CN1266277A - 形成cmos器件的双金属栅结构的方法 - Google Patents
形成cmos器件的双金属栅结构的方法 Download PDFInfo
- Publication number
- CN1266277A CN1266277A CN00103629A CN00103629A CN1266277A CN 1266277 A CN1266277 A CN 1266277A CN 00103629 A CN00103629 A CN 00103629A CN 00103629 A CN00103629 A CN 00103629A CN 1266277 A CN1266277 A CN 1266277A
- Authority
- CN
- China
- Prior art keywords
- conducting material
- electric conducting
- gate
- conductive material
- work function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/667—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of alloy material, compound material or organic material contacting the insulator, e.g. TiN workfunction layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28079—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28088—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/665—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of elemental metal contacting the insulator, e.g. tungsten or molybdenum
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0172—Manufacturing their gate conductors
- H10D84/0177—Manufacturing their gate conductors the gate conductors having different materials or different implants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0223—Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
- H10D30/0227—Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate having both lightly-doped source and drain extensions and source and drain regions self-aligned to the sides of the gate, e.g. lightly-doped drain [LDD] MOSFET or double-diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/017—Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/517—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
- H10D64/518—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers characterised by their lengths or sectional shapes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
在半导体衬底上形成分别具有第一和第二栅极的第一和第二晶体管的方法,包括:形成绝缘地置于半导体衬底上的有一功函数的导电材料;转换导电材料的一部分从而改变其功函数,导电材料和被转换的导电材料分别形成第一和第二栅极。第一和第二晶体管分别为NMOS和PMOS器件,第一和第二晶体管形成CMOS器件。导电材料包括Ta、Mo、Ti及其任意组合。转换步骤包括使导电材料的这部分经受包括含氮气体的等离子体。
Description
这里通过参考而引入以下共同转让的专利/专利申请:
专利号/序号 申请日 TI文件号
**/**/1996 TI-22027
**/**/1998 TI-22748
**/**/1998 TI-24776
本发明属于半导体器件制造和加工,尤其涉及制造CMOS器件的金属栅结构的方法。
随着电子器件变得越来越复杂,器件上不断地需要越来越多的晶体管。此外,需要减少功耗,同时提高器件的速度。对这些需求的至少部分答案包括减少每个晶体管所占据的面积。然而,这可能对一个或多个其它需求造成不利影响。更具体来说,随着晶体管按比例缩小,使得栅结构也按比例缩小,这增加了栅极的电阻。因此,功耗增大且器件速度降低。
过去为减少栅结构的片电阻率已进行了几种尝试。首先,以n型或p型杂质对多晶硅进行更重的掺杂。然后,使栅极上部的钨或钛变成硅化物。目前,使用硅化钴从而减少较小几何图形的电阻率。下一个类似的解决方案将涉及金属栅结构。
金属栅结构提供了实际上与栅极宽度无关的较低的片电阻率。然而,必须在把许多金属栅材料应用于标准半导体工艺流程前克服几个问题。一个问题是的许多金属的不稳定性仅次于SiO2,后者通常用于栅介电层。另一个问题是许多金属在氧化时导电率变小。
已使用铝和钨来形成栅结构。由于上述问题,所以铝可能不是一个好的选择,钨具有在p型多晶硅(多晶)和n型多晶的功函数之间的功函数。然而,与钨有关的问题是,随着所加电压变得越来越小,此功函数为中等禁带(midgap)且不可变(与n型和p型多晶相比),可能难于提供比PMOS和NMOS器件的阈值大的栅极电势。
在对PMOS和NMOS器件使用一中等禁带宽度金属来克服此阈值电压问题的尝试中,已把铝用于一种类型的器件,而把铂用于另一种类型的器件。然而,铂很昂贵且难于加工,而铝将遭受上述问题。因此,需要一种栅极材料,这种材料的导电率与栅极宽度无关,且对PMOS器件和NMOS器件具有不同的功函数。
本发明的一个实施例是一种在半导体衬底上形成具有第一栅极的第一晶体管和具有第二栅极的第二晶体管的方法,该方法包括以下步骤:形成绝缘地置于半导体衬底的第一部分上的第一导电材料,此第一导电材料具有第一功函数;形成绝缘地置于半导体衬底的第二部分上的第二导电材料,此第二导电材料包括第一导电材料但具有不同于第一功函数的第二功函数;其中第一导电材料用于形成第一栅极,而第二导电材料用于形成第二栅极。在一可选实施例中,第一导电材料包括Ta,第二导电材料包括TaxNy。在另一可选实施例中,第一导电材料包括Mo,第二导电材料包括MoxNy。在又一个可选实施例中,第一导电材料包括Ti,第二导电材料包括TixNy。
本发明的另一个实施例是一种在半导体衬底上形成具有第一栅极的第一晶体管和具有第二栅极的第二晶体管的方法,该方法包括以下步骤:形成绝缘地置于半导体衬底上的导电材料,此导电材料具有一功函数;转换此导电材料的一部分,从而改变被转换的导电材料的功函数,此导电材料形成第一栅极而被转换的导电材料形成第二栅极。最好,第一晶体管为NMOS器件,第二晶体管为PMOS器件,且第一晶体管和第二晶体管形成一CMOS器件。导电材料最好包括从以下构成的组中选出的导体:Ta、Mo、Ti及其任意组合。最好,转换导电材料的一部分的步骤包括:使导电材料的这部分经受包括含氮气体的等离子体。
图1是本发明一个实施例的方法的部分制成的CMOS器件的剖面图。
图2是本发明一个实施例的方法的流程图。
图3a-3e是使用图2所示本发明的方法的部分制成的半导体器件的剖面图。
图4是示出不同材料的功函数的图表。
除非特指,不同图中的相同标号指相应的结构。这些图仅仅是说明本发明的概念。这些图不按比例绘制。
大体上,本发明涉及CMOS器件及其制造方法,该器件包括用于NMOS器件或PMOS器件的金属栅极及可用于其它器件即PMOS器件或NMOS器件(分别)栅极的金属转换形式。最好,本发明涉及形成NMOS器件的栅极(至少部.分为钽)以及形成PMOS晶体管的栅极(至少部分为氮化钽)。因此,本发明涉及例如钽等同一种碱金属,但对一种器件的栅极使用碱金属的转换形式。本发明可使用一次性(disposable)栅的方法(基本上如图2和3a-3e所示)或以传统的栅形成方法(基本上如图1所示)来制成本发明。
参考图1,可使用传统的金属来制造本发明的CMOS器件100,或者它可用图2和3a-3e所示的一次性栅的方法来制造。形成栅结构的传统方法包括形成隔离结构118,它可以是LOCOS型隔离结构、浅沟槽隔离结构(STI-在图1中作为隔离结构118示出)或掺杂的隔离区。栅绝缘层与与上面的栅导体层一起形成。在本发明中,栅绝缘层最好包括二氧化硅、氮化硅、介电常数高的材料(诸如PZT、BST、五氧化二钽或其它通常使用的材料)、硅酸盐、以上一种或多种材料的组合、氮氧化合物或其堆层(stack)。栅导电层最好包括可选择性地转换从而改变其功函数的金属。其例子是钛、钽、钼或其它类似金属。在对栅结构进行构图并蚀刻前或在这些步骤后,转化栅导体的一部分,从而改变其功函数。最好,这是通过对这部分导电层(或已构图和蚀刻的栅结构的一部分)进行氮化或使用这部分栅结构上的金属/氮化物/金属堆层从而对这层金属进行退火将使氮四处散布来实现的。由于导电材料相对薄(最好在5到50nm的数量级),所以可通过在含氮气氛(诸如氨)中对该层的这部分(或已被构图和蚀刻的这些特定栅导体)进行退火,或者使导电层或栅结构的选中部分经受混合成等离子体的含氮气体(最好是N2)对将要氮化的这些部分进行氮化。然而,可与NMOS栅结构分开地形成PMOS栅结构,而非已形成的导电层的氮化部分。因此,一个栅结构可由Ta、Mo或Ti来形成,另一个栅结构可与Ta、Mo或Ti和含氮源(诸如N2)共同淀积。或者,氮化物的形式可包括Ta、Mo或Ti以及含氮层(诸如TaN、MoN或TiN)的堆层,然后可对此氮化物进行退火从而使氮在这些栅结构中四处散布。最好,NMOS器件102的栅导体106将包括Ta、Mo或Ti,而PMOS器件104的栅导体108将包括氮和Ta、Mo、Ti或其组合。
在形成栅结构后,形成源/漏外延(如果使用)和源/漏区114和116。此后接着是标准处理。
本发明的另一个实施例如图2和3a-3e所示。本实施例的细节适用于以上实施例。参考图2的步骤202和图3a,形成隔离结构316。隔离结构316可包括LOCOS、STI或掺杂的隔离区。接着,形成第一和第二无效(dummy)层。第一无效层可包括形成栅绝缘体的材料,或者它可以仅为无效层。如果第一层包括栅绝缘材料(最好为二氧化硅、氮化硅、氮氧化合物、BST、五氧化二钽、硅酸盐或其它栅绝缘材料),则今后将不除去该层且在步骤214中不形成栅绝缘层324。对第一和第二无效层进行构图和蚀刻,从而形成PMOS器件302和NMOS器件304的无效栅结构。此无效栅结构包括两层。如果底层(层310和311)实际上不包括栅绝缘材料,则底层应包括可被除去而不损坏衬底301或在步骤212中除去时不对周围结构产生不利影响的材料。如果第一层是可除去的层,则第一和第二层可包括相同的材料。因此,结构310和306及311和308将包括相同的材料。最好,这些结构包括在除去时基本上不对下面的衬底301或周围结构(诸如侧壁绝缘体318和319以及平面绝缘材料322)产生不利影响的材料。因此,结构310、306、311和308可包括对下面的硅衬底和氧化物或氮化物侧壁绝缘体可选择性地除去的氮化硅、二氧化硅、多晶硅、硅锗或任何其它材料。
参考图2的步骤204,使用隔离结构316及与其对准的栅结构(结构310/306和311/308)来形成源/漏外延(如果全部)。PMOS器件302的源/漏外延312最好包括p型杂质(诸如硼),NMOS器件304的源/漏外延314最好包括n型杂质(诸如磷或砷)。
参考图2的步骤206和图3b,形成侧壁绝缘体318和319。侧壁绝缘体318和319可包括热生长的氧化硅、淀积的氧化硅、氮化硅、氮氧化合物或其组合或堆层。参考步骤208,通过把硼掺入衬底来形成源/漏区313,通过把砷或磷掺入衬底来形成源/漏区315。
参考图2的步骤210和图3c,形成绝缘层322。最好,绝缘层322流到晶片上,从而其顶面与一次性的栅结构和侧壁绝缘体大致处于相同高度。然而,绝缘层322可被淀积或流到晶片上,然后使用化学机械抛光(CMP)把它抛光到与一次性的栅结构和侧壁绝缘体同延(co-extensive)。最好,绝缘层包括可流动的氧化物(诸如气凝胶、干凝胶或HSQ)、BPSG、TEOS、PETEOS、PSG、FSG或其它氧化硅材料。
参考图3d和图2的步骤212,除去一次性的栅结构(如果不包括栅绝缘材料,则为结构306和308及结构310和311)。最好,这是如此实现的,从而衬底301、侧壁绝缘体318和319、绝缘层322或栅绝缘体310和311(如果它们是由这些器件所需的栅绝缘材料形成的)基本上不退化或不被蚀刻掉。
参考图2的步骤214,如果结构310和311不包括所需的栅材料且在步骤212中被除去,则形成栅绝缘层324。栅绝缘层324最好包括二氧化硅、氮化硅、氮氧化合物、硅酸盐或k高的材料(诸如BST、五氧化二钽或其它适当的材料)。
在图2的步骤216中形成导体326。最好,导体326包括可选择性地转换从而选择性地改变其功函数的Ta、Mo、Ti或其它适当的导体。然而,导体326的一部分可包括Ta、Mo或Ti,而其它部分包括转换形式的Ta、Mo或Ti(最好是氮化物的形式)。转换的形式可以是Ta、Mo或Ti与氮共同淀积,或者可以是Ta、Mo和/或Ti与氮化物的堆层。最好,导体326包括Ta、Mo或Ti且在后来转换。导体326应足够厚,从而其功函数限定栅极的作用。最好,导体326的厚度在5到50nm左右的数量级(厚度为大致8到10个单位晶胞左右或更大)
在对导体326和绝缘层324进行构图和蚀刻前或在此步骤后,转换一部分(或栅导体之一-导体327)从而改变其功函数。这可通过掩蔽导体326(或导体329)的这一部分并使导体326的暴露部分或导体327经受转换剂来实现。最好,这种转换是通过使晶片经受混合成等离子体的氮气(最好是N2)来产生。此步骤最好在环境温度或300到500℃下进行20秒到2分钟左右。此步骤的目的是基本上把Ta、Mo或Ti完全转化成TaxNy、MoxNy或TixNy。
一旦此转换完成并已对栅结构进行构图和蚀刻,可形成另一导电材料,从而填充栅极的其余部分(如果需要)。最好,此附加的导电材料包括钨、铝或其它导电材料。
虽然这里描述了本发明的特定实施例,但不把它们作为对本发明范围的限制。根据说明书的方法,将使本发明的许多实施例对本领域内的技术人员变得明显起来。本发明的范围仅限于所附的权利要求书。
Claims (9)
1.一种在半导体衬底上形成具有第一栅极的第一晶体管和具有第二栅极的第二晶体管的方法,其特征在于所述方法包括以下步骤:
形成绝缘地置于所述半导体衬底的第一部分上的第一导电材料,所述第一导电材料具有第一功函数;
形成绝缘地置于所述半导体衬底的第二部分上的第二导电材料,所述第二导电材料包括所述第一导电材料但具有不同于所述第一功函数的第二功函数;
其中所述第一导电材料用于形成所述第一栅极,而所述第二导电材料用于形成所述第二栅极。
2.如权利要求1所述的方法,其特征在于所述第一导电材料包括Ta,所述第二导电材料包括TaxNy。
3.如权利要求1所述的方法,其特征在于所述第一导电材料包括Mo,第二导电材料包括MoxNy。
4.如权利要求1所述的方法,其特征在于所述第一导电材料包括Ti,第二导电材料包括TixNy。
5.一种在半导体衬底上形成具有第一栅极的第一晶体管和具有第二栅极的第二晶体管的方法,其特征在于所述方法包括以下步骤:
形成绝缘地置于所述半导体衬底上的导电材料,所述导电材料具有一功函数;以及
转换所述导电材料的一部分,从而改变所述被转换的导电材料的功函数,所述导电材料形成所述第一栅极而所述被转换的导电材料形成所述第二栅极。
6.如权利要求5所述的方法,其特征在于所述第一晶体管为NMOS器件,所述第二晶体管为PMOS器件。
7.如权利要求6所述的方法,其特征在于所述第一晶体管和所述第二晶体管形成一CMOS器件。
8.如权利要求5所述的方法,其特征在于所述导电材料最好包括从以下构成的组中选出的导体:Ta、Mo、Ti及其任意组合。
9.如权利要求5所述的方法,其特征在于转换所述导电材料的一部分的所述步骤包括:使所述导电材料的所述部分经受包括含氮气体的等离子体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12178699P | 1999-02-26 | 1999-02-26 | |
US60/121,786 | 1999-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1266277A true CN1266277A (zh) | 2000-09-13 |
Family
ID=22398780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN00103629A Pending CN1266277A (zh) | 1999-02-26 | 2000-02-25 | 形成cmos器件的双金属栅结构的方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US6291282B1 (zh) |
EP (1) | EP1032033A3 (zh) |
JP (1) | JP2000252371A (zh) |
KR (1) | KR20000058131A (zh) |
CN (1) | CN1266277A (zh) |
SG (1) | SG77280A1 (zh) |
TW (1) | TW444285B (zh) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1311527C (zh) * | 2003-05-06 | 2007-04-18 | 英特尔公司 | 一种用于制造具有金属栅电极的半导体器件的方法 |
CN100355043C (zh) * | 2001-11-26 | 2007-12-12 | 先进微装置公司 | 具有金属栅极电极的半导体装置及其制程 |
CN100419999C (zh) * | 2003-09-24 | 2008-09-17 | 国际商业机器公司 | 制造cmos场效应晶体管的方法和设备 |
CN100419992C (zh) * | 2002-08-26 | 2008-09-17 | 微米技术有限公司 | 具有铟掺杂子区域的栅隔离区的半导体结构 |
CN100428248C (zh) * | 2004-12-24 | 2008-10-22 | 清华大学 | Cmos功耗平衡延时不敏感加法器用的进位产生电路 |
CN100440439C (zh) * | 2003-11-06 | 2008-12-03 | 英特尔公司 | 用于制造具有金属栅电极的半导体器件的方法 |
CN100490079C (zh) * | 2004-01-09 | 2009-05-20 | 国际商业机器公司 | 具有金属栅电极和硅化物触点的fet栅极结构 |
CN101322240B (zh) * | 2005-12-02 | 2011-12-14 | 国立大学法人东北大学 | 半导体装置 |
CN101151724B (zh) * | 2003-11-28 | 2012-02-01 | 国际商业机器公司 | 金属碳化物栅极结构和制造方法 |
CN101930913B (zh) * | 2009-06-26 | 2012-05-23 | 中芯国际集成电路制造(上海)有限公司 | 金属栅电极形成方法 |
CN102203923B (zh) * | 2008-11-05 | 2014-09-03 | 美光科技公司 | 形成多个晶体管栅极的方法及形成具有至少两种不同功函数的多个晶体管栅极的方法 |
WO2015014004A1 (zh) * | 2013-08-01 | 2015-02-05 | 中国科学院微电子研究所 | 金属栅电极等效功函数调节方法 |
CN102637741B (zh) * | 2004-10-29 | 2015-09-16 | 英特尔公司 | 应用金属氧化物半导体工艺的共振隧穿器件 |
CN106531618A (zh) * | 2015-09-15 | 2017-03-22 | 联华电子股份有限公司 | 具有金属栅极结构的半导体元件的功函数调整方法 |
Families Citing this family (235)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3264264B2 (ja) * | 1999-03-01 | 2002-03-11 | 日本電気株式会社 | 相補型集積回路とその製造方法 |
US6383879B1 (en) * | 1999-12-03 | 2002-05-07 | Agere Systems Guardian Corp. | Semiconductor device having a metal gate with a work function compatible with a semiconductor device |
JP3538108B2 (ja) * | 2000-03-14 | 2004-06-14 | 松下電器産業株式会社 | 半導体装置及びその製造方法 |
JP3519662B2 (ja) * | 2000-03-14 | 2004-04-19 | 松下電器産業株式会社 | 半導体装置及びその製造方法 |
TW466606B (en) * | 2000-04-20 | 2001-12-01 | United Microelectronics Corp | Manufacturing method for dual metal gate electrode |
US6444512B1 (en) * | 2000-06-12 | 2002-09-03 | Motorola, Inc. | Dual metal gate transistors for CMOS process |
US6465309B1 (en) * | 2000-12-12 | 2002-10-15 | Advanced Micro Devices, Inc. | Silicide gate transistors |
KR100422342B1 (ko) * | 2000-12-29 | 2004-03-10 | 주식회사 하이닉스반도체 | 반도체 소자의 게이트 제조방법 |
US6537901B2 (en) * | 2000-12-29 | 2003-03-25 | Hynix Semiconductor Inc. | Method of manufacturing a transistor in a semiconductor device |
US6583012B1 (en) * | 2001-02-13 | 2003-06-24 | Advanced Micro Devices, Inc. | Semiconductor devices utilizing differently composed metal-based in-laid gate electrodes |
US7563715B2 (en) | 2005-12-05 | 2009-07-21 | Asm International N.V. | Method of producing thin films |
US9139906B2 (en) | 2001-03-06 | 2015-09-22 | Asm America, Inc. | Doping with ALD technology |
US6573134B2 (en) * | 2001-03-27 | 2003-06-03 | Sharp Laboratories Of America, Inc. | Dual metal gate CMOS devices and method for making the same |
US6518106B2 (en) | 2001-05-26 | 2003-02-11 | Motorola, Inc. | Semiconductor device and a method therefor |
KR100764341B1 (ko) * | 2001-06-26 | 2007-10-05 | 주식회사 하이닉스반도체 | 반도체소자의 제조방법 |
JP3682920B2 (ja) * | 2001-10-30 | 2005-08-17 | 富士通株式会社 | 半導体装置の製造方法 |
US6653698B2 (en) | 2001-12-20 | 2003-11-25 | International Business Machines Corporation | Integration of dual workfunction metal gate CMOS devices |
US6696345B2 (en) * | 2002-01-07 | 2004-02-24 | Intel Corporation | Metal-gate electrode for CMOS transistor applications |
US6894355B1 (en) * | 2002-01-11 | 2005-05-17 | Advanced Micro Devices, Inc. | Semiconductor device with silicide source/drain and high-K dielectric |
US6794234B2 (en) * | 2002-01-30 | 2004-09-21 | The Regents Of The University Of California | Dual work function CMOS gate technology based on metal interdiffusion |
KR100463239B1 (ko) * | 2002-03-30 | 2004-12-29 | 주식회사 하이닉스반도체 | 씨모스 반도체장치의 제조 방법 |
KR100502407B1 (ko) * | 2002-04-11 | 2005-07-19 | 삼성전자주식회사 | 고유전막과 높은 도전성의 전극을 갖는 게이트 구조체 및그 형성 방법 |
US7067439B2 (en) | 2002-06-14 | 2006-06-27 | Applied Materials, Inc. | ALD metal oxide deposition process using direct oxidation |
KR100476926B1 (ko) * | 2002-07-02 | 2005-03-17 | 삼성전자주식회사 | 반도체 소자의 듀얼 게이트 형성방법 |
US6833556B2 (en) * | 2002-08-12 | 2004-12-21 | Acorn Technologies, Inc. | Insulated gate field effect transistor having passivated schottky barriers to the channel |
US7084423B2 (en) | 2002-08-12 | 2006-08-01 | Acorn Technologies, Inc. | Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions |
US7176483B2 (en) * | 2002-08-12 | 2007-02-13 | Acorn Technologies, Inc. | Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions |
US6645818B1 (en) * | 2002-11-13 | 2003-11-11 | Chartered Semiconductor Manufacturing Ltd. | Method to fabricate dual-metal gate for N- and P-FETs |
US7045406B2 (en) * | 2002-12-03 | 2006-05-16 | Asm International, N.V. | Method of forming an electrode with adjusted work function |
US6858524B2 (en) * | 2002-12-03 | 2005-02-22 | Asm International, Nv | Method of depositing barrier layer for metal gates |
US7122414B2 (en) * | 2002-12-03 | 2006-10-17 | Asm International, Inc. | Method to fabricate dual metal CMOS devices |
US6828181B2 (en) * | 2003-05-08 | 2004-12-07 | International Business Machines Corporation | Dual gate material process for CMOS technologies |
JP4091530B2 (ja) * | 2003-07-25 | 2008-05-28 | 株式会社東芝 | 半導体装置の製造方法 |
US7030430B2 (en) * | 2003-08-15 | 2006-04-18 | Intel Corporation | Transition metal alloys for use as a gate electrode and devices incorporating these alloys |
JP3790237B2 (ja) * | 2003-08-26 | 2006-06-28 | 株式会社東芝 | 半導体装置の製造方法 |
JP4143505B2 (ja) * | 2003-09-03 | 2008-09-03 | 株式会社半導体理工学研究センター | Mos型半導体装置及びその製造方法 |
US6872613B1 (en) * | 2003-09-04 | 2005-03-29 | Advanced Micro Devices, Inc. | Method for integrating metals having different work functions to form CMOS gates having a high-k gate dielectric and related structure |
US20050070109A1 (en) * | 2003-09-30 | 2005-03-31 | Feller A. Daniel | Novel slurry for chemical mechanical polishing of metals |
US7952118B2 (en) * | 2003-11-12 | 2011-05-31 | Samsung Electronics Co., Ltd. | Semiconductor device having different metal gate structures |
US7005333B2 (en) * | 2003-12-30 | 2006-02-28 | Infineon Technologies Ag | Transistor with silicon and carbon layer in the channel region |
US7002224B2 (en) * | 2004-02-03 | 2006-02-21 | Infineon Technologies Ag | Transistor with doped gate dielectric |
US7348265B2 (en) * | 2004-03-01 | 2008-03-25 | Texas Instruments Incorporated | Semiconductor device having a silicided gate electrode and method of manufacture therefor |
TWI252539B (en) * | 2004-03-12 | 2006-04-01 | Toshiba Corp | Semiconductor device and manufacturing method therefor |
JP4546201B2 (ja) * | 2004-03-17 | 2010-09-15 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
US7094671B2 (en) * | 2004-03-22 | 2006-08-22 | Infineon Technologies Ag | Transistor with shallow germanium implantation region in channel |
US7226826B2 (en) * | 2004-04-16 | 2007-06-05 | Texas Instruments Incorporated | Semiconductor device having multiple work functions and method of manufacture therefor |
US7153784B2 (en) * | 2004-04-20 | 2006-12-26 | Intel Corporation | Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode |
US20050250258A1 (en) * | 2004-05-04 | 2005-11-10 | Metz Matthew V | Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode |
US8119210B2 (en) | 2004-05-21 | 2012-02-21 | Applied Materials, Inc. | Formation of a silicon oxynitride layer on a high-k dielectric material |
US7397090B2 (en) * | 2004-06-10 | 2008-07-08 | Agency For Science, Technology And Research | Gate electrode architecture for improved work function tuning and method of manufacture |
US7439113B2 (en) * | 2004-07-12 | 2008-10-21 | Intel Corporation | Forming dual metal complementary metal oxide semiconductor integrated circuits |
US7390709B2 (en) * | 2004-09-08 | 2008-06-24 | Intel Corporation | Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode |
US7126199B2 (en) * | 2004-09-27 | 2006-10-24 | Intel Corporation | Multilayer metal gate electrode |
US7902058B2 (en) * | 2004-09-29 | 2011-03-08 | Intel Corporation | Inducing strain in the channels of metal gate transistors |
US20060172480A1 (en) * | 2005-02-03 | 2006-08-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Single metal gate CMOS device design |
JP4607645B2 (ja) * | 2005-04-04 | 2011-01-05 | 株式会社東芝 | 半導体装置及びその製造方法 |
US20070048920A1 (en) * | 2005-08-25 | 2007-03-01 | Sematech | Methods for dual metal gate CMOS integration |
US7332433B2 (en) * | 2005-09-22 | 2008-02-19 | Sematech Inc. | Methods of modulating the work functions of film layers |
JP4904472B2 (ja) * | 2005-11-18 | 2012-03-28 | 東京エレクトロン株式会社 | 半導体装置の製造方法 |
JP2007242848A (ja) * | 2006-03-08 | 2007-09-20 | Mitsubishi Electric Corp | 基板の製造方法及び基板処理装置 |
US7645710B2 (en) | 2006-03-09 | 2010-01-12 | Applied Materials, Inc. | Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system |
US7837838B2 (en) | 2006-03-09 | 2010-11-23 | Applied Materials, Inc. | Method of fabricating a high dielectric constant transistor gate using a low energy plasma apparatus |
US7678710B2 (en) | 2006-03-09 | 2010-03-16 | Applied Materials, Inc. | Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system |
JP4828982B2 (ja) * | 2006-03-28 | 2011-11-30 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
TWI435376B (zh) | 2006-09-26 | 2014-04-21 | Applied Materials Inc | 用於缺陷鈍化之高k閘極堆疊的氟電漿處理 |
WO2008042981A2 (en) | 2006-10-05 | 2008-04-10 | Asm America, Inc. | Ald of metal silicate films |
US7682891B2 (en) * | 2006-12-28 | 2010-03-23 | Intel Corporation | Tunable gate electrode work function material for transistor applications |
JP5253797B2 (ja) * | 2007-12-07 | 2013-07-31 | 株式会社東芝 | 半導体装置 |
US7804141B2 (en) * | 2008-02-19 | 2010-09-28 | United Microelectronics Corp. | Semiconductor element structure and method for making the same |
US8945675B2 (en) | 2008-05-29 | 2015-02-03 | Asm International N.V. | Methods for forming conductive titanium oxide thin films |
US8236686B2 (en) | 2008-05-30 | 2012-08-07 | International Business Machines Corporation | Dual metal gates using one metal to alter work function of another metal |
US8524588B2 (en) * | 2008-08-18 | 2013-09-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming a single metal that performs N work function and P work function in a high-k/metal gate process |
US8778754B2 (en) | 2008-09-15 | 2014-07-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming a single metal that performs N and P work functions in high-K/metal gate devices |
US8557702B2 (en) * | 2009-02-02 | 2013-10-15 | Asm America, Inc. | Plasma-enhanced atomic layers deposition of conductive material over dielectric layers |
US7943457B2 (en) * | 2009-04-14 | 2011-05-17 | International Business Machines Corporation | Dual metal and dual dielectric integration for metal high-k FETs |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US8211775B1 (en) | 2011-03-09 | 2012-07-03 | United Microelectronics Corp. | Method of making transistor having metal gate |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US8519487B2 (en) | 2011-03-21 | 2013-08-27 | United Microelectronics Corp. | Semiconductor device |
US9269634B2 (en) | 2011-05-16 | 2016-02-23 | Globalfoundries Inc. | Self-aligned metal gate CMOS with metal base layer and dummy gate structure |
US8771536B2 (en) | 2011-08-01 | 2014-07-08 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
US8445345B2 (en) | 2011-09-08 | 2013-05-21 | International Business Machines Corporation | CMOS structure having multiple threshold voltage devices |
US8927390B2 (en) | 2011-09-26 | 2015-01-06 | Applied Materials, Inc. | Intrench profile |
US20130260564A1 (en) * | 2011-09-26 | 2013-10-03 | Applied Materials, Inc. | Insensitive dry removal process for semiconductor integration |
US8808563B2 (en) | 2011-10-07 | 2014-08-19 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
JP5390654B2 (ja) * | 2012-03-08 | 2014-01-15 | 株式会社東芝 | 半導体装置の製造方法 |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9064816B2 (en) | 2012-11-30 | 2015-06-23 | Applied Materials, Inc. | Dry-etch for selective oxidation removal |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
EP2750167A1 (en) * | 2012-12-31 | 2014-07-02 | Imec | Method for tuning the effective work function of a gate structure in a semiconductor device |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US8801952B1 (en) | 2013-03-07 | 2014-08-12 | Applied Materials, Inc. | Conformal oxide dry etch |
US10170282B2 (en) | 2013-03-08 | 2019-01-01 | Applied Materials, Inc. | Insulated semiconductor faceplate designs |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US8895449B1 (en) | 2013-05-16 | 2014-11-25 | Applied Materials, Inc. | Delicate dry clean |
US9114438B2 (en) | 2013-05-21 | 2015-08-25 | Applied Materials, Inc. | Copper residue chamber clean |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
US8951429B1 (en) | 2013-10-29 | 2015-02-10 | Applied Materials, Inc. | Tungsten oxide processing |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9236265B2 (en) | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US20150214331A1 (en) | 2014-01-30 | 2015-07-30 | Globalfoundries Inc. | Replacement metal gate including dielectric gate material |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9499898B2 (en) | 2014-03-03 | 2016-11-22 | Applied Materials, Inc. | Layered thin film heater and method of fabrication |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9269590B2 (en) | 2014-04-07 | 2016-02-23 | Applied Materials, Inc. | Spacer formation |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9165786B1 (en) | 2014-08-05 | 2015-10-20 | Applied Materials, Inc. | Integrated oxide and nitride recess for better channel contact in 3D architectures |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
US9368364B2 (en) | 2014-09-24 | 2016-06-14 | Applied Materials, Inc. | Silicon etch process with tunable selectivity to SiO2 and other materials |
US9355862B2 (en) | 2014-09-24 | 2016-05-31 | Applied Materials, Inc. | Fluorine-based hardmask removal |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US9299583B1 (en) | 2014-12-05 | 2016-03-29 | Applied Materials, Inc. | Aluminum oxide selective etch |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US9502258B2 (en) | 2014-12-23 | 2016-11-22 | Applied Materials, Inc. | Anisotropic gap etch |
US9343272B1 (en) | 2015-01-08 | 2016-05-17 | Applied Materials, Inc. | Self-aligned process |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9373522B1 (en) | 2015-01-22 | 2016-06-21 | Applied Mateials, Inc. | Titanium nitride removal |
US9449846B2 (en) | 2015-01-28 | 2016-09-20 | Applied Materials, Inc. | Vertical gate separation |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US9540729B1 (en) | 2015-08-25 | 2017-01-10 | Asm Ip Holding B.V. | Deposition of titanium nanolaminates for use in integrated circuit fabrication |
US9523148B1 (en) | 2015-08-25 | 2016-12-20 | Asm Ip Holdings B.V. | Process for deposition of titanium oxynitride for use in integrated circuit fabrication |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US9799745B2 (en) * | 2015-10-20 | 2017-10-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Atomic layer deposition methods and structures thereof |
JP6538604B2 (ja) * | 2016-03-30 | 2019-07-03 | 株式会社Kokusai Electric | 半導体装置の製造方法および基板処理装置 |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US9620611B1 (en) | 2016-06-17 | 2017-04-11 | Acorn Technology, Inc. | MIS contact structure with metal oxide conductor |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
DE112017005855T5 (de) | 2016-11-18 | 2019-08-01 | Acorn Technologies, Inc. | Nanodrahttransistor mit Source und Drain induziert durch elektrische Kontakte mit negativer Schottky-Barrierenhöhe |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US9997519B1 (en) | 2017-05-03 | 2018-06-12 | International Business Machines Corporation | Dual channel structures with multiple threshold voltages |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
JP7176860B6 (ja) | 2017-05-17 | 2022-12-16 | アプライド マテリアルズ インコーポレイテッド | 前駆体の流れを改善する半導体処理チャンバ |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
TWI766433B (zh) | 2018-02-28 | 2022-06-01 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US10910375B2 (en) * | 2018-09-28 | 2021-02-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method of fabrication thereof |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5391510A (en) * | 1992-02-28 | 1995-02-21 | International Business Machines Corporation | Formation of self-aligned metal gate FETs using a benignant removable gate material during high temperature steps |
DE19535629C1 (de) * | 1995-09-25 | 1996-09-12 | Siemens Ag | Verfahren zur Herstellung einer integrierten CMOS-Schaltung |
US6084279A (en) * | 1997-03-31 | 2000-07-04 | Motorola Inc. | Semiconductor device having a metal containing layer overlying a gate dielectric |
US6043157A (en) * | 1997-12-18 | 2000-03-28 | Advanced Micro Devices | Semiconductor device having dual gate electrode material and process of fabrication thereof |
US6130123A (en) * | 1998-06-30 | 2000-10-10 | Intel Corporation | Method for making a complementary metal gate electrode technology |
US6027961A (en) * | 1998-06-30 | 2000-02-22 | Motorola, Inc. | CMOS semiconductor devices and method of formation |
US6066533A (en) * | 1998-09-29 | 2000-05-23 | Advanced Micro Devices, Inc. | MOS transistor with dual metal gate structure |
-
2000
- 2000-02-08 US US09/500,330 patent/US6291282B1/en not_active Expired - Lifetime
- 2000-02-15 SG SG200000802A patent/SG77280A1/en unknown
- 2000-02-22 TW TW089103005A patent/TW444285B/zh not_active IP Right Cessation
- 2000-02-22 KR KR1020000008398A patent/KR20000058131A/ko not_active Ceased
- 2000-02-24 EP EP00103406A patent/EP1032033A3/en not_active Withdrawn
- 2000-02-25 CN CN00103629A patent/CN1266277A/zh active Pending
- 2000-02-25 JP JP2000049739A patent/JP2000252371A/ja active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100355043C (zh) * | 2001-11-26 | 2007-12-12 | 先进微装置公司 | 具有金属栅极电极的半导体装置及其制程 |
CN100419992C (zh) * | 2002-08-26 | 2008-09-17 | 微米技术有限公司 | 具有铟掺杂子区域的栅隔离区的半导体结构 |
CN1311527C (zh) * | 2003-05-06 | 2007-04-18 | 英特尔公司 | 一种用于制造具有金属栅电极的半导体器件的方法 |
CN100419999C (zh) * | 2003-09-24 | 2008-09-17 | 国际商业机器公司 | 制造cmos场效应晶体管的方法和设备 |
CN100440439C (zh) * | 2003-11-06 | 2008-12-03 | 英特尔公司 | 用于制造具有金属栅电极的半导体器件的方法 |
CN101151724B (zh) * | 2003-11-28 | 2012-02-01 | 国际商业机器公司 | 金属碳化物栅极结构和制造方法 |
CN100490079C (zh) * | 2004-01-09 | 2009-05-20 | 国际商业机器公司 | 具有金属栅电极和硅化物触点的fet栅极结构 |
CN102637741B (zh) * | 2004-10-29 | 2015-09-16 | 英特尔公司 | 应用金属氧化物半导体工艺的共振隧穿器件 |
CN100428248C (zh) * | 2004-12-24 | 2008-10-22 | 清华大学 | Cmos功耗平衡延时不敏感加法器用的进位产生电路 |
CN101322240B (zh) * | 2005-12-02 | 2011-12-14 | 国立大学法人东北大学 | 半导体装置 |
CN102203923B (zh) * | 2008-11-05 | 2014-09-03 | 美光科技公司 | 形成多个晶体管栅极的方法及形成具有至少两种不同功函数的多个晶体管栅极的方法 |
CN101930913B (zh) * | 2009-06-26 | 2012-05-23 | 中芯国际集成电路制造(上海)有限公司 | 金属栅电极形成方法 |
WO2015014004A1 (zh) * | 2013-08-01 | 2015-02-05 | 中国科学院微电子研究所 | 金属栅电极等效功函数调节方法 |
CN104347411A (zh) * | 2013-08-01 | 2015-02-11 | 中国科学院微电子研究所 | 金属栅电极等效功函数调节方法 |
US9831089B2 (en) | 2013-08-01 | 2017-11-28 | Institute of Microelectronics, Chinese Academy of Sciences | Method for adjusting effective work function of metal gate |
CN106531618A (zh) * | 2015-09-15 | 2017-03-22 | 联华电子股份有限公司 | 具有金属栅极结构的半导体元件的功函数调整方法 |
CN106531618B (zh) * | 2015-09-15 | 2021-05-18 | 联华电子股份有限公司 | 具有金属栅极结构的半导体元件的功函数调整方法 |
Also Published As
Publication number | Publication date |
---|---|
SG77280A1 (en) | 2000-12-19 |
EP1032033A2 (en) | 2000-08-30 |
TW444285B (en) | 2001-07-01 |
JP2000252371A (ja) | 2000-09-14 |
KR20000058131A (ko) | 2000-09-25 |
EP1032033A3 (en) | 2004-05-12 |
US6291282B1 (en) | 2001-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1266277A (zh) | 形成cmos器件的双金属栅结构的方法 | |
US7528067B2 (en) | MOSFET structure with multiple self-aligned silicide contacts | |
US7405112B2 (en) | Low contact resistance CMOS circuits and methods for their fabrication | |
US7655557B2 (en) | CMOS silicide metal gate integration | |
US6495437B1 (en) | Low temperature process to locally form high-k gate dielectrics | |
JP4002868B2 (ja) | デュアルゲート構造およびデュアルゲート構造を有する集積回路の製造方法 | |
US7042033B2 (en) | ULSI MOS with high dielectric constant gate insulator | |
US6812535B2 (en) | Semiconductor device with a disposable gate and method of manufacturing the same | |
US20050287759A1 (en) | Method and apparatus for a semiconductor device with a high-k gate dielectric | |
US7964923B2 (en) | Structure and method of creating entirely self-aligned metallic contacts | |
US6218716B1 (en) | Enhanced structure for salicide MOSFET | |
US7202539B2 (en) | Semiconductor device having misfet gate electrodes with and without GE or impurity and manufacturing method thereof | |
US6794721B2 (en) | Integration system via metal oxide conversion | |
US20220069104A1 (en) | Gate oxide for nanosheet transistor devices | |
US20080023765A1 (en) | Semiconductor Devices and Methods of Fabricating the Same | |
CN220856579U (zh) | 半导体装置 | |
CN120264792A (zh) | 半导体装置及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |