxonmobil Chemical Patents Inc. Olefin oligomerization reaction processes exhibiting reduced fouling
US7858718B1 (en) * 2009-07-22 2010-12-28 Equistar Chemicals, Lp Catalysts based on 2-aryl-8-anilinoquinoline ligands
US8158733B2 (en) * 2009-07-22 2012-04-17 Equistar Chemicals, Lp Catalysts based on 2-(2-aryloxy)quinoline or 2-(2-aryloxy)dihydroquinoline ligands
US8153544B2 (en) * 2009-07-22 2012-04-10 Equistar Chemicals, Lp Method for preparing non-metallocene catalysts
CA2688217C (en) * 2009-12-11 2016-07-12 Nova Chemicals Corporation Multi reactor process
EP2526129B1 (de) * 2010-01-21 2017-09-27 Saudi Basic Industries Corporation (Sabic) Verfahren zur polymerisierung von ethylen
SG2014006266A (en) 2010-02-19 2014-03-28 Dow Global Technologies Llc Process for polymerizing an olefin monomer and catalyst therefor
CN101857651B (zh) * 2010-06-12 2012-06-20 上海化工研究院 具有单活性中心的超高分子量聚乙烯催化剂的制备方法
US20120016092A1 (en) 2010-07-14 2012-01-19 Sandor Nagy Catalysts based on quinoline precursors
EP2606096A1 (de) 2010-08-18 2013-06-26 Sun Chemical Corporation Chlorfreie tinte und beschichtungszusammensetzungen sowie verfahren zum drucken auf unbehandelten polyolefinfolien mit verbesserter haftung
RU2581361C2 (ru) 2010-11-22 2016-04-20 Альбемарл Корпорейшн Композиции активатора, их получение и их использование в катализе
WO2013162745A1 (en) 2012-04-27 2013-10-31 Albemarle Corporation Activator compositions, their preparation, and their use in catalysts
PL3194409T3 (pl) * 2014-09-17 2020-06-01 Versalis S.P.A. Kompleks pirydynowy cyrkonu, wkład katalityczny zawierający ten kompleks pirydynowy cyrkonu i sposób (ko)polimeryzacji sprzężonych dienów
CA2864573C (en) 2014-09-22 2021-07-06 Nova Chemicals Corporation Shrink film from single site catalyzed polyethylene
WO2016086039A1 (en) 2014-11-25 2016-06-02 Univation Technologies, Llc Methods of controlling polyolefin melt index
CA2874895C (en) 2014-12-16 2022-02-15 Nova Chemicals Corporation High modulus single-site lldpe
KR101931234B1 (ko) 2016-02-12 2018-12-21 주식회사 엘지화학 신규한 리간드 화합물 및 전이금속 화합물
WO2017138783A1 (ko) * 2016-02-12 2017-08-17 주식회사 엘지화학 신규한 리간드 화합물 및 전이금속 화합물
CN112646065B (zh) * 2019-10-11 2022-11-18 中国石油化工股份有限公司 一种新型单茂过渡金属化合物、包含其的催化剂组合物与应用
CN111747995B (zh) * 2020-07-30 2023-02-21 上海化工研究院有限公司 一种含氮芳氧基茂钛化合物及其制备方法和应用
EP4330294A1 (de) 2021-04-30 2024-03-06 ExxonMobil Chemical Patents Inc. Verfahren zum übergang zwischen verschiedenen polymerisationskatalysatoren in einem polymerisationsreaktor
CN116410224B (zh) * 2023-06-05 2023-11-10 研峰科技(北京)有限公司 一种环戊二烯三氯化钛的合成工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6405816A (de) * 1963-06-07 1964-12-08
US5149880A (en) * 1990-01-16 1992-09-22 The Texas A & M University System Nitrogen-containing aromatic heterocyclic ligand-metal complexes and their use for the activation of hydrogen peroxide and dioxygen in the reaction of organic compounds
US5637660A (en) * 1995-04-17 1997-06-10 Lyondell Petrochemical Company Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety
US5852146A (en) * 1996-06-27 1998-12-22 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers

Also Published As

Publication number Publication date
US5637660A (en) 1997-06-10
EP1059310B1 (de) 2006-01-11
EP1059310A3 (de) 2004-08-04
CN1068331C (zh) 2001-07-11
RU2169735C2 (ru) 2001-06-27
US6759493B1 (en) 2004-07-06
EP0832089B1 (de) 2001-09-26
AU5314496A (en) 1996-11-07
DE69615554D1 (de) 2001-10-31
JPH11503785A (ja) 1999-03-30
MX9707982A (es) 1998-02-28
BR9608224A (pt) 1999-11-30
CN1188481A (zh) 1998-07-22
US20040097670A1 (en) 2004-05-20
ES2164878T3 (es) 2002-03-01
EP1059310A2 (de) 2000-12-13
DE69635719D1 (de) 2006-04-06
US6790918B2 (en) 2004-09-14
ES2255914T3 (es) 2006-07-16
WO1996033202A2 (en) 1996-10-24
KR19990007920A (ko) 1999-01-25
DE69635719T2 (de) 2006-09-28
EP0832089A2 (de) 1998-04-01
WO1996033202A3 (en) 1996-11-28

Similar Documents

Publication Publication Date Title
DE69615554T2 (de) Auf pyridin enthaltende zweizähnige liganden basierender übergangsmetallkatalysator
DE69621796T2 (de) Azaborolinylmetallkomplexe als olefinpolymerisationskatalysatoren
DE69503070T2 (de) Auf borabenzol basierter olefinpolymerisationskatalysator
DE3689244T2 (de) Polymerisationskatalysator auf Träger.
DE69030442T2 (de) Katalysatoren zur polymerisation von olefinen
DE69502744T2 (de) Sprühgetrocknete Füllstoffe enthaltende Metallocenkatalysatorzusammensetzung zur Herstellung von Polyolefinen
DE69922548T2 (de) Verbrückte metallocene zur olefincopolymerisation
DE3788096T2 (de) Polymerisationskatalysator auf Träger.
DE3855666T4 (de) Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zu deren Anwendung
DE69921304T2 (de) Polymerisationskatalysatoren
DE69328955T2 (de) Katalysatorzusammensetzungen und Verfahren zur Herstellung von Polyolefinen
DE69116157T3 (de) Trägerkatalysator für olefinpolymerisation mit monozyklopentadienylkomplexen von übergangsmetallen
DE69708683T2 (de) Polymerisationsverfahren hoher aktivität unter verwendung eines metallocens
DE60201340T2 (de) Katalysatorbestandteil für olefinpolymerisation und katalysatorsystem und polymerisationsverfahren unter verwendung eines solchen katalysatorsystems
DE69900794T2 (de) Herstellung von halbsandwich substituierten katalysator-vorläufern
DE69818810T2 (de) Heteroligand
DE69829644T2 (de) Katalysatorzusammensetzung für die olefinpolymerisation mit erhöhter aktivität
DE69333535T2 (de) Verfahren zur (Co)Polymerisation von Olefinen
DE69904469T2 (de) Dreiwertige ligand-enthaltende metallcomplexkatalysatoren für die olefinpolymerisation
DE69310101T2 (de) Katalysator für Olefinpolymerisation und Verfahren für Olefinpolymerisation unter Anwendung desselben
DE19720267A1 (de) Katalysator mit einer einzigen aktiven Stelle
DE602004010642T2 (de) Verfahren zur polymerisation von olefinmonomeren mit mischkatalysatorsystemen
DE69220676T3 (de) Modifizierte monocyclopentadienyl-uebergangsmetal/aluminoxan katalysatorsystem fuer olefinpolymerisation
DE69917932T2 (de) Katalysatorsystem für olefinpolymerisation
DE4446922A1 (de) Metallocenverbindung und ihre Verwendung als Katalysatorkomponente

Legal Events

Date Code Title Description
8364 No opposition during term of opposition