DE1592147C3 - Verfahren zur Herstellung von Kalzit mit neuartigem Kristallhabitus - Google Patents
Verfahren zur Herstellung von Kalzit mit neuartigem KristallhabitusInfo
- Publication number
- DE1592147C3 DE1592147C3 DE1592147A DEP0035859A DE1592147C3 DE 1592147 C3 DE1592147 C3 DE 1592147C3 DE 1592147 A DE1592147 A DE 1592147A DE P0035859 A DEP0035859 A DE P0035859A DE 1592147 C3 DE1592147 C3 DE 1592147C3
- Authority
- DE
- Germany
- Prior art keywords
- calcite
- calcium hydroxide
- carbon dioxide
- temperature
- prismatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910021532 Calcite Inorganic materials 0.000 title claims description 44
- 239000013078 crystal Substances 0.000 title claims description 30
- 238000000034 method Methods 0.000 title claims description 19
- 230000008569 process Effects 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 40
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 24
- 239000000920 calcium hydroxide Substances 0.000 claims description 23
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 22
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 22
- 239000001569 carbon dioxide Substances 0.000 claims description 20
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 17
- 238000002425 crystallisation Methods 0.000 claims description 16
- 230000008025 crystallization Effects 0.000 claims description 16
- 239000000725 suspension Substances 0.000 claims description 16
- 239000000292 calcium oxide Substances 0.000 claims description 12
- 235000012255 calcium oxide Nutrition 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 4
- 239000003085 diluting agent Substances 0.000 claims description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 21
- 235000011116 calcium hydroxide Nutrition 0.000 description 19
- 239000000047 product Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- 235000010216 calcium carbonate Nutrition 0.000 description 8
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 7
- 235000011941 Tilia x europaea Nutrition 0.000 description 7
- 229910000019 calcium carbonate Inorganic materials 0.000 description 7
- 239000004571 lime Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 2
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000012173 sealing wax Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000005029 sieve analysis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000012749 thinning agent Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
- C01F11/181—Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/02—Oxides or hydroxides
- C01F11/16—Purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/11—Particle morphology extending in one dimension, e.g. needle-like with a prismatic shape
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Paper (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Paints Or Removers (AREA)
Description
Die vorliegende Erfindung betrifft einen Kalzit mit neuartigem Kristallhabitus, ein Verfahren zur Herstel- 4r>
lung desselben sowie seine Verwendung.
Calziumcarbonat kann in drei isomorphen Kristallformen, nämlich Kalzit, Aragonit und Vaterit, niedergeschlagen
werden. Als Kalzit hat Calziumcarbonat gewöhnlich entweder rhomboedrischen oder ungleich- ■-,<)
seitigen Habitus. Es wurde nunmehr ein außerordentlich wertvoller Kalzit von neuem Habitus erhalten, der sich
von allen bekannten, natürlich vorkommenden Mineralien oder bisher beschriebenen synthetischen Produkten
unterscheidet. Die exakte Natur seines Kristallhabitus geht aus den nachfolgenden Darstellungen hervor, die
photographische Wiedergaben von stark vergrößerten Elektronenmikrographien sind. .
F i g. 1 zeigt herkömmlichen Aragonit;
Fig. 2 zeigt herkömmlichen Vaterit; bo
F i g. 3 zeigt die herkömmliche ungleichzeitige Form des Kalzits;
F i g. 4 zeigt die herkömmliche rhomboedrische Form des Kalzits;
Fig.5 ist eine Elektronenmikrographie der neuen
erfindungsgemäßen stumpf-prismatischen Kalzitkristalle;
Fig.6 ist eine noch stärker vergrößerte Darstellung
dieser neuen Kristalle.
Der neuartige Kalzit wird durch Einleiten von Kohlendioxyd in eine wäßrige Calziumhydroxydsuspension
hergestellt. Calcziumcarbonat wurde bisher durch ein derartiges Verfahren hergestellt, jedoch wurden
hierbei die herkömmlichen, erwähnten Typen erhalten. Die kritischen Verfahrensbedingungen, die zur Bildung
der stumpf-prismatischen Kalzitkristalle erforderlich sind, sind neu und bilden einen Teil der vorliegenden
Erfindung.
Bei dem neuen Verfahren wird Kohlendioxyd in eine wäßrige Lösung von grobem Calziumhydroxyd (wenigstens
50 Gewichtsprozent des Hydroxyds bestehen aus Teilchen, die gröber als 10 Mikron sind) eingeleitet,
wobei die Temperatur wenigstens so lange unter etwa 20°C gehalten wird, bis Kalzitkristallisation im Gange
ist. Dann wird weiter Kohlendioxyd eingeleitet, wobei die Temperatur erhöht werden kann, bis im wesentlichen
vollständige Kalzitkristallisation erreicht ist.
Die Anfangstemperatur während der Kalzitkristallisation ist kritisch. Wird Kohlendioxyd bei einer
wesentlich über 20°C liegenden Temperatur in die Kalksuspension eingeleitet, dann besteht eine starke
Tendenz zur Ausfällung von ungleichseitigem Kalzit, und bei noch höheren Temperaturen wird Aragonit
erhalten. Jede Temperatur unter 20°C ist brauchbar, und ausgezeichnete Ergebnisse werden bei 15 bis 16" C
erhalten. Sobald prismatische Kalzitkristallisation im Gange ist, kann jedoch die Temperatur angehoben
werden, während die Kristallisation des neuen Produktes fortschreitet. Offensichtlich wird durch die anfängliche
Kristallisation in der Dispersion eine starke Kristallkeimbildung der gewünschten Kristallform
sichergestellt, wodurch dieser Typ selbst bei den höheren Temperaturen, bei denen man sonst ungleichseitige
Kristalle erwarten müßte, weiter gebildet wird. Es ist sogar oft wünschenswert, die Temperatur
während der Kristallisation zu erhöhen, um eine vollständige Umwandlung selbst der sich langsam
umsetzenden, gröberen Calziumhydroxydtcilchen zu gewährleisten. Eine maximale Kristallisationstcmperatur
im Bereich zwischen etwa 30 und 45"C wird besonders bevorzugt, um eine vollständige Umsetzung
zu einem im wesentlichen von anderen kristallinen Formen freien Produkt sicherzustellen.
Die Kohlendioxydsättigung kann in einer normalen Gas-Flüssigkeits-Kontaktapparatur durchgeführt werden.
Es kann beispielsweise ein mit einem Rührwerk versehener Tank verwendet werden, in den Kohlendioxyd
enthaltendes Gas zur gründlichen Verteilung in dem Reaktionsgemisch zweckmäßigerweise unterhalb
des Rührwerks eingeführt wird. Eine typische großtechnische Ausfällung kann 1 oder 2 Stunden in Anspruch
nehmen, wobei es zweckmäßig ist, die Temperatur etwa 10 oder 15 Minuten lang durch Rückführung eines Teils
der Dispersion durch eine Kühlvorrichtung unter 20°C zu halten. Das Kühlen wird gewöhnlich mit Fortschreiten
der Kristallisation eingeschränkt, so daß die Temperatur zu steigen beginnt. Wenn die Carbonatbildung
etwa zur Hälfte abgeschlossen ist, kann das Kühlen gewöhnlich völlig abgebrochen werden.
Das in das Reaktionsgemisch eingeleitete Kohlendioxyd kann rein, d. h. frei von anderen verdünnenden
Gasen sein, jedoch ist dies keinesfalls notwendig. Abgase, die mindestens 12 Volumprozent oder mehr
Kohlendioxyd im Gemisch mit nicht reagierenden, gasförmigen Verdünnungsmitteln enthalten, sind geeignet,
obgleich es für eine schnellere Absorption
vorzuziehen ist. eine etwas reichere Quelle, wie /. B. die
Gase vom Kalkbrennen, zu verwenden, die etwa 20 bis 40% Kohlendioxyd enthalten. .
Nach beendetem Verfahren können die Kalzitkristalle aus der wäßrigen Suspension in beliebiger Form ί
gewonnen werden. In der Reaktionsdispersion anwesender grober Grieß oder nicht umgesetzter Kalk wird
am besten zunächst durch Sieben der Reaktionsdispersion durch ein Sieb mit 15 600 Maschen/cm2 abgetrennt,
wonach das Produkt aus der gesiebten Flüssigkeit durch Filtrieren oder andere herkömmliche Verfahren gewonnen
wird. Das Produkt kann nach dem Trocknen einmal durch eine Hammermühle gegeben werden, um etwaige
Klumpen zu zerschlagen und ein gleichförmiges, frei fließendes Pulver zu gewährleisten, das aus einzelnen i>
Kalzitkristallen besteht.
Es wurde bereits erwähnt, daß wenigstens 50 Gewichtsprozent der in dem erfindungsgemäßen
Verfahren verwendeten Calziumhydroxydtei'chen einen Durchmesser von über 10 Mikron haben müssen.
Untersuchungen mit dem Elektronenmikroskop zeigen, daß Calziumhydroxyd aus Aggregaten von Grundkristallen
mit einer Größe von etwa 0,01 Mikron besteht, und die bei dem neuen Verfahren verwendeten
verhältnismäßig großen Teilchen sind wahrscheinlich _>ϊ
solche Aggregate.
Da der Teilchendurchmesser des Kalks in der Praxis ein etwas schwierig zu messender Wert ist, wurde eine
Kenngröße entwickelt, die auf der Absetzgeschwindigkeit beruht. Nach diesem Meßverfahren soll die
Teilchengröße so beschaffen sein, daß 1000 ecm einer
homogenen Wassersuspcnsion bei 65" C mit einem Gehalt von 150 g der angegebenen Teilchen ein
Absetzvolumen von weniger als etwa 960 ecm nach 10 Minuten Stehen in einem lOOO-ccm-Standard-Mcß/.ylin- π
der aufweisen. Das heißt, daß die Grenzfläche /wischen
dem klaren überstehenden Wasser und der trüben Dispersion unterhalb dieser Grenze liegen soll. Eine
derartige Aufschlämmung ist tatsächlich eine grobe Suspension im Gegensatz zu der sogenannten »Kalkmilch«,
die typischerweise bei dem beschriebenen Test ein Absetzvolumen von 990 ecm oder mehr zeigt. Diese
feinvcrtcilte Milch wurde bisher in der industriellen Praxis allgemein verwendet und war wegen ihrer
Ähnlichkeit mit echten Lösungen bei der Handhabung 4-, besonders bevorzugt. Normalerweise wird Kalkmilch
durch Löschen des reaktionsfähigen Kalks mit heißem Wasser oder mit begrenzten Wassermengen (unter
anschließendem Verdünnen, falls notwendig) erhalten, so daß die exotherme Umsetzung eine ziemlich hohe ->o
Temperatur, oft 90 bis 1000C erzeugt. Die hierbei
erhaltenen Produkte sind bei dem erfindungsgemäßen Verfahren völlig unbefriedigend. Um eine Calziumhydroxydsuspension
von einer für das neue Verfahren erforderlichen Grobheit zu erhalten, darf die Temperatür
während des Löschens niemals über 65° C steigen. Es ist daher ratsam, während des Löschens so wirksam zu
rühren, daß die Möglichkeit einer lokalen Überhitzung vermieden wird.
Die Maximaltemperatur während des Löschens hängt ao
natürlich von der anfänglichen Wassertemperatur, dem Verhältnis von ungelöschtem Kalk zu Löschwasser und
der Reaktionsfähigkeit des ungelöschten Kalks ab. (Sie kann natürlich gewünschtenfalls durch äußere Kühlung
reguliert werden.) Die Erfahrung hat gezeigt, daß die Löschtemperatur unter 65°C gehalten werden kann und
besonders gute Ergebnisse dadurch erhalten werden, daß man Wasser mit einer Anfangstemperatur von nicht
über 350C zum Löschen nimmt. Außerdem soll das Verhältnis des ungelöschten Kalks zu dem Löschwasser
vorzugsweise nicht größer sein als das Verhältnis, bei dem etwa 20 g Calziumhydroxyd pro 100 ecm der
Suspension erhalten werden. Besonders erwünscht ist ein solches Mengenverhältnis, bei dem eine Suspension
mit einem Gehalt von etwa 10 bis 15 g Calziumhydroxyd pro 100 ecm erhalten wird.
Sehr niedrige Mengenverhältnisse an ungelöschtem Kalk, d. h. solche, die zu einer Suspension mit einem
Gehalt von weniger als etwa 10 g Calziumhydroxyd pro 100 ecm führen, sind unwirtschaftlich. Dieser Nachteil
kann dadurch ausgeglichen werden, daß man anschließend weiteren Kalk zuführt, von dem wenigstens 50
Gewichtsprozent gröber als 10 Mikron ist, so daß der Gesamtcalziumgehalt auf einen Wert von etwa 10 bis
20 g Calziumhydroxyd pro 100 ecm der Suspension
ansteigt. Der zusätzlich verwendete Kalk kann nach dem Einsetzen der Kalzitkristallisation eingeführt
werden. Gewöhnlich wird er als konzentrierte wäßrige Calziumhydroxyddispersion zugesetzt, kann jedoch
dem Reaktionsgemisch gewünschtenfalls auch als ungelöschter Kalk zugegeben werden. Dieser Kalkzusatz
kann als Einzelgabe kontinuierlich oder diskontinuierlich vorgenommen werden.
Ein bevorzugter ungelöschter Kalk zum Löschen bei dem erfindungsgemäßen Verfahren hat eine Aktivität
von bis zu etwa 25°C (Temperaturanstieg in 30 Sekunden) bei dem ASTM-Test C 110-58 (Abschnitte 20
bis 22, Tentative Revision, vom Juni 1960). Ein ausgezeichneter ungelöschter Kalk für diese Zwecke
wird beim Brennen von Kalk nach dem Wirbelschichtverfahren erhalten. Diese Produkte sind granular und
haben gewöhnlich eine Partikelgröße von 0,6 bis 3,4 mm.
Die nach dem erfindungsgemäßen Verfahren erhaltenen Kalzitkristallc mit neuem Kristallhabitus können
am besten als stumpf-prismatische Kristalle mit doppelten Enden bezeichnet werden. Jedes der beiden
Enden besteht aus drei sauber geschnittenen Flächen eines Rhomboeders, und die Ebenen der sechs Flächen
sind so zueinander angeordnet, daß sie den sechs Flächen eines Einheitskalzitrhomboeders {1 OfI} entsprechen, der einen Grenzflächenwinkel von 75° hat.
Zwischen den Enden liegt der faßförmige, prismatische Teil des Kristalls mit leicht gekrümmten konvexen
subhedralen Flächen, die im wesentlichen parallel zur prismatischen Längsachse verlaufen. Diese sechs
Flächen bilden ein im wesentlichen vertikales Prisma {101OJ, das verständlicherweise von einem außerordentiich
steilen Rhomboeder, wie z.B. {16.0.16.1} praktisch nicht zu unterscheiden ist. Die Länge des Prismas macht
das ein- bis dreifache der Querschnittsbreite des Prismas aus und beträgt im Durchschnitt etwa das l,5fache. Die
Kristalle sind bemerkenswert einheitlich in ihrer Größe und gewöhnlich etwa 1 Mikron lang und etwa 0,5 bis
etwa 0,75 Mikron breit. Der Kristallhabitus ist auffallend und vollständig atypisch im Vergleich zu jedem anderen
synthetischen oder natürlich vorkommenden Kalzit.
Wegen ihrer Gleichförmigkeit und dem Fehlen von Aggregatbildung sind die neuen Kristalle dem herkömmlichen
rhomboedrischen Kalzit hinsichtlich ihrer Dispergierfähigkeit, z. B. in Wasser, Farben, Kautschuk,
Polyvinylchlorid überlegen. Das Produkt ist besonders brauchbar zur Papierbeschichtung.
Es wird allgemein angenommen, daß der Glanz des Papierstrichs, bei dem das Calcziumcarbonat verwendet
wird, um so höher ist, je kleiner dessen Teilchengröße
ist. Die kleinere Teilchengröße stellt jedoch hohe Anforderungen an den Kleber wegen der größeren
Oberfläche. Die verhältnismäßig groben, klumpigen Kristalle der vorliegenden Erfindung führen überraschenderweise
zu einem unerreichten Glanz bei ~> mäßigen Anforderungen an den Kleber. Die neuen
Kristalle ergeben, wenn sie als einziges Pigment verwendet werden, Glanzwerte von 55% (gemessen in
einem Winkel von 75° zu der Vertikalen) im Vergleich zu Werten von etwa 39% für die beste handelsübliche in
Kreide, d. h. rhomboedrischen Kalzit. Dieser bedeutende Vorteil wird noch erhöht durch eine beachtliche
Verbesserung der Bedruckbarkeit, die bei geringeren Kalanderdrücken oder bei weniger Durchgängen durch
die Kalanderwalzen als üblich erreicht wird. Auch die π zur Erzielung einer minimalen Viskosität einer Calziumcarbonatdispersion
mit hohem Festgehalt erforderliche Menge an diesem Polyphosphat-Dispergiermittel ist
sehr niedrig. Selbst in Kombination mit herkömmlichem Kalzit bietet das stumpf-prismatische Produkt beachtli- jo
ehe Vorteile, vorausgesetzt, daß wenigstens etwa 50 Gewichtsprozent und vorzugsweise 75 bis 80 Gewichtsprozent
oder mehr des neuen Produktes verwendet werden.
Aus Ersparnisgründen werden Papierbeschichtungs- 2>
pigmente gewöhnlich auf Tonbasis hergestellt, wobei Calziumcarbonat hauptsächlich zur Erhöhung des
Weißgrads zugegeben wird. Die meisten handelsüblichen Calziumcarbonate sind nicht in der Lage, den
erwünschten Glanz und Bedruckbarkeit zu ergeben, jo wenn sie allein verwendet werden. Der neue Kalzit
beseitigt diese technischen Nachteile, wobei wirtschaftliche Überlegungen oft ihre Verwendung zusammen mit
Ton für viele Zwecke bei der Papierbeschichtung nahelegen. Anorganische Pigmente auf Tonbasis, die r>
wenigstens 20 Gewichtsprozent des stumpf-prismatischen Kalzits enthalten, führen zu Vorteilen hinsichtlich
der Glanzbildung und Bedruckbarkeit und können mit Bindemitteln vermischt werden, um ein überlegenes
gestrichenes Papier zu ergeben. Das jeweils verwendete -to Bindemittel hat keinen wesentlichen Einfluß, und jedes
der als brauchbare Klebemittel für die Papierbeschichtung bekannten Mittel ist zufriedenstellend. Dazu
gehören Stärkezusätze, modifizierte Stärke, Kasein und verschiedene synthetische Harze, wie z. B. Polyvinylace- -r>
tat, Polyvinylalkohol, Carboxymethylzellulose.
Die folgenden Beispiele dienen der Erläuterung.
Beispiel 1
34 kg ungelöschter Kalk mit einer Teilchengröße von 0,4 bis 3,4 mm und einer Aktivität von 17° im ASTM
Test C 110-58 wird einer ausreichenden Menge Wasser von ITC zugegeben,um eineCalziumhydroxydkonzentration
von 150 g/I zu erzielen. Die während des Löschens erreichte Maximaltemperatur beträgt 320C.
Die erhaltene Dispersion zeigt ein Absetzvolumen von unter 960 ecm nach 10 Minuten Stehen bei 650C in
einem 1-l-Standard-Meßzylinder. Die Naßsiebanalyse
zeigt, daß über 50 Gewichtsprozent der vorhandenen Calziumhydroxydteilchen gröber als 10 Mikron sind,
wobei ein wesentlicher Teil so groß wie die Teilchen des ursprünglich ungelöschten Kalks ist.
Die Suspension wird auf 16°C abgekühlt, und Kohlendioxyd wird eingeleitet, wobei Bewegung und
Gasverteilung mittels eines ummantelten Flügelrads (Turbomixer) bewirkt wird, das mit einer Außenrand-Geschwindigkeit
von 5 m/sek betrieben wird. Nachdem die Kristallisation abgeschlossen ist. wird das Produkt
filtriert und getrocknet. Die Untersuchung im Elektronenmikroskop ergibt, daß es aus einzelnen stumpf-prismatischen
Kalzitkristallen, wie sie in den F i g. 5 und 6 gezeigt werden, besteht.
Das VerJahren des Beispiels 1 wird mit der Abweichung wiederholt, daß bei dem Löschvorgang
Wasser von 500C an Stelle von 11°C wie bei dem ersten
Versuch verwendet wird. Die während des Löschens auftretende Maximaltemperatur beträgt 80°C.
Das fertige Calziumcarbonatprodukt trocknet zu einer außerordentlich harten Masse. Bei der Untersuchung
mit dem Elektronenmikroskop wird gefunden, daß es aus feinen rhombischen Kristallen der als
»Kautschuk«-Kreide bekannten Art besteht. Die Kristalle haben die in F i g. 4 gezeigte Struktur, jedoch eine
geringere Teilchengröße.
Ungelöschter Kalk wird in einen Wasserstrom, der in ein gerührtes Gefäß gepumpt wird, so eingeführt, daß
sich eine Maximallöschtemperatur von 310C ergibt und
eine grobe, sich schnell absetzende Suspension von 98 g Calziumhydroxyd pro Liter erhalten wird.
Die Suspension wird durch Pumpen durch einen Wärmeaustauscher auf 16°C abgekühlt, und dann wird
mit dem Einleiten von 32%igem Kohlendioxyd begonnen, wobei dieses Mal ein nicht ummanteltes Flügelrad
mit einer Außenrandgeschwindigkeit von 10 m/sek verwendet wird. Das Kühlen wird fortgesetzt, bis die
Kohlendioxydsättigung halb abgeschlossen ist. Dann läßt man die Temperatur auf 42°C ansteigen, während
die Kristallisation bis zum Abschluß fortschreitet. Das stumpf-prismatische Kalzitprodukt wird filtriert und
getrocknet.
Wiederholt man das Beispiel 1 bei einer Maximaltemperatur von 61,50C während des Lösch Vorgangs, so
erhält man eine grobe, sich schnell absetzende Calziumhydroxyddispersion. die bei der in diesem
Beispiel beschriebenen Kohlendioxydsättigung zu stumpf-prismatischem Kalkspat führt.
Bei einem parallel durchgeführten Versuch mit einer Maximaltemperatur beim Löschen von 65,5°C führt jedoch die erhaltene feine Kalkmilch bei der Kohlendioxydsättigung zu feinem rhombischem Kalzit, welches dem Produkt des Beispiels 2 entspricht.
Bei einem parallel durchgeführten Versuch mit einer Maximaltemperatur beim Löschen von 65,5°C führt jedoch die erhaltene feine Kalkmilch bei der Kohlendioxydsättigung zu feinem rhombischem Kalzit, welches dem Produkt des Beispiels 2 entspricht.
es A. Es wird eine Reihe von Versuchen wie bei den vorstehenden. Beispielen durchgeführt, um den Einfluß
der anfänglichen Löschwassertemperatur zu untersuchen. Die Ergebnisse sind nachstehend wiedergegeben.
Anfängliche Maximal-
Lösch- temperatur
wasser- während des
temperatur Löschens
C C
Absetz- Kalzitkristallvolumen habitus
ml
40
52,5
58,0
67
74,5
859 neu
prismatisch
918 neu '"
prismatisch
922 neu
prismatisch
970 rhomboedrisch i> 992 rhomboedrisch
B. Der Zusammenhang zwischen der anfänglichen Löschwassertemperatur und der Teilchengröße des
Calziumhydroxyds, die durch Naßsieben unter kohlendioxydfreiem Stickstoff bestimmt wurde, ist in einer
zweiten Versuchsreihe unter Erzielung der folgenden Ergebnisse untersucht worden.
Anfängliche
Löschwassertemperatur
Gewichtsprozent
Teilchen
>10 Mikron
Teilchen
>10 Mikron
Kalzitkristallhabitus
68,5
52,3
52,3
neu prismatisch
neu prismatisch
neu prismatisch
25
30
35
Beispie! 6
Ungelöschter Kalk mit einer Aktivität von 16° nach ASTM wird mit einer ausreichenden Wassermenge von
32°C gelöscht, um eine Suspension von 7,5 g Calziumhydroxyd pro 100 ecm zu ergeben. Die letztere wird dann
auf 15° C abgekühlt, und Kohlendioxyd wird unter Rühren eingeleitet. Sobald die prismatische Kalzitkristallisation
im Gange ist. wird eine konzentrierte Suspension von grobem Calziumhydroxyd in Wasser
hinzugegeben, um die Gesamtcalziumkonzentration auf etwa 10 g Calziumhydroxyd pro 100 ecm der Suspension
anzuheben. Die Kohlendioxydsättigung wird bis zu einer Maximaltemperatur von etwa 45° C fortgesetzt,
bis die Kristallisation von stumpf-prismatischen Kalkspat im wesentlichen abgeschlossen ist.
Eine 71%ige Dispersion des prismatischen Kreideprodukts nach Beispiel 1 in Wasser erfordert zur
Erzielung einer minimalen Viskosität 1,3% an Natriumhexametaphosphat-Dispersionsmittel,
bezogen auf das Gewicht der Kreide, 19% Natriumhexametaphosphat-Dispersionsmittel
(bezogen auf die Kreide) wird zu der Dispersion zugegeben, und das Gemisch wird als
gleichförmige Beschichtung auf Papier in einer Menge von 4,54 kg Schichtstoff, auf trockener Basis pro Ries
auf einer Seite (307 m2) aufgebracht. Nach wenigstens 12 Stunden Alterung bei 22° C und 50%iger relativer
Feuchtigkeit wird das Papier durch einen bei 66°C und 268 kg/cm arbeitenden Superkalander geführt, wobei
vier Durchgänge mit der beschichteten Oberfläche sowohl gegen die baumwollüberzogene Walze als auch
abwechselnd gegen die Stahlwalze vorgenommen werden. Beim Wachsabnahmeversuch nach Dennison
wird die Bewertung 6A erhalten. Dieses Maß für das Haftvermögen wird durch das höchstbezifferte Siegelwachs
ausgedrückt, das nicht imstande ist, den Überzug abzulösen, wenn es geschmolzen aufgebracht und
abkühlen gelassen wird. Der Spiegelglanz, gemessen in einem Winkel von 75° von der Vertikalen (TAPPI
Standard T, 480 m-51) beträgt 54,3%.
Die nach dem Beispiel 2, dem zweiten Teil des Beispiels 4 und den beiden letzten Versuchen des
Beispiels 5A erhaltenen feinen rhomboedrischen Kreiden sind viel schwieriger zu dispergieren. Ihr Dispergiermittelbedarf
beträgt 2,5% und mehr, und die erhaltenen Viskositäten sind gewöhnlich immer noch zu
hoch, um ohne weitere Verdünnung eine bequeme Handhabung zu erlauben. Um einen Wert für die
Wachsabnahme von 5A bis 6A zu erzielen, sind gewöhnlich 24% oder mehr Stärke, bezogen auf das
Pigmentgewicht, notwendig.
Die 50% oder mehr stumpf-prismatische Kristalle enthaltenden Kalzitzusammensetzungen haben vorteilhafte
Eigenschaften bezüglich der Papierbeschichtung, wobei die besten Ergebnisse bei Verwendung von 80
Gewichtsprozent oder mehr der neuen Kristalle erhalten werden.
Das Produkt des Beispiels 3 wird mit einer erstklassigen handelsüblichen Überzugskreide vom Typ
des rhomboedrischen Kalzits verglichen. Beide Materialien werden jeweils in 4,5-kg-Überzügen und 18%igem
Stärkegehalt bei einem Wert für die Wachsabnahme von 5A bis 6A getestet. Der Glanz wird in % als
Funktion der Anzahl von Kalanderdurchgängen bestimmt, wobei die nachstehenden Ergebnisse erhalten
werden:
Glanz bei 75°, %
Anzahl der Durchgänge durch den
Superkalander
Superkalander
Prismatischer
Kalzit
Kalzit
Rhomboedrischer Kalzit
19,5 | 11 |
38 | 24,5 |
44 | 31 |
44 | 33 |
46,5 | 35 |
Die schnelle Erzielung eines sehr hohen Glanzes bei dem stumpf-prismatischen Kalzit ist besonders vorteilhaft,
da eine übermäßige Behandlung im Superkalander das Papiervolumen und schließlich die Bedruckungsqualität
herabsetzt.
Tonpigmente werden unter Verwendung von 20 bis 45 Gewichtsprozent des stumpf-prismatischen Kalzits
hergestellt und zum Beschichten von Papier nach Beispiel 7 verwendet. Weiße Überzüge mit ausgezeichnetem
Glanz, Helligkeit und Bedruckbarkeit werden erhalten.
Hierzu 3 Blatt Zeichnungen
030 218/10
Claims (5)
1. Kalzit mit neuem Kristallhabitus, gekennzeichnet durch eine stumpf-prismatische Ge- >
stalt mit Doppeiende, wobei jedes der beiden Enden aus drei Flächen eines Rhomboeders besteht, die
sechs Flächen zu einem einzelnen Kalzitrhomboeder mit 75° Flächenwinkel gehören, der prismatische
Teil durch leicht gebogene, konvexe, subhedrale, in weitgehend parallel zur Prismenlänge verlaufende
Flächen begrenzt ist und ein im wesentlichen vertikales Prisma darstellt, das etwa ein- bis dreimal
so lang ist wie die Querschnittsbreite des Prismas.
2. Verfahren zur Herstellung von Kalzitkristallen r>
nach Anspruch 1 durch Einleiten von Kohlendioxid in eine wäßrige Calciumhydroxidsuspension, dadurch
gekennzeichnet, daß mindestens 50 Gew.-% der Teilchen der Calciumhydroxidsuspension gröber
als 10 Mikron sind, die Temperatur anfänglich unter etwa 200C gehalten und die Einleitung von
Kohlendioxid so lange fortgesetzt wird, bis die Kalzitkristallisation im wesentlichen abgeschlossen
ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man eine Calciumhydroxidsuspension
verwendet, die durch Löschen von ungelöschtem Kalk bei einer Temperatur bis zu 650C hergestellt
wurde, um eine Suspension von grobem Calciumhydroxid in Wasser zu erhalten. JO
4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß man die Temperatur
während der Kristallisation auf etwa 30 bis 45°C ansteigen läßt.
5. Verfahren nach einem der Ansprüche 2 bis 4, r>
dadurch gekennzeichnet, daß man das Kohlendioxid in einer Konzentration von mindestens 12 Vol.-% im
Gemisch mit einem nicht reaktionsfähigen gasförmigen Verdünnungsmittel verwendet.
4(1
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US346349A US3320026A (en) | 1964-02-20 | 1964-02-20 | Method of preparing calcite and the product thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
DE1592147A1 DE1592147A1 (de) | 1972-05-18 |
DE1592147B2 DE1592147B2 (de) | 1972-10-05 |
DE1592147C3 true DE1592147C3 (de) | 1980-04-30 |
Family
ID=23358976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE1592147A Expired DE1592147C3 (de) | 1964-02-20 | 1965-01-13 | Verfahren zur Herstellung von Kalzit mit neuartigem Kristallhabitus |
Country Status (4)
Country | Link |
---|---|
US (1) | US3320026A (de) |
BE (1) | BE695460A (de) |
DE (1) | DE1592147C3 (de) |
GB (1) | GB1099392A (de) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6086067A (ja) * | 1983-10-18 | 1985-05-15 | 奥多摩工業株式会社 | 板状炭酸カルシウムの製造法 |
US4888160A (en) * | 1985-12-20 | 1989-12-19 | J.M. Huber Corporation | Process for producing calcium carbonate and products thereof |
US4824654A (en) * | 1988-03-17 | 1989-04-25 | Yabashi Industries Co., Ltd. | Process of producing needle-shaped calcium carbonate particles |
DD298372A5 (de) * | 1989-11-29 | 1992-02-20 | Bergakademie Freiberg,De | Verfahren zur herstellung von besonders als fuellstoff geeigneten calciumcarbonatpulvern aus waessrigen loesungen |
US5269818A (en) * | 1990-03-13 | 1993-12-14 | Pfizer Inc | Rhombohedral calcium carbonate and accelerated heat-aging process for the production thereof |
US5558850A (en) * | 1990-07-27 | 1996-09-24 | Ecc International Limited | Precipitated calcium carbonate |
US5342600A (en) * | 1990-09-27 | 1994-08-30 | Ecc International Limited | Precipitated calcium carbonate |
GB2248229B (en) * | 1990-09-27 | 1994-10-26 | Ecc Int Ltd | Precipitated calcium carbonate |
WO1992021613A1 (en) * | 1991-06-04 | 1992-12-10 | Minerals Technologies, Inc. | Precipitated calcium carbonate particles from basic calcium carbonate |
CA2090088C (en) * | 1992-02-26 | 1995-07-25 | Pierre Marc Fouche | Production of purified calcium carbonate |
PL170873B1 (en) * | 1992-04-03 | 1997-01-31 | Minerals Tech Inc | Method of obtaining precipitated calcium carbonate in the form of clusters |
US5332564A (en) * | 1992-07-10 | 1994-07-26 | Ecc International Inc. | Process for production of rhombic shaped precipitated calcium carbonate |
US5364610A (en) * | 1993-06-15 | 1994-11-15 | P. H. Glatfelter Company | Process for preparation of high opacity precipitated calcium carbonate by reacting sodium carbonate with calcium hydroxide |
US5741471A (en) * | 1995-12-05 | 1998-04-21 | Minerals Technologies Inc. | Process for the preparation of discrete particles of calcium carbonate |
US6440209B1 (en) | 2000-02-09 | 2002-08-27 | Engelhard Corpoartion | Composite pigments comprising in-situ precipitated metal carbonate crystals |
US20030161894A1 (en) * | 2001-09-05 | 2003-08-28 | 3P Technologies Ltd. | Precipitated aragonite and a process for producing it |
US20030213937A1 (en) * | 2001-02-22 | 2003-11-20 | Isaac Yaniv | Precipitated aragonite and a process for producing it |
US6685908B1 (en) | 2000-03-06 | 2004-02-03 | 3P Technologies Ltd. | Precipitated aragonite and a process for producing it |
US7128887B2 (en) * | 2003-05-29 | 2006-10-31 | Specialty Minerals (Michigan) Inc. | Platy precipitated calcium carbonate synthesis method |
US7135157B2 (en) * | 2003-06-06 | 2006-11-14 | Specialty Minerals (Michigan) Inc. | Process for the production of platy precipitated calcium carbonates |
BRPI0601717A (pt) * | 2006-05-04 | 2007-12-18 | Du Pont Brasil | processo para a fabricação de carbonato de cálcio |
JP5893795B2 (ja) | 2012-03-23 | 2016-03-23 | オムヤ インターナショナル アーゲー | 偏三角面体状の沈降炭酸カルシウムを調製するための方法 |
EP2786967A1 (de) * | 2013-04-03 | 2014-10-08 | HF Biotec Berlin GmbH | Verfahren und Anlage zur Herstellung von kristallinem Calciumcarbonat unter kombinierter Verwendung zweier Gase mit unterschiedlichem CO2-Gehalt |
EP3098202A1 (de) | 2015-05-28 | 2016-11-30 | Omya International AG | Verfahren zur erhöhung der opazität von gefälltem calciumcarbonat |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3126253A (en) * | 1964-03-24 | Process for the manufacture of finely | ||
US2058503A (en) * | 1933-01-04 | 1936-10-27 | Raffold Process Corp | Colloidal calcium carbonate |
US2631922A (en) * | 1949-08-03 | 1953-03-17 | Ecusta Paper Corp | Process of producing noncolloidal calcium carbonate |
US2964382A (en) * | 1958-04-04 | 1960-12-13 | Wyandotte Chemicals Corp | Production of precipitated calcium carbonate |
US3197322A (en) * | 1962-07-25 | 1965-07-27 | Dow Chemical Co | Preparation of calcium carbonate and the composition so made |
-
1964
- 1964-02-20 US US346349A patent/US3320026A/en not_active Expired - Lifetime
-
1965
- 1965-01-07 GB GB818/65A patent/GB1099392A/en not_active Expired
- 1965-01-13 DE DE1592147A patent/DE1592147C3/de not_active Expired
-
1967
- 1967-03-14 BE BE695460D patent/BE695460A/xx not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US3320026A (en) | 1967-05-16 |
GB1099392A (en) | 1968-01-17 |
DE1592147A1 (de) | 1972-05-18 |
DE1592147B2 (de) | 1972-10-05 |
BE695460A (de) | 1967-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1592147C3 (de) | Verfahren zur Herstellung von Kalzit mit neuartigem Kristallhabitus | |
DE69202933T2 (de) | Kalzium-Magnesiumkarbonatzusammensetzung und Herstellungsverfahren. | |
DE69128730T2 (de) | Verfahren zur Verbesserung der optischen Eigenschaften von Papier | |
DE69104436T2 (de) | Ausgefälltes Calciumcarbonat. | |
DE69103472T2 (de) | Monodisperses Kalziumkarbonat vom Vaterittyp, Verfahren zur Herstellung desselben und Verfahren zur Kontrolle des Teilchenwachstums und der Teilchenform. | |
DE69634164T2 (de) | Aluminiumoxydteilchen mit erhöhter Dispergierbarkeit und Plastizität und Verfahren zu ihrer Herstellung | |
DE3587060T2 (de) | Kugelfoermiges ausgefaelltes calciumcarbonat, seine herstellung und seine verwendung. | |
DE69431664T2 (de) | Verfahren zur herstellung von kugelartigen aggregaten aus plättchenförmigem synthetischem hydrotalcit | |
DE2739704C3 (de) | Verfahren zur Herstellung kubischer Calciumcarbonatkristalle | |
DE3685782T2 (de) | Magnesiumhydroxyd und verfahren zu seiner herstellung. | |
DE69628940T2 (de) | Verfahren zur herstellung von diskreten teilchen von calciumkarbonat | |
DE3643984A1 (de) | Verfahren zur herstellung von in wasser dispergierbarem aluminiumoxid | |
DE2727317C2 (de) | Ozonisierte Zusammensetzung | |
DE68909736T2 (de) | Verfahren zur Herstellung von wässerigen Lösungen von basischem Aluminiumsulfat. | |
DE69105183T2 (de) | Niedergeschlagenes Calciumcarbonat. | |
EP0631984B1 (de) | Magnesiumhydroxid und Verfahren zur dessen Herstellung | |
DE69313373T2 (de) | Verfahren zur Herstellung von Calciumsulfat | |
EP1222146B1 (de) | Verfahren zur kontinuierlichen herstellung von gefälltem calciumcarbonat | |
EP0143363A2 (de) | Calcitischer Füllstoff und Verfahren zu seiner Herstellung | |
DE1932642B2 (de) | Verfahren zum streichen von papier unter verwendung eines modifizierten calciumcarbonatpigmentes und papierstreichmasse zur durchfuehrung des verfahrens | |
DE2733722A1 (de) | Verfahren zur kontinuierlichen herstellung eines papierbeschichtungspigments | |
DE69509132T2 (de) | Verfahren zur coproduktion von kalziumkarbonat und natriumhydroxid | |
DE2544017B2 (de) | Verfahren zur Herstellung von a -Calciumsulfathemihydrat | |
DE1467287B2 (de) | Verfahren zur herstellung von kristallinem calciumcarbonat com vaterit typ | |
DE2449802C3 (de) | Verfahren zum Herstellen von Clciumaluminathydraten und deren Verwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C3 | Grant after two publication steps (3rd publication) |