CN118750795A - 放射疗法系统和相关的非暂时性计算机程序产品 - Google Patents
放射疗法系统和相关的非暂时性计算机程序产品 Download PDFInfo
- Publication number
- CN118750795A CN118750795A CN202410735024.5A CN202410735024A CN118750795A CN 118750795 A CN118750795 A CN 118750795A CN 202410735024 A CN202410735024 A CN 202410735024A CN 118750795 A CN118750795 A CN 118750795A
- Authority
- CN
- China
- Prior art keywords
- radiation therapy
- patient
- particle beam
- particle
- dose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1038—Treatment planning systems taking into account previously administered plans applied to the same patient, i.e. adaptive radiotherapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1031—Treatment planning systems using a specific method of dose optimization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1039—Treatment planning systems using functional images, e.g. PET or MRI
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1065—Beam adjustment
- A61N5/1067—Beam adjustment in real time, i.e. during treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1071—Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
- A61N5/1081—Rotating beam systems with a specific mechanical construction, e.g. gantries
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1055—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using magnetic resonance imaging [MRI]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1061—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1087—Ions; Protons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/109—Neutrons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1092—Details
- A61N2005/1094—Shielding, protecting against radiation
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Urology & Nephrology (AREA)
- Surgery (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
本申请涉及放射疗法系统和相关的非暂时性计算机程序产品。使用磁共振成像(MRI)数据的粒子放射疗法和计划。可以接收放射疗法处方信息和患者MRI数据,并且可以确定与粒子束一起使用的放射疗法治疗计划。治疗计划可以利用放射疗法处方信息和患者MRI数据来考虑粒子束穿过的患者的软组织的相互作用特性。可以从与粒子放射疗法系统集成在一起的磁共振成像系统接收患者MRI数据。在治疗期间获得的MRI数据也可用于修改或优化粒子放射疗法治疗。
Description
本申请是申请日为2017年2月28日、申请号为201780014851.3且题为″利用磁共振成像的粒子序法″的发明专利申请的分案申请。
相关申请
本申请要求2016年3月2日提交的美国临时申请No.62/302,761的权益,该临时申请通过引用并入本文。
技术领域
本文描述的主题涉及用于粒子放射疗法治疗计划和施用(administration)的装置、系统和方法。
背景技术
粒子疗法使用粒子束来杀死细胞以治疗疾病,所述疾病通常是增殖性组织疾病,例如癌症。粒子疗法可以用于治疗需要一定剂量的电离辐射来达成治疗效果的患者中的目标,所述目标例如为肉眼可观察到的肿瘤、包含微观疾病或潜在疾病扩散的解剖学区域、或者包括运动和/或递送不确定性的边缘(margin)的区域。粒子疗法束递送的电离辐射破坏了病变细胞的DNA和其他重要成分并且阻止细胞复制。
典型的粒子疗法涉及治疗计划以确定如何将规定的辐射剂量递送至目标,同时通过限制剂量低于可接受阈值以防止致命或使人衰弱的副作用来保护附近的健康组织。治疗计划通常使用X射线计算机断层扫描(CT)数据来确定患者身体的组成以及形成粒子疗法治疗计划。
发明内容
在一个方面,描述了一种存储指令的非暂时性计算机程序产品,所述指令在由形成至少一个计算系统的一部分的至少一个可编程处理器执行时使所述至少一个可编程处理器执行操作。所述操作可以包括接收患者放射疗法处方信息、接收患者磁共振成像(MRI)数据以及利用患者放射疗法处方信息并利用患者MRI数据确定与粒子束一起使用的放射疗法计划,以考虑粒子束穿过的软组织的相互作用特性。可以从与粒子放射疗法系统集成在一起的磁共振成像设备接收患者磁共振成像数据。
在一些变型中,可以考虑由MRI系统产生的磁场对粒子束的影响。
确定放射疗法计划可以包括确定由粒子束递送到软组织的剂量的生物有效性。可以通过利用患者磁共振成像数据来进行所述确定。
可以接收X射线计算机断层扫描数据。确定放射疗法治疗计划可以利用X射线计算机断层扫描数据。
所述操作可以包括接收用于利用粒子束的患者的放射疗法治疗的放射疗法束信息、在放射疗法治疗期间接收患者磁共振成像(MRI)数据、以及利用患者MRI数据执行粒子束剂量沉积位置的实施时间计算,该计算考虑了粒子束穿过的软组织的相互作用特性。在执行剂量沉积位置的实时计算时,可以考虑由MRI系统产生的磁场对粒子束的影响。所述操作可以包括:如果剂量沉积位置的实时计算指示剂量沉积发生在目标之外,则中断粒子束。所述操作可以包括:如果剂量沉积位置的实时计算指示剂量沉积发生在目标之外,则调节粒子束的能量。
可以利用患者MRI数据和剂量沉积位置的实时计算来修改粒子束的方向以便跟踪目标。在一些变型中,可以通过偏转磁体来修改粒子束的方向。在一些变型中,可以利用患者MRI数据和放射疗法束信息来计算在放射疗法治疗期间对患者的累积剂量沉积。
剂量沉积位置的实时计算可以包括通过利用患者磁共振成像数据确定由粒子束递送给软组织的剂量的生物有效性。可以基于所计算的剂量沉积来重新优化放射疗法治疗。
在一个方面,描述了一种放射疗法系统。所述放射疗法系统可以包括粒子疗法递送系统,用于通过粒子束向患者递送放射疗法。放射疗法系统可以包括磁共振成像系统,其配置成在放射疗法期间获得患者磁共振成像(MRI)数据。放射疗法系统可以包括控制器,该控制器被配置为在放射疗法期间接收患者MRI数据并利用患者MRI数据来执行粒子束的剂量沉积位置的实时计算,该计算考虑了粒子束穿过的软组织的相互作用特性。
控制器可以被配置为如果剂量沉积位置的实时计算指示沉积发生在目标之外则中断粒子束。控制器可以被配置为在计算剂量沉积位置时确定磁共振成像系统的磁场对粒子束的影响。控制器可以被配置成通过利用患者磁共振成像数据确定由粒子束递送给软组织的剂量的生物有效性。
控制器可以被配置为如果剂量沉积位置的实时计算指示剂量沉积发生在目标之外则中断粒子束。控制器可以被配置为如果剂量沉积位置的实时计算指示剂量沉积发生在目标之外则调节粒子束的能量。控制器可以被配置为利用患者MRI数据和剂量沉积位置的实时计算来修改粒子束的方向以便跟踪目标。
放射疗法系统可以包括偏转磁体。可以使用偏转磁体来实现粒子束方向的修改。
在一些变型中,控制器可以被配置为利用患者MRI数据和粒子束信息来计算在放射疗法期间对患者的剂量沉积。控制器可以被配置为基于所计算的剂量沉积来重新优化放射疗法。
放射疗法系统可以包括剂量测定系统。剂量测定系统可以用于监测对患者的放射疗法。放射疗法系统可以包括包围剂量测定系统的至少一部分的磁屏蔽结构。磁屏蔽结构可以包括多个外壳。多个外壳可以通过环形盘分开。
在一些变型中,放射疗法系统可以包括台架。台架可以被配置成允许从患者周围的不同角度递送粒子束。
在一些变型中,磁共振成像系统可以包括两个分离的主磁体。放射疗法系统可以包括等中心。两个分离的主磁体可以通过多个支撑物分开,所述多个支撑物定位成不比两个分离的主磁体的外边界更远离等中心。
在附图和以下描述中阐述了本文描述的主题的一个或多个变型的细节。根据说明书和附图以及权利要求,本文所述的主题的其他特征和优点将显而易见。虽然出于说明性目的描述了当前公开的主题的某些特征,但应容易理解,这些特征并非旨在进行限制。本公开所附的权利要求旨在限定受保护主题的范围。
附图说明
包含在本说明书中并构成本说明书的一部分的附图示出了本文公开的主题的某些方面,并且与说明书一起帮助解释与所公开的实施相关联的一些原理。在附图中:
图1是示出各种示例性形式的放射疗法在人体组织中的穿透深度的图。
图2是可以通过软件实现的利用MRI数据的粒子放射疗法的放射疗法治疗计划的方法的流程图。
图3是具有与本说明书一致的一个或多个特征的放射疗法系统的图;
图4是具有与本说明书一致的一个或多个特征的放射疗法系统的图;
图5A至5B示出了用于屏蔽例如粒子疗法系统的剂量测定系统的一部分的磁屏蔽系统,上述磁屏蔽系统具有与当前说明书一致的一个或多个特征;和
图6是具有与本说明书一致的一个或多个要素的粒子放射疗法治疗的方法的流程图。
具体实施方式
粒子疗法是使用高能粒子束来治疗疾病(例如癌症)的放射疗法的一种形式。粒子束可以对准患者体内的目标,并且可以对目标细胞的DNA和其他重要细胞成分造成损伤,最终导致细胞死亡。癌细胞比非癌细胞具有较低的能力来修复放射损伤,因此特别容易受粒子疗法的影响。根据具体情况,″粒子疗法″有时用于指代利用诸如质子、中子、反质子、介子等的强子的疗法,而其也可以指代利用诸如锂离子、氦离子、碳离子等的离子或核的疗法。通常,利用诸如碳离子之类的离子的疗法被称为″重离子疗法″,但是″轻离子″和″重离子″之间的界线并未精确限定。如本文所使用的,术语粒子疗法、粒子放射疗法、粒子束等指代利用强子以及核(或离子)的疗法。该术语明确地排除了诸如光子疗法或电子束疗法之类的疗法。
图1是示出各种形式的放射疗法在人体组织中的穿透深度的图100。对于给定的能量,与其他放射疗法形式相比,电子束在人体组织中的穿透深度较低(如迹线102所示)。X射线束穿透人体组织的深度大于电子,但是组织吸收的剂量随着X射线的穿透深度而下降,如迹线104所示。粒子疗法束在其范围的末端处将其更多的能量沉积在患者组织中的特定深度处,如迹线108所示。在其范围末端附近的该深度可以称为布拉格峰(BraggPeak),如108所示。粒子疗法提供的益处是能量较少沉积到目标外的健康组织中,从而减少对健康组织的损伤的可能。另外,与X射线束相比,在布拉格峰之外,沉积的剂量非常少。
在可以进行粒子放射疗法之前,必须产生治疗计划。本公开设想以特定方式使用磁共振成像(MRI)数据来产生治疗计划,该治疗计划将具有与递送给患者的实际剂量紧密匹配并且与期望剂量紧密匹配的预定剂量沉积。还可以采用X射线计算机断层扫描(CT)成像数据来确定例如患者的组织的质量密度和患者的以下区域,所述区域包含低密度和高密度组织或例如肺、空气和骨之类的区域。可以对所有粒子束路径进行分析。
可以采用磁共振成像系统来获得MRI数据,该MRI数据在被分析时可以更准确地确定沿着束路径到达和穿过目标的软组织的类型。然后可以从MRI数据确定粒子相互作用特性,从而允许更准确地确定递送至患者组织和目标的剂量。此外,MRI数据可以更准确地确定粒子束疗法的生物有效性。
本公开设想MRI数据可以与X射线CT数据组合(例如,通过使用可变形图像配准)以提高化学组成和质量密度确定的准确性,并且从而改善粒子疗法剂量的确定。如果X射线CT数据不可用,则可以通过超短回波时间(TE)MR成像来确定包含骨的区域,而可以通过质子密度加权的MR成像来确定肺和空气。
X射线CT非常适合于产生人体中的电子密度图,并且有用于确定由光子束射线疗法递送的剂量,因为光子的主要相互作用概率与电子密度成比例。电子密度也与质量密度密切相关,因为对于人体组织而言,原子序数较低,其中核具有较恒定的中子与质子的比率。CT豪恩斯菲尔德数(Hounsfield number)反映了人体组织对X射线的衰减系数。因此,对于元素组成、元素重量和质量密度的各种组合,豪恩斯菲尔德数可以是相同的,然而,由于图像束硬化效应和其他伪影,测量的豪恩斯菲尔德数可能是不准确的。当使用X射线CT和豪恩斯菲尔德数限定组织时引入的元素组成的不确定性可以导致所确定的粒子束范围误差很大。例如,这种误差例如可以直接导致剂量计算误差,因为需要粒子阻止功率(particlestoppingpower)来精确地建模沿高能粒子路径的剂量沉积并确定粒子到达其范围末端的位置。阻止功率的不确定性直接转化为布拉格峰108的位置的不确定性,如图1所示,其可能使较大剂量区域移出目标和肿瘤之外,而不能向治疗目标递送有效剂量,而是将粒子放射疗法剂量递送到应该被屏蔽以免接受高剂量粒子射线的健康组织。
当使用MRI系统成像时与X射线CT相比,软组织具有更好的对比度和清晰度。如上所述,X射线CT在确定具有非常不同密度的组织的质量密度以及包含空气或皮质骨的区域的清晰度方面非常出色,这是由于其低或高对比度以及低或高的豪恩斯菲尔德数。但是,许多软组织将具有非常相似的密度,具有非常不同的元素组成。例如,组织可能具有脂肪样(或脂肪质样)性质或水样(或肌肉样)性质,同时具有非常相似的质量密度,因此这难以用X射线CT数据进行区分。X射线CT数据中的图像噪声、伪影和低对比度共同导致使用当前方法经常错误地识别组织类型。在阻止功率、消除任何密度依赖性方面,脂肪样组织(CH2)或水样组织(OH2)之间的阻止功率的差异由O和C之间的原子序数的差异决定。对于高于数十MeV/核子的能量,如在粒子疗法中所使用的,阻止功率的比率是显著的。
利用仅对水或仅对脂肪敏感的脉冲序列获取MRI数据允许通过例如狄克逊法(Dixon method)或夹层回波确定组织的水脂比。然后可以使用在治疗目标附近所确定的水脂比来改善对软组织的元素组成的了解。MRI可以通过在不同时间和/或以不同方式读取激发质子的信号来获得不同的″对比度″(信号根据氢附着的分子的类型而不同地衰减)。因此,可以更好地区分不同的组织类型并利用MRI推断化学组成。
粒子束与其穿过的组织的相互作用(相互作用的频率和类型)取决于许多因素,包括束粒子类型、粒子能量以及组织的质量密度和化学组成。至少对于带电粒子的粒子相互作用包括库仑(Coulomb)相互作用(即电磁相互作用)。库仑相互作用几乎总是导致入射粒子的小能量损失和/或方向上的小偏转。导致束散开的偏转被称为库仑散射。每单位长度的能量损失量可以称为阻止功率。粒子在库仑相互作用中经历的小能量损失是由于组织的原子和分子的电离和激发。这种相互作用的频率决定了沿着粒子路径的电离密度。电离密度越高,细胞损伤的可能性越高。这通常用被称为线性能量转移(LET)的量来测量。
粒子相互作用还包括核相互作用,所述核相互作用没有库仑相互作用频繁但更具灾难性得多。它们倾向于导致核被撞击而分解成碎片(例如,单个质子和中子、氘核、氚核、锂、α等)。这种碎片的类型和数量取决于入射粒子类型和能量,以及被击中的核。核相互作用还留下放射性核,其衰变并沉积额外的剂量。
核相互作用和库仑散射高度依赖于核的原子序数。它们都导致了布拉格峰的扩宽。对于离子,核相互作用也使剂量的尾部沉积在布拉格峰之外。当束路径中存在异质性(例如,空气腔、骨骼)时,库仑散射导致异质性后的复杂剂量沉积结构。
当本文使用术语相互作用特性时,其指代的是相互作用特性的任何组合,诸如上述的库仑相互作用和核相互作用。用于例如治疗计划或放射疗法的实时MRI引导的本公开的优选实施例在确定患者组织中的剂量沉积的位置和数量时将利用尽可能多的相互作用特性。
诸如碳离子之类的″重离子″倾向于对细胞具有比质子更具破坏性的影响。它们的核相互作用碎片具有高LET并且倾向于在相互作用部位周围局部地沉积它们的能量。这是导致碳离子具有比质子高得多的″生物有效性″的主要机制。与光子、电子甚至质子相比,这导致离子在组织中沉积的每单位能量使更多细胞被杀死(或损伤)。沉积在组织中的能量称为吸收剂量,以戈瑞(Gy)测量。由于生物有效性的差异,来自碳离子束的吸收剂量的一个Gy将比光子或电子束的吸收剂量的一个Gy多杀死3-12倍的细胞。
对于粒子束疗法,确定生物有效性对于正确治疗是有益的或甚至是必需的。存在许多不同的方法来确定生物有效性。例如,生物有效剂量(BED)的确定旨在定量地指示特定放射疗法治疗的生物学效应,同时考虑诸如疗法类型、分次剂量、剂量率等许多因素。此外,相对生物有效性(RBE)是将特定疗法模式的吸收剂量与光子疗法的吸收剂量进行比较的比率,其中每个剂量导致相同的生物效应。
对于质子,多年来已假设RBE恒定在约1.1,但是一些人认为这导致次优的计划结果。因为质子的RBE非常接近1.0,忽略执行这样的生物有效性计算可能不会对疗法产生太大的影响,但对于中子、离子、介子等,如果没有考虑到这样的生物有效性计算,RBE要高得多并且可以对疗法产生非常显著的影响。
为了确定生物有效性,需要知道入射束的能谱以及束穿过的材料或组织的相互作用特性。因此,准确了解组织的化学组成对于准确确定生物有效性是绝对必要的。确定入射粒子束已失去其大部分能量(即布拉格峰)的位置也很重要。此外,由于核反应、组织活化、时间剂量分次和细胞损伤对恢复而对剂量分布的贡献可以结合到生物有效性的确定中。由于这些原因,患者MRI数据在确定生物有效性测度中很重要,类似于其在剂量计算和治疗计划中的重要性。
可以类似地利用MRI数据来评估组织元素组成和准确的剂量计算,以便在递送之前评估递送计划的质量。如果要递送的剂量的质量不足,则在组织(setup)时收集的数据可以用于在递送之前重新优化粒子疗法治疗计划。这可以在紧临递送治疗之前,当患者在治疗床上,或在患者到达进行实际治疗之前执行。
图2是可以通过软件实现的利用MRI数据的粒子放射疗法的放射疗法治疗计划的方法200的流程图,该方法具有与本说明书一致的一个或多个特征。可以使用可以是系统控制器的一部分的一个或多个数据处理器来实现软件。该软件可以包括机器可读指令,当由一个或多个数据处理器执行时,该机器可读指令可以使一个或多个数据处理器执行一个或多个操作。
在图2中,在202处,可以接收患者放射疗法处方信息。患者放射疗法处方信息可以包括诸如目标肿瘤所需的最小剂量、附近感兴趣器官被允许的最大剂量等数据。本文描述的患者放射疗法处方信息不旨在是限制性的。在放射疗法治疗计划系统处接收的患者放射疗法处方信息可以包括用于放射疗法治疗计划的典型处方信息。
在204处,可以接收患者MRI数据。在一些变型中,可以从与粒子疗法系统集成在一起的磁共振成像设备接收患者MRI数据。患者MRI数据可以涵盖用于治疗感兴趣的区域,包括例如患者的目标治疗区域和放射疗法束可以穿过并且应该监测其辐射剂量的周围组织。MRI数据可以在治疗之前在与治疗本身不同的位置处获取,或者MRI数据可以在MRI与粒子放射疗法系统集成在一起的治疗台上获取。
在206处,可以确定与粒子束一起使用的放射疗法治疗计划。放射疗法治疗计划可以利用患者放射疗法处方信息并利用患者MRI数据以考虑(account for)粒子束穿过的患者的软组织的相互作用特性。放射疗法治疗计划可以包括例如要使用的束的数量、束将被递送的方向、束的能量、准直器配置等。
放射疗法治疗计划的确定还可以考虑MRI的磁场对粒子束的影响。这涉及包括MRI的强磁场对患者中电离辐射沉积剂量的传输的影响。相互作用横截面不受自旋极化的强烈影响,因为它们与热效应竞争(例如,在体温下,只有大约百万分之四的自旋在1特斯拉磁场内对齐),但是磁场在移动带电粒子上施加外部洛伦兹力,所述外部洛伦兹力可以被考虑以产生更准确的剂量计算。
放射疗法治疗计划的确定还可以包括通过利用患者磁共振成像数据确定由粒子束递送到患者的软组织的剂量的生物有效性。
图3是具有与本说明书一致的一个或多个特征的粒子疗法系统300的图示。为了激励粒子,首先通过粒子加速器302加速粒子。粒子加速器可以是同步加速器、回旋加速器、线性加速器等。同步加速器可以由低能量回旋加速器或低能量线性加速器供给。在任何下游调节之前,粒子束304的能量确定被激励的粒子进入患者306的穿透深度。粒子加速器通常产生具有限定的能量的被激励粒子束。在一些变型中,例如,通过使束穿过衰减介质可以减小粒子的能量。由于次级中子可以增加到患者的不必要剂量,因此优选远离患者来这样做。衰减介质可以是轮或线性驱动器上的楔形材料,其可以旋转以增加或减少能量。通过在束中不施加任何衰减材料来获得最大能量。通过在束中施加最厚量的衰减材料来获得最小值。对于已知材料,可以确定这样的厚度,该厚度将阻止所有被激励粒子到达患者以停止或中断束而不停用系统。
同步加速器还可以配置成通过增加或减少通过同步加速器环中的加速元件的次数来控制束能量。原则上,线性加速器还可以在有限的范围上将加速单元的数量改变为几个固定的能量。使用适当的设备可以实现脉冲到脉冲的能量变化。
在一些变型中,粒子疗法台架(gantry)312可以用于将被激励粒子束304引导至患者306。患者306可以定位在粒子疗法台架312的中心内的床(couch)314上。粒子疗法台架312可以包括台架电磁体316,该台架电磁体配置成通过剂量测定系统318将束引向患者306。
粒子疗法台架312可以配置成旋转以便于以不同角度递送粒子疗法。在一些变型中,粒子疗法台架312可以被配置为旋转360度。可以采用一个或多个滑环以便于将电力递送到设置在粒子疗法台架312上的电磁体其他部件。在一些变型中,粒子疗法台架312可以配置成随着场的旋转而旋转大约360度。在这样的变型中,粒子疗法台架312可以在一个方向上旋转直到其将会旋转到的位置然后在另一方向上回转到它将会旋转到的位置。围绕患者306旋转粒子疗法台架312可以促进以不同角度将被激励粒子束304递送到目标,从而改善使健康组织幸免和治疗计划质量。
粒子疗法台架312可以包括扫描束磁体320。扫描束磁体320可以包括例如成对的电磁体。电磁体对可以布置成使它们的磁场在彼此正交的平面中。扫描束磁体320可以被配置为操纵被激励粒子束304的方向。在一些变型中,扫描束磁体320可以被配置为在扫描运动中横过患者的治疗目标来回引导激励粒子束。
在一些变型中,系统可以包括固定的束线(beamline)322。固定的束线322可以被配置成通过剂量测定系统318将被激励粒子直接递送给患者,而不需要台架。该系统还可以包括一个或多个扫描束电磁体320,其被配置为修改固定线束的被激励粒子的方向。
粒子疗法系统还可以包括散射器。散射器可以被配置成使被激励粒子束304向外散射。该系统还可以包含束摇摆器(wobbler)或光栅(raster)扫描机构以使束扩展开。该系统还可以包括准直器。准直器可以是包括多个薄金属叶片的多叶准直器。薄金属叶片可以是可移动的,其位置可以由计算机控制。薄金属叶片可以被配置成吸收高能粒子。薄金属叶片可以通过控制器布置,使得它们形成的孔(aperture)的形状与患者体内的目标互补。以这种方式,准直器可以有助于屏蔽目标周围的健康组织,同时允许被激励粒子穿透到目标。在一些变型中,可以使用切成永久形状的准直器。类似地,团块(bolus)可以定位在被激励粒子束304的路径中,其可以由对被激励粒子半穿透的材料形成,并且可以被切割以补充肿瘤的形状。
图4是具有与本公开一致的一个或多个特征的放射疗法递送系统400的图示。粒子疗法递送系统400可以具有与图3中所示的系统300的元件类似的一个或多个元件。根据本公开的放射疗法系统400可以包括:用于经由粒子束向患者递送放射疗法的粒子疗法递送系统;被配置为在放射疗法期间获得患者磁共振成像(MRI)数据的磁共振成像系统402;以及控制器424,其被配置为在放:射疗法期间接收患者MRI数据并利用患者MRI数据来执行粒子束的剂量沉积位置的实时计算,该计算考虑了粒子束穿过的患者软组织的相互作用特性。
粒子疗法递送系统400可以具有分离磁体(split magnet)MRI 402。分离磁体MRI402可以包括两个分离的主磁体404和406。放射疗法系统可以包括等中心407。两个分离的主磁体404和406可以被多个支撑物408分离。多个支撑物408可以定位成不比两个分离的主磁体404和406的外边界更远离等中心407。尽管两个分离的主磁体404和406均被称为单个磁体,但是该术语不旨在是限制性的。为了获得患者的MRI数据,两个分离的主磁体404和406均可包括多个磁体。
仅用于说明目的,图4中示出了分离的MRI系统。使用的MRI系统可以是任何类型的MRI系统。例如,主磁体可以包括垂直开口磁体、短孔磁体、具有入口或薄壁部分的磁体等。
床410可以设置在分离的MRI系统402内。分离的MRI系统402可以被配置成通过两个分离的主磁体404和406的内部孔在床410上接收患者412。
分离磁体MRI系统402、床410和患者412都可以设置在粒子疗法台架内,例如图3中所示的台架312。粒子疗法台架可以被配置为绕患者412旋转,以从多个角度向患者递送粒子疗法。
多个支撑物408可以设置在两个主MRI磁体404和406之间,并且定位在两个主MRI磁体404和406的外周边内,以便不进一步增加MRI系统的总直径。作为示例,该系统可以包括绕两个主MRI磁体404和406以相等角度间隔开的三个支撑物408。可以操作该系统,使得粒子束被引向分离磁体之间的患者并且是以使得其不会穿过任何支撑物408这样的方式。
该系统可以被配置为便于将被激励粒子递送到患者,使得被激励粒子被引导到两个主MRI磁体404和406之间的间隙419中。
粒子疗法递送系统400可以包括剂量测定系统416,用于监测对患者的放射疗法。剂量测定系统416还可以包括一个或多个部件,以便于向患者递送粒子疗法,例如,通过向控制器提供反馈。
粒子疗法递送系统400可以包括一个或多个磁屏蔽结构420,其可以例如包围剂量测定系统的至少一部分。磁屏蔽结构420可以配置成容纳电子设备,如果不是这样的话该电子设备将受到由主MRI磁体404和406产生的磁场的不利影响。
图5A至5B示出了用于屏蔽粒子疗法递送系统的剂量测定系统502的至少一部分的示例性磁屏蔽结构500,其具有与本公开一致的一个或多个特征。磁屏蔽结构500可以包括多个外壳。多个外壳可以由一系列同心屏蔽件形成,所述同心屏蔽件被配置为屏蔽由图4中所示的分离磁体MRI系统402产生的磁场。同心屏蔽件可以配置成包围剂量测定系统502的至少一部分。
磁屏蔽结构500可以包括第一屏蔽容器504。第一屏蔽容器504可以包括圆柱形主体部分506和横跨圆柱形主体部分的一端设置的环形盘508。环形盘508可以包括孔510,以允许粒子不受阻碍地通过。在一些变型中,第一屏蔽容器504可以具有大约十七英寸的直径。可以选择第一屏蔽容器504的直径以充分容纳剂量测定系统502的至少一部分组件。
磁屏蔽结构500可以包括多个外壳。例如图5B中的504、512和514等。多个外壳504、512、514可以嵌套在一起。多个外壳中的至少一个优选地包括环形盘516、518等。
磁屏蔽结构500可以相对于分离磁体MRI系统402定位在固定位置,或者可以配置成与台架一起旋转,例如图3中所示的台架312。一个或多个结构可以设置在分离磁体MRI系统402的对面或周围,并且被配置为模拟磁屏蔽结构500的磁特性,以便最小化对MRI的磁场的同质性(homogeneity)的干扰。
图4中所示的粒子疗法递送系统400可以包括控制器424。控制器424可以配置成与如图3所示的粒子疗法递送系统300电子通信,并且从如图4所示的系统400接收数据并控制系统400。控制器424还可以被配置为从分离磁体MRI系统402接收患者MRI数据并控制分离磁体MRI系统402。
控制器424可以被配置为利用患者MRI数据和粒子束信息来计算在放射疗法期间对患者的剂量沉积。患者MRI数据以及关于粒子束的信息可以用于计算剂量随时间推移沉积到患者组织中的位置和程度。可以累积实际剂量沉积,使得在特定治疗分次之后可以知道总剂量。该信息可以用于在随后的治疗分次之前重新优化治疗计划。
此外,所计算的实时剂量沉积信息可用于在治疗递送期间改善或重新优化放射疗法治疗计划。控制器424可以被配置为利用软件来执行剂量沉积位置的实时计算。该软件可以包括机器可读指令。控制器424可以包括被配置为执行机器可读指令的一个或多个数据处理器。由数据处理器执行机器可读指令可以使数据处理器执行一个或多个操作,例如本公开中描述的一个或多个操作。
控制器424可以被配置为利用所接收的MRI数据计算粒子束相对于治疗目标的位置的布拉格峰。控制器424还可以被配置为在确定束的布拉格峰相对于治疗目标没有正确定位的情况下修改治疗束。
如关于治疗计划所讨论的,由于MRI能够区分脂肪样组织和水样组织,所述实时MRI数据可以用于确定患者体内脂肪样组织和水样组织的位置。可以确定穿过患者的束路径的水组织与脂肪组织比率,以在患者正在进行治疗时实时确定患者组织的相互作用特性。
可以实时生成粒子相互作用特性图以增加剂量和范围计算的准确性。在治疗患者时实时确定患者组织与高能粒子的相互作用特性可以促进粒子疗法的递送的更高准确性和有效性。具有相对于治疗目标的布拉格峰位置的更准确图像可以允许更准确地定位布拉格峰。这有助于增加对目标的放射疗法剂量,而不会增加放射健康的周围组织的风险。
如上所述,控制器424还可以被配置成在计算剂量沉积的位置时确定磁共振成像系统的磁场对粒子束的影响。
控制器424可进一步配置成通过利用患者磁共振成像数据确定由粒子束递送到软组织的剂量的生物有效性。
实时提供的MRI数据还可以有助于确定组织的精确位置和/或速度以及组织轨迹的预测。该信息还可以用于提供治疗目标将处于的位置的预测,使得控制器424可以使系统400将粒子束递送到该位置。
控制器424可以被配置为如果剂量沉积位置的实时计算指示剂量沉积发生在目标之外则中断粒子束。治疗目标的位置可以从治疗计划阶段期间获得的MRI数据确定。在治疗时,由于患者解剖结构的变化,目标的位置可能已经改变。例如,重量减轻、饱胃、气体等可能在对患者成像和向患者递送治疗之间引起治疗目标的位置的相对变化。由于至少一部分治疗目标未被照射和/或健康组织被粒子束损伤,这增加了治疗效果较差的风险。此外,患者的自主或不自主运动(例如坐立不安、呼吸、气体运动等)可能导致治疗区域的位置在向患者递送粒子疗法期间移动。剂量沉积位置的实时计算可以用于使控制器424确定剂量是否正在其预期目标处沉积或剂量是否偏离目标。如果剂量偏离目标,则控制器424可以中断粒子束以避免对健康组织的放射剂量。控制器424可以保持束中断,直到所计算的剂量沉积位置再次与目标重合。
控制器424可以被配置为如果剂量沉积位置的实时计算指示沉积发生在目标之外,则调整粒子束的能量。如果剂量沉积位置的实时计算指示剂量偏离目标,特别是如果剂量简单地是沉积够不到目标或超出目标,则控制器可以配置为增加或减少粒子束的能量,使得剂量沉积的位置将再次与目标重合。粒子束的能量可以在源处或源的下游处进行修改。
控制器424可以被配置为利用患者MRI数据和剂量沉积位置的实时计算来修改粒子束的方向以跟踪目标。如果剂量沉积位置的实时计算指示剂量偏离目标,特别是如果束的瞄准横向(而不是深度)偏离目标,则控制器可以配置为修改粒子束的方向使得剂量沉积的位置再次与目标重合。例如,放射疗法系统400可以包括偏转磁体426,有时称为弯曲磁体或扫描束磁体。可以通过偏转磁体修改粒子束的方向,以使用磁力来偏转束的轨迹。偏转磁体通常是电磁铁,其中由电磁体产生的磁力的强度可以通过在电磁体上施加变化量的电流来修改。
图6是可以通过软件实现的利用MRI数据的粒子放射疗法的放射疗法治疗的方法600的流程图,该方法具有与本说明书一致的一个或多个特征。可以使用一个或多个数据处理器来实现该软件。该软件可以包括机器可读指令,当由一个或多个数据处理器执行时,该机器可读指令可以使一个或多个数据处理器执行一个或多个操作。方法600是如本文所讨论的可以由控制器424执行的操作的示例。
在602处,可以接收用于利用粒子束对患者进行放射疗法治疗的放射疗法束信息。放射疗法束信息可以包括粒子束的一个或多个特性。一个或多个特性可以包括粒子束的穿透能力的指示、粒子束的扩散特性、粒子束的数量等。
在604处,可以在放射疗法治疗期间接收患者磁共振成像(MRI)数据。
在606处,可以利用患者MRI数据来执行粒子束的剂量沉积位置的实时计算,该计算考虑了粒子束穿过的患者的软组织的相互作用特性,如本文所讨论。如上所述,在执行剂量沉积位置的实时计算时,还可以考虑由MRI系统产生的磁场对粒子束的影响。并且,通过利用患者磁共振成像数据确定由粒子束递送到软组织的剂量的生物有效性也可以结合实时剂量计算执行。
在608处,如果剂量沉积位置的实时计算指示沉积发生在目标之外,则可以中断粒子束。
在一些变型中,如果剂量沉积位置的实时计算指示沉积发生在目标之外,则可以调节粒子束的能量。在其他变型中,可以利用患者MRI数据并且实时计算剂量沉积的位置以修改粒子束的方向以便跟踪目标。
虽然本文已经以其各自性能描述了组件,但是将容易理解,单独描述的组件的功能可以归属于一个或多个其他组件,或者可以分成单独的组件。本公开不旨在限制本文描述的确切变化,而是旨在涵盖当前描述的主题的所有实施方式。
在以上的描述和权利要求中,可以出现诸如之后有元素或特征的联合列表的″至少一个″或″一个或多个″之类的短语。术语″和/或″也可以出现在两个或更多个元素或特征的列表中。除非另外隐含地或明确地与其使用的上下文相矛盾,否则这样的短语旨在单独地表示任何列出的元素或特征,或者与任何其他列举的元素或特征组合的任何所述元素或特征。例如,短语″A和B中的至少一个;″、″A和B中的一个或多个;″和″A和/或B″各自旨在表示″A单独、B单独或A和B一起″。类似的解释也旨在用于包括三个或更多项目的列表。例如,短语″A、B和C中的至少一个;″、″A、B和C中的一个或多个;″和″A,B和/或C″均旨在表示″单独A、单独B、单独C、A和B一起、A和C一起、B和C一起、或A和B和C一起″。在以上的描述和在权利要求中使用术语″基于″意指″至少部分地基于″,使得未被引用的特征或元素也是允许的。
本文描述的主题可以根据期望的配置体现在系统、装置、方法和/或物品中。在前面的描述中阐述的实施不代表与本文描述的主题一致的所有实施。相反,它们仅仅是与涉及所描述的主题的方面一致的一些示例。尽管上面已经详细描述了一些变化,但是其他修改或添加也是可行的。特别地,除了本文所述的那些之外,还可以提供进一步的特征和/或变化。例如,上述的实施可以针对所公开的特征的各种组合和子组合和/或以上公开的若干其他特征的组合和子组合。另外,在附图中描绘和/或在本文描述的逻辑流程不一定需要所示的特定顺序或顺序次序来实现期望的结果。其他实施可以在所附的权利要求的范围内。
Claims (29)
1.一种存储指令的非暂时性计算机程序产品,所述指令在由形成至少一个计算系统的一部分的至少一个可编程处理器执行时使所述至少一个可编程处理器执行包括以下操作的操作:
接收患者放射疗法处方信息;
接收患者磁共振成像(MRI)数据;和,
利用所述患者放射疗法处方信息并利用所述患者MRI数据来确定与粒子束一起使用的放射疗法治疗计划,以考虑所述粒子束穿过的软组织的相互作用特性。
2.根据权利要求1所述的计算机程序产品,还包括考虑由MRI系统产生的磁场对所述粒子束的影响。
3.根据权利要求1所述的计算机程序产品,其中,确定所述放射疗法计划还包括通过利用所述患者磁共振成像数据确定由所述粒子束递送到所述软组织的剂量的生物有效性。
4.根据权利要求1所述的计算机程序产品,还包括接收x射线计算机断层扫描数据,并且其中,确定放射疗法治疗计划还利用所述x射线计算机断层扫描数据。
5.根据权利要求1所述的计算机程序产品,其中,从与粒子放射疗法系统集成在一起的磁共振成像设备接收所述患者磁共振成像数据。
6.一种存储指令的非暂时性计算机程序产品,所述指令在由形成至少一个计算系统的一部分的至少一个可编程处理器执行时使所述至少一个可编程处理器执行包括以下操作的操作:
接收用于利用粒子束对患者进行放射疗法治疗的放射疗法束信息;
在所述放射疗法治疗期间接收患者磁共振成像(MRI)数据;和,
利用所述患者MRI数据来执行所述粒子束的剂量沉积位置的实时计算,该计算考虑了所述粒子束穿过的软组织的相互作用特性。
7.根据权利要求6所述的计算机程序产品,还包括在执行剂量沉积位置的实时计算时考虑由MRI系统产生的磁场对所述粒子束的影响。
8.根据权利要求6所述的计算机程序产品,还包括:
如果剂量沉积位置的实时计算指示剂量沉积发生在目标之外,则中断所述粒子束。
9.根据权利要求6所述的计算机程序产品,还包括:
如果剂量沉积位置的实时计算指示剂量沉积发生在目标之外,则调整所述粒子束的能量。
10.根据权利要求6所述的计算机程序产品,还包括:
利用所述患者MRI数据和所述剂量沉积位置的实时计算来修改所述粒子束的方向以便跟踪目标。
11.根据权利要求10所述的计算机程序产品,还包括:
通过偏转磁体修改所述粒子束的方向。
12.根据权利要求6所述的计算机程序产品,还包括:
利用所述患者MRI数据和所述放射疗法束信息来计算在所述放射疗法治疗期间对患者的累积剂量沉积。
13.根据权利要求6所述的计算机程序产品,其中,所述剂量沉积位置的实时计算包括通过利用所述患者磁共振成像数据确定由所述粒子束递送给软组织的剂量的生物有效性。
14.根据权利要求12所述的计算机程序产品,还包括:
基于所计算的剂量沉积重新优化所述放射疗法治疗。
15.一种放射疗法系统,包括:
粒子疗法递送系统,用于通过粒子束向患者递送放射疗法;
磁共振成像系统,被配置为在放射疗法期间获得患者磁共振成像(MRI)数据;和
控制器,被配置为在放射疗法期间接收所述患者MRI数据并利用所述患者MRI数据来执行所述粒子束的剂量沉积位置的实时计算,该计算考虑了所述粒子束穿过的软组织的相互作用特性。
16.根据权利要求15所述的放射疗法系统,其中,所述控制器还被配置为如果所述剂量沉积位置的实时计算指示沉积发生在目标之外,则中断所述粒子束。
17.根据权利要求15所述的放射疗法系统,其中,所述控制器还被配置为在计算剂量沉积的位置时确定所述磁共振成像系统的磁场对所述粒子束的影响。
18.根据权利要求15所述的放射疗法系统,其中,所述控制器还被配置为通过利用所述患者磁共振成像数据来确定由所述粒子束递送到所述软组织的剂量的生物有效性。
19.根据权利要求15所述的放射疗法系统,其中,所述控制器还被配置为如果所述剂量沉积位置的实时计算指示剂量沉积发生在目标之外,则中断所述粒子束。
20.根据权利要求15所述的放射疗法系统,其中,所述控制器还被配置为如果所述剂量沉积位置的实时计算指示剂量沉积发生在目标之外,则调节所述粒子束的能量。
21.根据权利要求15所述的放射疗法系统,其中,所述控制器还被配置为利用所述患者MRI数据和所述剂量沉积位置的实时计算来修改所述粒子束的方向以便跟踪目标。
22.根据权利要求21所述的放射疗法系统,还包括偏转磁体,并且其中,通过所述偏转磁体实现所述粒子束的方向的修改。
23.根据权利要求15所述的放射疗法系统,其中,所述控制器还被配置为利用所述患者MRI数据和粒子束信息来计算在所述放射疗法期间对所述患者的剂量沉积。
24.根据权利要求23所述的放射疗法系统,其中,所述控制器还被配置为基于所计算的剂量沉积来重新优化所述放射疗法。
25.根据权利要求15所述的放射疗法系统,还包括:
用于监测对患者的所述放射疗法的剂量测定系统;和,
包围所述剂量测定系统的至少一部分的磁屏蔽结构。
26.根据权利要求25所述的放射疗法系统,其中,所述磁屏蔽结构包括多个外壳。
27.根据权利要求25所述的放射疗法系统,其中,所述多个外壳中的至少一个由环形盘分开。
28.根据权利要求15所述的放射疗法系统,还包括:
台架,所述台架被配置成允许从患者周围的不同角度递送所述粒子束。
29.根据权利要求28所述的放射疗法系统,其中,所述磁共振成像系统包括两个分离的主磁体,并且所述放射疗法系统包括等中心,并且其中,所述两个分离的主磁体由多个支撑物分开,所述多个支撑物定位成不比所述两个分离的主磁体的外边界更远离所述等中心。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662302761P | 2016-03-02 | 2016-03-02 | |
US62/302,761 | 2016-03-02 | ||
CN201780014851.3A CN109310879A (zh) | 2016-03-02 | 2017-02-28 | 利用磁共振成像的粒子疗法 |
PCT/US2017/020015 WO2017151662A1 (en) | 2016-03-02 | 2017-02-28 | Particle therapy with magnetic resonance imaging |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780014851.3A Division CN109310879A (zh) | 2016-03-02 | 2017-02-28 | 利用磁共振成像的粒子疗法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118750795A true CN118750795A (zh) | 2024-10-11 |
Family
ID=58347908
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780014851.3A Pending CN109310879A (zh) | 2016-03-02 | 2017-02-28 | 利用磁共振成像的粒子疗法 |
CN202410735024.5A Pending CN118750795A (zh) | 2016-03-02 | 2017-02-28 | 放射疗法系统和相关的非暂时性计算机程序产品 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780014851.3A Pending CN109310879A (zh) | 2016-03-02 | 2017-02-28 | 利用磁共振成像的粒子疗法 |
Country Status (8)
Country | Link |
---|---|
US (3) | US10413751B2 (zh) |
EP (1) | EP3423153B1 (zh) |
JP (2) | JP7066621B2 (zh) |
KR (1) | KR20180120705A (zh) |
CN (2) | CN109310879A (zh) |
AU (1) | AU2017227590A1 (zh) |
CA (1) | CA3016026A1 (zh) |
WO (1) | WO2017151662A1 (zh) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1725166B1 (en) | 2004-02-20 | 2011-03-30 | University of Florida Research Foundation, Inc. | System for delivering conformal radiation therapy while simultaneously imaging soft tissue |
CA2760055C (en) | 2009-07-15 | 2021-04-06 | Viewray Incorporated | Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other |
WO2014066853A1 (en) | 2012-10-26 | 2014-05-01 | Viewray Incorporated | Assessment and improvement of treatment using imaging of physiological responses to radiation therapy |
US9446263B2 (en) | 2013-03-15 | 2016-09-20 | Viewray Technologies, Inc. | Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging |
CN109310879A (zh) | 2016-03-02 | 2019-02-05 | 优瑞技术公司 | 利用磁共振成像的粒子疗法 |
CA3046091A1 (en) | 2016-12-13 | 2018-06-21 | Viewray Technologies, Inc. | Radiation therapy systems and methods |
JP7127126B2 (ja) * | 2017-12-06 | 2022-08-29 | ビューレイ・テクノロジーズ・インコーポレイテッド | 放射線治療のシステム、方法およびソフトウェア |
US11931600B2 (en) * | 2018-03-09 | 2024-03-19 | University Of Maryland, Baltimore | System and method for forming a treatment plan for charged particle therapy using hydrogen density |
US11209509B2 (en) | 2018-05-16 | 2021-12-28 | Viewray Technologies, Inc. | Resistive electromagnet systems and methods |
US11857806B1 (en) | 2018-07-13 | 2024-01-02 | The United States Of America, As Represented By The Secretary Of The Navy | Luminescence-based method for precise delivery of ion beam therapy |
GB2580047B (en) * | 2018-12-20 | 2021-02-24 | Siemens Healthcare Ltd | Cryostat for superconductive magnet |
CN110412639B (zh) * | 2019-07-29 | 2020-12-01 | 中国科学院近代物理研究所 | 基于纳剂量学获得离子束辐照方案的方法 |
EP4051376A4 (en) * | 2019-10-29 | 2023-11-22 | Elekta Ltd. | CARDIAC ABLATION USING AN RM-LINAC |
KR20210051629A (ko) * | 2019-10-31 | 2021-05-10 | 한국전기연구원 | 자기공명영상 유도 및 체내 선량 제어가 가능한 방사선 치료기 |
US11446522B2 (en) * | 2020-04-24 | 2022-09-20 | Shanghai United Imaging Healthcare Co., Ltd. | Systems and methods for scintillation camera-based motion tracking in radiotherapy |
DE102020214255A1 (de) * | 2020-11-12 | 2022-04-07 | Siemens Healthcare Gmbh | Verfahren und Vorrichtung zur Berücksichtigung von Suszeptibilitätsabweichungen in MR-basierter Therapieplanung |
CN116917009A (zh) | 2021-02-19 | 2023-10-20 | 美国迈胜医疗系统有限公司 | 用于粒子治疗系统的机架 |
US20230125812A1 (en) * | 2021-10-22 | 2023-04-27 | Viewray Technologies, Inc. | Systems, methods and computer software for optimized radiation therapy |
DE102023105921B3 (de) * | 2023-03-09 | 2024-06-27 | Helmholtz-Zentrum Dresden - Rossendorf E. V. | Vorrichtung zur magnetresonanz-geführten partikelstrahltherapie und verfahren zum erstellen eines bestrahlungsplans |
Family Cites Families (434)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1014630A (en) | 1964-11-06 | 1965-12-31 | Mullard Ltd | Improvements in and relating to adjustable couches |
US3569823A (en) | 1968-10-18 | 1971-03-09 | Perkin Elmer Corp | Nuclear magnetic resonance apparatus |
US3735306A (en) | 1970-10-22 | 1973-05-22 | Varian Associates | Magnetic field shim coil structure utilizing laminated printed circuit sheets |
US4233662A (en) | 1973-04-25 | 1980-11-11 | Emi Limited | Radiography |
DE2455447C3 (de) | 1974-11-22 | 1981-02-05 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Patientenlagerungsvorrichtung eines Röntgengerätes |
DE3121728A1 (de) | 1981-06-01 | 1982-12-16 | Siemens AG, 1000 Berlin und 8000 München | Patienten-lagerungsvorrichtung mit einer drehbaren lagerstatt |
JPS59147061A (ja) | 1983-02-14 | 1984-08-23 | Nissan Motor Co Ltd | 燃料タンク用防錆剤 |
US4581580A (en) | 1983-12-14 | 1986-04-08 | General Electric Company | Intentionally non-orthogonal correction coils for high-homogeneity magnets |
US4642569A (en) | 1983-12-16 | 1987-02-10 | General Electric Company | Shield for decoupling RF and gradient coils in an NMR apparatus |
SE462013B (sv) | 1984-01-26 | 1990-04-30 | Kjell Olov Torgny Lindstroem | Behandlingsbord foer radioterapi av patienter |
JPS60189905A (ja) | 1984-03-09 | 1985-09-27 | Mitsubishi Electric Corp | 高均一磁界発生装置 |
JPS6224020U (zh) | 1985-07-26 | 1987-02-13 | ||
US4694837A (en) | 1985-08-09 | 1987-09-22 | Picker International, Inc. | Cardiac and respiratory gated magnetic resonance imaging |
US4740753A (en) | 1986-01-03 | 1988-04-26 | General Electric Company | Magnet shimming using information derived from chemical shift imaging |
US4771785A (en) | 1986-07-25 | 1988-09-20 | Resonex, Inc. | Magnetic resonance imaging apparatus and three-axis patient positioning assembly for use therewith |
JPS63294839A (ja) | 1987-05-27 | 1988-12-01 | Nec Corp | 放射線治療用ctシミュレ−タ |
DE3844716C2 (de) | 1987-08-24 | 2001-02-22 | Mitsubishi Electric Corp | Partikelstrahlmonitorvorrichtung |
US5027818A (en) | 1987-12-03 | 1991-07-02 | University Of Florida | Dosimetric technique for stereotactic radiosurgery same |
DE58907575D1 (de) | 1988-11-29 | 1994-06-01 | Varian International Ag Zug | Strahlentherapiegerät. |
US4851778A (en) | 1988-12-15 | 1989-07-25 | The Regents Of The University Of California | Enhanced S/N MRI for short TR nutation sequences |
US5117829A (en) | 1989-03-31 | 1992-06-02 | Loma Linda University Medical Center | Patient alignment system and procedure for radiation treatment |
US5006804A (en) | 1989-12-04 | 1991-04-09 | General Electric Company | Method of optimizing shim coil current selection in magnetic resonance magnets |
US5094837A (en) | 1990-01-22 | 1992-03-10 | Wayne State University | Method for use of magnetic resonance imaging to image pancreas using secretin |
ATE179894T1 (de) | 1991-01-19 | 1999-05-15 | Meito Sangyo Kk | Ultrafeine magnetische metalloxideteilchen enthaltende zusammensetzung |
US6405072B1 (en) | 1991-01-28 | 2002-06-11 | Sherwood Services Ag | Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus |
EP0531081A1 (en) | 1991-09-03 | 1993-03-10 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency fields |
US5734384A (en) | 1991-11-29 | 1998-03-31 | Picker International, Inc. | Cross-referenced sectioning and reprojection of diagnostic image volumes |
WO1993018707A1 (en) | 1992-03-18 | 1993-09-30 | Sumitomo Special Metals Company Limited | Magnetic field generator for mri |
US5317616A (en) | 1992-03-19 | 1994-05-31 | Wisconsin Alumni Research Foundation | Method and apparatus for radiation therapy |
US5394452A (en) | 1992-03-19 | 1995-02-28 | Wisconsin Alumni Research Foundation | Verification system for radiation therapy |
US5332908A (en) | 1992-03-31 | 1994-07-26 | Siemens Medical Laboratories, Inc. | Method for dynamic beam profile generation |
US5216255A (en) | 1992-03-31 | 1993-06-01 | Siemens Medical Laboratories | Beam profile generator for photon radiation |
US5382904A (en) | 1992-04-15 | 1995-01-17 | Houston Advanced Research Center | Structured coil electromagnets for magnetic resonance imaging and method for fabricating the same |
DE4217496C2 (de) | 1992-05-27 | 1994-06-16 | Bruker Analytische Messtechnik | Shim-Verfahren |
US5331552A (en) | 1992-07-14 | 1994-07-19 | General Electric Company | Method and apparatus for projecting diagnostic images from non-isotropic volumed diagnostic data |
US5280428A (en) | 1992-07-14 | 1994-01-18 | General Electric Company | Method and apparatus for projecting diagnostic images from volumed diagnostic data accessed in data tubes |
US5295488A (en) | 1992-08-05 | 1994-03-22 | General Electric Company | Method and apparatus for projecting diagnostic images from volumed diagnostic data |
US5760582A (en) | 1992-07-23 | 1998-06-02 | Fonar Corporation | Optimized gradient coils and shim coils for magnetic resonance scanning systems |
JPH0654916A (ja) | 1992-08-06 | 1994-03-01 | Mitsubishi Electric Corp | 呼吸モニタ治療方式 |
US5596619A (en) | 1992-08-21 | 1997-01-21 | Nomos Corporation | Method and apparatus for conformal radiation therapy |
US5391139A (en) | 1992-09-03 | 1995-02-21 | William Beaumont Hospital | Real time radiation treatment planning system |
US5647361A (en) | 1992-09-28 | 1997-07-15 | Fonar Corporation | Magnetic resonance imaging method and apparatus for guiding invasive therapy |
US6005916A (en) | 1992-10-14 | 1999-12-21 | Techniscan, Inc. | Apparatus and method for imaging with wavefields using inverse scattering techniques |
IT1266276B1 (it) | 1993-02-26 | 1996-12-27 | C A T Di Corsini Giuseppe E C | Tavolo porta-paziente per l'effettuazione di esami medici. |
US5361763A (en) | 1993-03-02 | 1994-11-08 | Wisconsin Alumni Research Foundation | Method for segmenting features in an image |
DE69431741T2 (de) | 1993-03-12 | 2003-09-11 | Kabushiki Kaisha Toshiba, Kawasaki | Vorrichtung zur medizinischen Behandlung mit Ultraschall |
US5307812A (en) | 1993-03-26 | 1994-05-03 | General Electric Company | Heat surgery system monitored by real-time magnetic resonance profiling |
DE69426036T2 (de) | 1993-06-09 | 2001-05-17 | Wisconsin Alumni Research Foundation, Madison | System zur Strahlungstherapie |
US5373844A (en) | 1993-06-14 | 1994-12-20 | The Regents Of The University Of California | Inverse treatment planning method and apparatus for stereotactic radiosurgery |
DE4333440C1 (de) | 1993-09-30 | 1995-04-06 | Siemens Ag | Verfahren zur Shimmung eines Magnetfeldes in einem Untersuchungsraum eines Kernspinresonanzgerätes |
US5378989A (en) | 1993-11-02 | 1995-01-03 | General Electric Company | Open gradient coils for magnetic resonance imaging |
US5547454A (en) | 1993-11-02 | 1996-08-20 | Sandia Corporation | Ion-induced nuclear radiotherapy |
US5365927A (en) | 1993-11-02 | 1994-11-22 | General Electric Company | Magnetic resonance imaging system with pointing device |
US5458125A (en) | 1994-01-28 | 1995-10-17 | Board Of Directors Of The Leland Standford Jr. University | Treatment planning method and apparatus for radiosurgery and radiation therapy |
US5538494A (en) | 1994-03-17 | 1996-07-23 | Hitachi, Ltd. | Radioactive beam irradiation method and apparatus taking movement of the irradiation area into consideration |
US5537452A (en) | 1994-05-10 | 1996-07-16 | Shepherd; Joseph S. | Radiation therapy and radiation surgery treatment system and methods of use of same |
US5602982A (en) | 1994-09-23 | 1997-02-11 | Kelly Properties, Inc. | Universal automated training and testing software system |
US5443068A (en) | 1994-09-26 | 1995-08-22 | General Electric Company | Mechanical positioner for magnetic resonance guided ultrasound therapy |
US5513238A (en) | 1994-10-11 | 1996-04-30 | Radionics, Inc. | Automatic planning for radiation dosimetry |
DE4437443C2 (de) | 1994-10-19 | 1996-09-12 | Siemens Ag | Verfahren zum Betrieb eines Kernspintomographiegerätes mit dynamisch lokalisierter Shimmung des Grundmagnetfeldes |
US5511549A (en) | 1995-02-13 | 1996-04-30 | Loma Linda Medical Center | Normalizing and calibrating therapeutic radiation delivery systems |
US5555283A (en) | 1995-06-07 | 1996-09-10 | Board Of Regents Of The University Of Texas System | Computer-controlled miniature multileaf collimator |
US5585724A (en) | 1995-06-12 | 1996-12-17 | Picker International, Inc. | Magnetic resonance gradient coils with interstitial gap |
US6351659B1 (en) | 1995-09-28 | 2002-02-26 | Brainlab Med. Computersysteme Gmbh | Neuro-navigation system |
GB9520564D0 (en) | 1995-10-07 | 1995-12-13 | Philips Electronics Nv | Apparatus for treating a patient |
JPH09154961A (ja) | 1995-12-07 | 1997-06-17 | Toshiba Medical Eng Co Ltd | 放射線治療計画法 |
US6260005B1 (en) | 1996-03-05 | 2001-07-10 | The Regents Of The University Of California | Falcon: automated optimization method for arbitrary assessment criteria |
US5602892A (en) | 1996-03-21 | 1997-02-11 | Llacer; Jorge | Method for optimization of radiation therapy planning |
US5675305A (en) | 1996-07-17 | 1997-10-07 | Picker International, Inc. | Multiple driven C magnet |
US5851182A (en) | 1996-09-11 | 1998-12-22 | Sahadevan; Velayudhan | Megavoltage radiation therapy machine combined to diagnostic imaging devices for cost efficient conventional and 3D conformal radiation therapy with on-line Isodose port and diagnostic radiology |
SE9603535D0 (sv) | 1996-09-27 | 1996-09-27 | Siemens Elema Ab | Undersökningsbord |
EP0952875B1 (en) | 1996-10-24 | 2007-03-21 | Nomos Corporation | Planning method and apparatus for radiation dosimetry |
US5757881A (en) | 1997-01-06 | 1998-05-26 | Siemens Business Communication Systems, Inc. | Redundant field-defining arrays for a radiation system |
JP4040742B2 (ja) | 1997-03-28 | 2008-01-30 | 株式会社東芝 | Mri装置 |
DE19715202B4 (de) | 1997-04-11 | 2006-02-02 | Brainlab Ag | Referenzierungsvorrichtung mit einem Mundstück |
SE512603C2 (sv) | 1997-06-19 | 2000-04-10 | Elekta Ab | Metod och anordning för automatiserad dosplanering |
US6157278A (en) | 1997-07-23 | 2000-12-05 | Odin Technologies Ltd. | Hybrid magnetic apparatus for use in medical applications |
BE1012534A3 (fr) | 1997-08-04 | 2000-12-05 | Sumitomo Heavy Industries | Systeme de lit pour therapie par irradiation. |
JP3519248B2 (ja) | 1997-08-08 | 2004-04-12 | 住友重機械工業株式会社 | 放射線治療用回転照射室 |
JP3203211B2 (ja) | 1997-08-11 | 2001-08-27 | 住友重機械工業株式会社 | 水ファントム型線量分布測定装置及び放射線治療装置 |
US6052430A (en) | 1997-09-25 | 2000-04-18 | Siemens Medical Systems, Inc. | Dynamic sub-space intensity modulation |
US6526123B2 (en) | 1997-09-29 | 2003-02-25 | Moshe Ein-Gal | Multiple layer multileaf collimator |
US6129670A (en) | 1997-11-24 | 2000-10-10 | Burdette Medical Systems | Real time brachytherapy spatial registration and visualization system |
US6198957B1 (en) | 1997-12-19 | 2001-03-06 | Varian, Inc. | Radiotherapy machine including magnetic resonance imaging system |
US5952830A (en) | 1997-12-22 | 1999-09-14 | Picker International, Inc. | Octapole magnetic resonance gradient coil system with elongate azimuthal gap |
US6240162B1 (en) | 1998-01-15 | 2001-05-29 | Siemens Medical Systems, Inc. | Precision dosimetry in an intensity modulated radiation treatment system |
US6083167A (en) | 1998-02-10 | 2000-07-04 | Emory University | Systems and methods for providing radiation therapy and catheter guides |
US6327490B1 (en) | 1998-02-27 | 2001-12-04 | Varian Medical Systems, Inc. | Brachytherapy system for prostate cancer treatment with computer implemented systems and processes to facilitate pre-implantation planning and post-implantation evaluations with storage of multiple plan variations for a single patient |
US6487435B2 (en) | 1998-04-10 | 2002-11-26 | Wisconsin Alumni Research Foundation | Magnetic resonance angiography using undersampled 3D projection imaging |
US6125335A (en) | 1998-04-10 | 2000-09-26 | Sun Nuclear Corporation | Wide field calibration of a multi-sensor array |
US6381486B1 (en) | 1999-01-08 | 2002-04-30 | Wisconsin Alumni Research Foundation | Magnetic resonance angiography with vessel segmentation |
US6175761B1 (en) | 1998-04-21 | 2001-01-16 | Bechtel Bwxt Idaho, Llc | Methods and computer executable instructions for rapidly calculating simulated particle transport through geometrically modeled treatment volumes having uniform volume elements for use in radiotherapy |
US6393096B1 (en) | 1998-05-27 | 2002-05-21 | Nomos Corporation | Planning method and apparatus for radiation dosimetry |
US7096055B1 (en) | 1998-06-24 | 2006-08-22 | Achim Schweikard | Method to control delivery of radiation therapy |
DE19829224B4 (de) | 1998-06-30 | 2005-12-15 | Brainlab Ag | Verfahren zur Lokalisation von Behandlungszielen im Bereich weicher Körperteile |
US6311389B1 (en) | 1998-07-01 | 2001-11-06 | Kabushiki Kaisha Toshiba | Gradient magnetic coil apparatus and method of manufacturing the same |
WO2000007668A1 (en) | 1998-08-06 | 2000-02-17 | Wisconsin Alumni Research Foundation | Method for preparing a radiation therapy plan |
EP1525902B1 (en) | 1998-08-06 | 2015-04-22 | Wisconsin Alumni Research Foundation | Delivery modification system for radiation therapy |
US6600810B1 (en) | 1998-08-10 | 2003-07-29 | Siemens Medical Solutions Usa, Inc. | Multiple layer multileaf collimator design to improve resolution and reduce leakage |
US6112112A (en) | 1998-09-18 | 2000-08-29 | Arch Development Corporation | Method and system for the assessment of tumor extent in magnetic resonance images |
DE19848765C2 (de) | 1998-10-22 | 2000-12-21 | Brainlab Med Computersyst Gmbh | Positionsverifizierung in Kamerabildern |
US6621889B1 (en) | 1998-10-23 | 2003-09-16 | Varian Medical Systems, Inc. | Method and system for predictive physiological gating of radiation therapy |
US6980679B2 (en) | 1998-10-23 | 2005-12-27 | Varian Medical System Technologies, Inc. | Method and system for monitoring breathing activity of a subject |
US6937696B1 (en) | 1998-10-23 | 2005-08-30 | Varian Medical Systems Technologies, Inc. | Method and system for predictive physiological gating |
US6241671B1 (en) | 1998-11-03 | 2001-06-05 | Stereotaxis, Inc. | Open field system for magnetic surgery |
US6591127B1 (en) | 1999-03-15 | 2003-07-08 | General Electric Company | Integrated multi-modality imaging system and method |
US6501981B1 (en) | 1999-03-16 | 2002-12-31 | Accuray, Inc. | Apparatus and method for compensating for respiratory and patient motions during treatment |
US6144875A (en) | 1999-03-16 | 2000-11-07 | Accuray Incorporated | Apparatus and method for compensating for respiratory and patient motion during treatment |
US6778850B1 (en) | 1999-03-16 | 2004-08-17 | Accuray, Inc. | Frameless radiosurgery treatment system and method |
CA2368764C (en) | 1999-04-02 | 2004-08-24 | Wisconsin Alumni Research Foundation | Megavoltage computed tomography during radiotherapy |
DE19917867B4 (de) | 1999-04-20 | 2005-04-21 | Brainlab Ag | Verfahren und Vorrichtung zur Bildunterstützung bei der Behandlung von Behandlungszielen mit Integration von Röntgenerfassung und Navigationssystem |
US6459769B1 (en) | 1999-05-03 | 2002-10-01 | Sherwood Services Ag | Movable miniature multi-leaf collimator |
US6512813B1 (en) | 1999-05-03 | 2003-01-28 | Franz Krispel | Rotating stereotactic treatment system |
JP3530072B2 (ja) | 1999-05-13 | 2004-05-24 | 三菱電機株式会社 | 放射線治療用の放射線照射装置の制御装置 |
US6278891B1 (en) | 1999-08-25 | 2001-08-21 | Echo Medical Systems, Llc | Nuclear magnetic resonance method and apparatus for bone analysis and imaging |
DE19944516B4 (de) | 1999-09-16 | 2006-08-17 | Brainlab Ag | Dreidimensionale Formerfassung mit Kamerabildern |
DE19953177A1 (de) | 1999-11-04 | 2001-06-21 | Brainlab Ag | Exakte Patientenpositionierung durch Vergleich von rekonstruierten und Linac-Röntgenbildern |
US6546073B1 (en) | 1999-11-05 | 2003-04-08 | Georgia Tech Research Corporation | Systems and methods for global optimization of treatment planning for external beam radiation therapy |
US7046762B2 (en) | 1999-11-05 | 2006-05-16 | Georgia Tech Research Corporation | Systems and methods for global optimization of treatment planning for external beam radiation therapy |
US6542767B1 (en) | 1999-11-09 | 2003-04-01 | Biotex, Inc. | Method and system for controlling heat delivery to a target |
US6349129B1 (en) | 1999-12-08 | 2002-02-19 | Siemens Medical Solutions Usa, Inc. | System and method for defining radiation treatment intensity maps |
US6314159B1 (en) | 1999-12-08 | 2001-11-06 | Siemens Medical Systems, Inc. | System and method for optimizing radiation treatment with an intensity modulating multi-leaf collimator |
DE19959720B4 (de) | 1999-12-10 | 2005-02-24 | Siemens Ag | Verfahren zum Betrieb eines Magnetresonanztomographiegeräts |
DE19964016B4 (de) | 1999-12-30 | 2005-06-23 | Brainlab Ag | Verfahren und Vorrichtung zur Positionierung eines Körpers mit einem Lagesensor zur Bestrahlung |
DE10000937B4 (de) | 2000-01-12 | 2006-02-23 | Brainlab Ag | Intraoperative Navigationsaktualisierung |
CA2396928A1 (en) | 2000-01-14 | 2001-07-19 | Nabil Adnani | Linac neutron therapy and imaging |
US6954068B1 (en) | 2000-01-21 | 2005-10-11 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging apparatus |
US6567685B2 (en) | 2000-01-21 | 2003-05-20 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging apparatus |
US6556012B2 (en) | 2000-01-21 | 2003-04-29 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging apparatus |
US6725078B2 (en) | 2000-01-31 | 2004-04-20 | St. Louis University | System combining proton beam irradiation and magnetic resonance imaging |
DE10006317C1 (de) | 2000-02-12 | 2001-08-16 | Bruker Ag Faellanden | Gekühlter NMR-Probenkopf mit thermischer Isolation der Meßprobe |
AU2001247704A1 (en) | 2000-03-21 | 2001-10-15 | Bechtel Bwxt Idaho, Llc | Methods and computer readable medium for improved radiotherapy dosimetry planning |
GB0007018D0 (en) | 2000-03-22 | 2000-05-10 | Akguen Ali | Magnetic resonance imaging apparatus and method |
DE50000335D1 (de) | 2000-04-05 | 2002-09-05 | Brainlab Ag | Referenzierung eines Patienten in einem medizinischen Navigationssystem mittels aufgestrahlter Lichtpunkte |
US6373250B1 (en) | 2000-05-19 | 2002-04-16 | Ramot University Authority For Applied Research And Industrial Development Ltd. | Method of magnetic resonance imaging |
US6636645B1 (en) | 2000-06-29 | 2003-10-21 | Eastman Kodak Company | Image processing method for reducing noise and blocking artifact in a digital image |
DE10033063A1 (de) | 2000-07-07 | 2002-01-24 | Brainlab Ag | Verfahren zur atmungskompensierten Strahlenbehandlung |
US6594516B1 (en) | 2000-07-18 | 2003-07-15 | Koninklijke Philips Electronics, N.V. | External patient contouring |
US6466813B1 (en) | 2000-07-22 | 2002-10-15 | Koninklijke Philips Electronics N.V. | Method and apparatus for MR-based volumetric frameless 3-D interactive localization, virtual simulation, and dosimetric radiation therapy planning |
US6757355B1 (en) | 2000-08-17 | 2004-06-29 | Siemens Medical Solutions Usa, Inc. | High definition radiation treatment with an intensity modulating multi-leaf collimator |
US8565860B2 (en) | 2000-08-21 | 2013-10-22 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system |
US20030011451A1 (en) | 2000-08-22 | 2003-01-16 | Ehud Katznelson | Permanent magnet assemblies for use in medical applications |
US6330300B1 (en) | 2000-08-23 | 2001-12-11 | Siemens Medical Solutions Usa, Inc. | High definition intensity modulating radiation therapy system and method |
DE50000345D1 (de) | 2000-09-01 | 2002-09-05 | Brainlab Ag | Stufenfreie Darstellung von zwei- oder dreidimensionalen Datensätzen durch krümmungsminimierende Verschiebung von Pixelwerten |
US6885886B2 (en) | 2000-09-11 | 2005-04-26 | Brainlab Ag | Method and system for visualizing a body volume and computer program product |
US6504899B2 (en) | 2000-09-25 | 2003-01-07 | The Board Of Trustees Of The Leland Stanford Junior University | Method for selecting beam orientations in intensity modulated radiation therapy |
US6719683B2 (en) | 2000-09-30 | 2004-04-13 | Brainlab Ag | Radiotherapy treatment planning with multiple inverse planning results |
DE10051370A1 (de) | 2000-10-17 | 2002-05-02 | Brainlab Ag | Verfahren und Vorrichtung zur exakten Patientenpositionierung in der Strahlentherapie und Radiochirurgie |
BR0115093A (pt) | 2000-11-03 | 2004-06-15 | Elliot Lach | Sistema para tratar uma condição de um paciente e método de usar um sistema de tratamento de uma condição |
US6411675B1 (en) | 2000-11-13 | 2002-06-25 | Jorge Llacer | Stochastic method for optimization of radiation therapy planning |
US6570475B1 (en) | 2000-11-20 | 2003-05-27 | Intermagnetics General Corp. | Split type magnetic resonance imaging magnet |
DE50001418D1 (de) | 2000-11-22 | 2003-04-10 | Brainlab Ag | Verfahren zur Bestimmung der Lungenfüllung |
US6414487B1 (en) | 2000-11-22 | 2002-07-02 | Philips Medical Systems (Cleveland), Inc. | Time and memory optimized method of acquiring and reconstructing multi-shot 3D MRI data |
ATE243005T1 (de) | 2000-11-24 | 2003-07-15 | Brainlab Ag | Vorrichtung und verfahren zur navigation |
US20030028090A1 (en) | 2000-12-20 | 2003-02-06 | Image-Guided Neurologics, Inc. | Method for dynamic characterization of density fields in a compound structure |
US7308298B2 (en) | 2000-12-22 | 2007-12-11 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging using MT pulse of which duration is shorter |
JP2002186676A (ja) | 2000-12-22 | 2002-07-02 | Hitachi Medical Corp | 絞り装置および該絞り装置を用いた放射線治療装置 |
US6564084B2 (en) | 2001-03-02 | 2003-05-13 | Draeger Medical, Inc. | Magnetic field shielding and detecting device and method thereof |
EP1238684B1 (de) | 2001-03-05 | 2004-03-17 | BrainLAB AG | Verfahren zur Erstellung bzw. Aktualisierung eines Bestrahlungsplans |
ATE261745T1 (de) | 2001-03-05 | 2004-04-15 | Brainlab Ag | Verfahren zur erstellung bzw. aktualisierung eines bestrahlungsplans |
US6661870B2 (en) | 2001-03-09 | 2003-12-09 | Tomotherapy Incorporated | Fluence adjustment for improving delivery to voxels without reoptimization |
US7046831B2 (en) | 2001-03-09 | 2006-05-16 | Tomotherapy Incorporated | System and method for fusion-aligned reprojection of incomplete data |
US7054413B2 (en) | 2001-03-15 | 2006-05-30 | Siemens Medical Solutions Usa, Inc. | Rotatable multi-element beam shaping device |
US6708054B2 (en) | 2001-04-12 | 2004-03-16 | Koninklijke Philips Electronics, N.V. | MR-based real-time radiation therapy oncology simulator |
DE50100132D1 (de) | 2001-05-22 | 2003-04-30 | Brainlab Ag | Röntgenbildregistrierungseinrichtung mit einem medizinischen Navigationssystem |
US20020193685A1 (en) | 2001-06-08 | 2002-12-19 | Calypso Medical, Inc. | Guided Radiation Therapy System |
US20030068097A1 (en) | 2001-06-15 | 2003-04-10 | Massachusetts Institute Of Technology | Adaptive mean estimation and normalization of data |
US20030083901A1 (en) | 2001-06-22 | 2003-05-01 | Bosch Juan P. | Process for providing dialysis and other treatments |
JP2003024296A (ja) | 2001-07-04 | 2003-01-28 | Ge Medical Systems Global Technology Co Llc | 静磁界調整方法およびmri装置 |
GB2382512A (en) | 2001-07-20 | 2003-05-28 | Elekta Oncology Syst Ltd | MRI in guided radiotherapy and position verification |
US6690166B2 (en) | 2001-09-26 | 2004-02-10 | Southwest Research Institute | Nuclear magnetic resonance technology for non-invasive characterization of bone porosity and pore size distributions |
US6626264B1 (en) | 2001-10-30 | 2003-09-30 | Igt | Radio frequency shielded and acoustically insulated enclosure |
US6810108B2 (en) | 2001-11-02 | 2004-10-26 | Siemens Medical Solutions Usa, Inc. | System and method for positioning an electronic portal imaging device |
CN1612713A (zh) | 2001-11-05 | 2005-05-04 | 计算机化医学体系股份有限公司 | 用于外部波束放射治疗的记录,引导和目标命中的装置和方法 |
US6664879B2 (en) | 2001-12-04 | 2003-12-16 | Nmr Holdings No. 2 Pty Limited | Asymmetric tesseral shim coils for magnetic resonance |
US7092573B2 (en) | 2001-12-10 | 2006-08-15 | Eastman Kodak Company | Method and system for selectively applying enhancement to an image |
ATE261273T1 (de) | 2001-12-18 | 2004-03-15 | Brainlab Ag | Projektion von patientenbilddaten aus durchleuchtungs- bzw. schichtbilderfassungsverfahren auf videobilder |
US7221733B1 (en) | 2002-01-02 | 2007-05-22 | Varian Medical Systems Technologies, Inc. | Method and apparatus for irradiating a target |
US6657391B2 (en) | 2002-02-07 | 2003-12-02 | Siemens Medical Solutions Usa, Inc. | Apparatus and method for establishing a Q-factor of a cavity for an accelerator |
CA2478296A1 (en) | 2002-03-06 | 2003-09-18 | Tomotherapy Incorporated | Method for modification of radiotherapy treatment delivery |
DE10211244A1 (de) | 2002-03-13 | 2003-10-23 | Lactec Ges Fuer Moderne Lackte | Lackieranlage zum Aufbringen von flüssigem Beschichtungsmaterial |
US20030181804A1 (en) | 2002-03-20 | 2003-09-25 | Koninklijke Philips Electronics N.V. | Distributed diagnostic imaging systems |
US6630829B1 (en) | 2002-04-22 | 2003-10-07 | Ge Medical Systems Global Technology Co., Llc | Gradient coil set capable of producing a variable field of view |
JP3920140B2 (ja) | 2002-05-13 | 2007-05-30 | 株式会社東芝 | Mri装置及びフロー定量化装置 |
FR2839894A1 (fr) | 2002-05-21 | 2003-11-28 | Chabunda Christophe Mwanza | Procedes, appareils de cyclotherapie image-guidee et mode d'obtention d'images scanographiques diagnostiques instantanees pour la planification et la dosimetrie en ligne |
US6735277B2 (en) | 2002-05-23 | 2004-05-11 | Koninklijke Philips Electronics N.V. | Inverse planning for intensity-modulated radiotherapy |
US6728336B2 (en) | 2002-07-12 | 2004-04-27 | General Hospital Corporation | Arrangements and methods for treating a subject |
US7162005B2 (en) | 2002-07-19 | 2007-01-09 | Varian Medical Systems Technologies, Inc. | Radiation sources and compact radiation scanning systems |
GB2393373A (en) | 2002-09-13 | 2004-03-24 | Elekta Ab | MRI in guided radiotherapy and position verification |
US6853704B2 (en) | 2002-09-23 | 2005-02-08 | Siemens Medical Solutions Usa, Inc. | System providing multiple focused radiation beams |
US7227925B1 (en) | 2002-10-02 | 2007-06-05 | Varian Medical Systems Technologies, Inc. | Gantry mounted stereoscopic imaging system |
US7289599B2 (en) | 2002-10-04 | 2007-10-30 | Varian Medical Systems Technologies, Inc. | Radiation process and apparatus |
US7657304B2 (en) | 2002-10-05 | 2010-02-02 | Varian Medical Systems, Inc. | Imaging device for radiation treatment applications |
EP1551510A1 (en) | 2002-10-07 | 2005-07-13 | Nomos Corporation | Method and apparatus for target position verification |
AU2003277432A1 (en) | 2002-10-16 | 2004-05-04 | Varian Medical Systems Technologies, Inc. | Method and apparatus for excess signal correction in an imager |
US7260426B2 (en) | 2002-11-12 | 2007-08-21 | Accuray Incorporated | Method and apparatus for tracking an internal target region without an implanted fiducial |
CN1714300A (zh) | 2002-11-20 | 2005-12-28 | 皇家飞利浦电子股份有限公司 | 用于磁共振成像的自屏蔽梯度场线圈 |
US20040106869A1 (en) | 2002-11-29 | 2004-06-03 | Ron-Tech Medical Ltd. | Ultrasound tracking device, system and method for intrabody guiding procedures |
US7317782B2 (en) | 2003-01-31 | 2008-01-08 | Varian Medical Systems Technologies, Inc. | Radiation scanning of cargo conveyances at seaports and the like |
US20050143965A1 (en) | 2003-03-14 | 2005-06-30 | Failla Gregory A. | Deterministic computation of radiation doses delivered to tissues and organs of a living organism |
US20040254448A1 (en) | 2003-03-24 | 2004-12-16 | Amies Christopher Jude | Active therapy redefinition |
GB2401946B (en) | 2003-03-25 | 2006-10-04 | Siemens Ag | Generator for time-variable magnetic fields of a magnetic resonance instrument and magnetic resonance instrument with the generator |
US7570987B2 (en) | 2003-04-04 | 2009-08-04 | Brainlab Ag | Perspective registration and visualization of internal areas of the body |
US20110142887A1 (en) | 2009-12-15 | 2011-06-16 | Immunovative Therapies Ltd. | Methods and compositions for liquidation of tumors |
US6788060B1 (en) | 2003-05-28 | 2004-09-07 | Ge Medical Systems Global Technology Co., Inc. | Imaging system with homogeneous magnetic field |
US7542622B1 (en) | 2003-06-02 | 2009-06-02 | The Trustees Of Columbia University In The City Of New York | Spatio-temporal treatment of noisy images using brushlets |
US7171257B2 (en) | 2003-06-11 | 2007-01-30 | Accuray Incorporated | Apparatus and method for radiosurgery |
US7778691B2 (en) | 2003-06-13 | 2010-08-17 | Wisconsin Alumni Research Foundation | Apparatus and method using synchronized breathing to treat tissue subject to respiratory motion |
US7412029B2 (en) | 2003-06-25 | 2008-08-12 | Varian Medical Systems Technologies, Inc. | Treatment planning, simulation, and verification system |
GB2403884B (en) | 2003-07-08 | 2006-03-01 | Elekta Ab | Multi-leaf collimator |
US7266175B1 (en) | 2003-07-11 | 2007-09-04 | Nomos Corporation | Planning method for radiation therapy |
US7901357B2 (en) | 2003-07-21 | 2011-03-08 | The John Hopkins University | Robotic 5-dimensional ultrasound |
US7463823B2 (en) | 2003-07-24 | 2008-12-09 | Brainlab Ag | Stereoscopic visualization device for patient image data and video images |
US7015692B2 (en) | 2003-08-07 | 2006-03-21 | Ge Electric Company | Apparatus for active cooling of an MRI patient bore in cylindrical MRI systems |
US7187792B2 (en) | 2003-08-29 | 2007-03-06 | Accuray, Inc. | Apparatus and method for determining measure of similarity between images |
US20050053267A1 (en) | 2003-09-05 | 2005-03-10 | Varian Medical Systems Technologies, Inc. | Systems and methods for tracking moving targets and monitoring object positions |
US8571639B2 (en) | 2003-09-05 | 2013-10-29 | Varian Medical Systems, Inc. | Systems and methods for gating medical procedures |
US6999555B2 (en) | 2003-09-15 | 2006-02-14 | Varian Medical Systems Imaging Laboratory Gmbh | Systems and methods for processing data |
US7315636B2 (en) | 2003-09-18 | 2008-01-01 | Accuray, Inc. | Generation of reconstructed images |
US7343192B2 (en) | 2003-09-23 | 2008-03-11 | Echo Medical Systems, Llc | Magnetic resonance imaging method and apparatus for body composition analysis |
EP1673146B1 (en) | 2003-09-30 | 2012-11-14 | Koninklijke Philips Electronics N.V. | Target tracking apparatus for radiation treatment planning and delivery |
US7053617B2 (en) | 2003-10-01 | 2006-05-30 | General Electric Co. | Integrated electronic RF shielding apparatus for an MRI magnet |
US6906606B2 (en) | 2003-10-10 | 2005-06-14 | General Electric Company | Magnetic materials, passive shims and magnetic resonance imaging systems |
US7002408B2 (en) | 2003-10-15 | 2006-02-21 | Varian Medical Systems Technologies, Inc. | Data signal amplifier and processor with multiple signal gains for increased dynamic signal range |
US7589326B2 (en) | 2003-10-15 | 2009-09-15 | Varian Medical Systems Technologies, Inc. | Systems and methods for image acquisition |
US7154991B2 (en) | 2003-10-17 | 2006-12-26 | Accuray, Inc. | Patient positioning assembly for therapeutic radiation system |
WO2005041835A2 (en) | 2003-10-29 | 2005-05-12 | Tomotherapy Incorporated | System and method for calibrating and positioning a radiation therapy treatment table |
WO2005047919A1 (en) | 2003-11-12 | 2005-05-26 | Invivo Corporation | Method for generating fast magnetic resonance images |
WO2005058385A2 (en) | 2003-12-12 | 2005-06-30 | Philometron, Inc. | Multiple section parenteral drug delivery apparatus |
GB2409521B (en) | 2003-12-22 | 2007-04-18 | Ge Med Sys Global Tech Co Llc | Gradient coil apparatus and method of assembly thereof |
US20050207531A1 (en) | 2004-01-20 | 2005-09-22 | University Of Florida Research Foundation, Inc. | Radiation therapy system using interior-point methods and convex models for intensity modulated fluence map optimization |
US7230429B1 (en) | 2004-01-23 | 2007-06-12 | Invivo Corporation | Method for applying an in-painting technique to correct images in parallel imaging |
EP1563799B2 (de) | 2004-02-11 | 2012-11-28 | BrainLAB AG | Verstellbare Markeranordnung |
US7853308B2 (en) | 2004-02-17 | 2010-12-14 | Siemens Medical Solutions Usa, Inc. | System and method for patient positioning for radiotherapy in the presence of respiratory motion |
EP1725166B1 (en) | 2004-02-20 | 2011-03-30 | University of Florida Research Foundation, Inc. | System for delivering conformal radiation therapy while simultaneously imaging soft tissue |
CN101833116B (zh) | 2004-03-01 | 2012-07-04 | 瓦润医药系统公司 | 通过中子和缓发中子识别特定核材料的存在 |
US7477776B2 (en) | 2004-03-01 | 2009-01-13 | Brainlab Ag | Method and apparatus for determining a plane of symmetry of a three-dimensional object |
CN1669599A (zh) | 2004-03-16 | 2005-09-21 | 上海英迈吉东影图像设备有限公司 | 三维适形放射治疗剂量计划方法 |
JP4392280B2 (ja) | 2004-03-26 | 2009-12-24 | 株式会社日立製作所 | 放射性同位元素製造装置および放射性薬剤製造装置 |
US7046765B2 (en) | 2004-03-31 | 2006-05-16 | Accuray, Inc. | Radiosurgery x-ray system with collision avoidance subsystem |
US7166852B2 (en) | 2004-04-06 | 2007-01-23 | Accuray, Inc. | Treatment target positioning system |
WO2005096788A2 (en) | 2004-04-08 | 2005-10-20 | University Of Florida Research Foundation, Inc. | Field splitting for intensity modulated fields of large size |
ITSV20040016A1 (it) | 2004-04-13 | 2004-07-13 | Esaote Spa | Macchina per risonanza magnetico nucleare |
US20050236588A1 (en) | 2004-04-21 | 2005-10-27 | Moshe Ein-Gal | Radiation shield capsule |
WO2005115544A1 (en) | 2004-05-24 | 2005-12-08 | University Of Virginia Patent Foundation | System and method for temporally precise intensity modulated radiation therapy (imrt) |
US7130372B2 (en) | 2004-06-08 | 2006-10-31 | Siemens Medical Solutions Usa, Inc. | Linear accelerator with X-ray imaging elements mounted on curved support |
US20060017411A1 (en) | 2004-06-17 | 2006-01-26 | Accsys Technology, Inc. | Mobile/transportable PET radioisotope system with omnidirectional self-shielding |
US7522779B2 (en) | 2004-06-30 | 2009-04-21 | Accuray, Inc. | Image enhancement method and system for fiducial-less tracking of treatment targets |
US7426318B2 (en) | 2004-06-30 | 2008-09-16 | Accuray, Inc. | Motion field generation for non-rigid image registration |
US7327865B2 (en) | 2004-06-30 | 2008-02-05 | Accuray, Inc. | Fiducial-less tracking with non-rigid image registration |
US7366278B2 (en) | 2004-06-30 | 2008-04-29 | Accuray, Inc. | DRR generation using a non-linear attenuation model |
US7231076B2 (en) | 2004-06-30 | 2007-06-12 | Accuray, Inc. | ROI selection in image registration |
DE502004004956D1 (de) | 2004-08-06 | 2007-10-25 | Brainlab Ag | Volumetrische Bildgebung an einem Strahlentherapiegerät |
US7634122B2 (en) | 2004-08-25 | 2009-12-15 | Brainlab Ag | Registering intraoperative scans |
US20060058636A1 (en) | 2004-09-13 | 2006-03-16 | Wemple Charles A | Method for tracking the movement of a particle through a geometric model for use in radiotherapy |
US7012385B1 (en) | 2004-09-24 | 2006-03-14 | Viara Research, Llc | Multi-channel induction accelerator with external channels |
US7302038B2 (en) | 2004-09-24 | 2007-11-27 | Wisconsin Alumni Research Foundation | Correction of patient rotation errors in radiotherapy using couch translation |
US8989349B2 (en) | 2004-09-30 | 2015-03-24 | Accuray, Inc. | Dynamic tracking of moving targets |
US7298819B2 (en) | 2004-09-30 | 2007-11-20 | Accuray Incorporated | Flexible treatment planning |
US7415095B2 (en) | 2004-10-01 | 2008-08-19 | Siemens Aktiengesellschaft | System and method utilizing adaptive radiation therapy framework |
US7471813B2 (en) | 2004-10-01 | 2008-12-30 | Varian Medical Systems International Ag | Systems and methods for correction of scatter in images |
US7505037B2 (en) | 2004-10-02 | 2009-03-17 | Accuray, Inc. | Direct volume rendering of 4D deformable volume images |
EP1645241B1 (de) | 2004-10-05 | 2011-12-28 | BrainLAB AG | Positionsmarkersystem mit Punktlichtquellen |
WO2006047580A2 (en) | 2004-10-26 | 2006-05-04 | Univ California | System and method for providing a rotating magnetic field |
US8014625B2 (en) | 2004-11-10 | 2011-09-06 | Agfa Healthcare | Method of performing measurements on digital images |
US20080108894A1 (en) | 2004-11-15 | 2008-05-08 | Elgavish Gabriel A | Methods and Systems of Analyzing Clinical Parameters and Methods of Producing Visual Images |
JP3983759B2 (ja) | 2004-11-26 | 2007-09-26 | 株式会社日立メディコ | 核磁気共鳴撮像装置 |
DE102004061509B4 (de) | 2004-12-21 | 2007-02-08 | Siemens Ag | Verfahren und Gerät zur beschleunigten Spiral-kodierten Bildgebung in der Magnetresonanztomographie |
US20060170679A1 (en) | 2005-02-01 | 2006-08-03 | Hongwu Wang | Representing a volume of interest as boolean combinations of multiple simple contour sets |
US7957507B2 (en) | 2005-02-28 | 2011-06-07 | Cadman Patrick F | Method and apparatus for modulating a radiation beam |
GB2424281A (en) | 2005-03-17 | 2006-09-20 | Elekta Ab | Radiotherapeutic Apparatus with MRI |
JP2008532681A (ja) | 2005-03-17 | 2008-08-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 磁気共鳴用の最小エネルギーのシムコイル |
US8295577B2 (en) | 2005-03-31 | 2012-10-23 | Michael Zarkh | Method and apparatus for guiding a device in a totally occluded or partly occluded tubular organ |
US9498167B2 (en) | 2005-04-29 | 2016-11-22 | Varian Medical Systems, Inc. | System and methods for treating patients using radiation |
US7379531B2 (en) | 2005-06-13 | 2008-05-27 | Siemens Medical Solutions Health Services Corporation | Beam therapy treatment user interface monitoring and recording system |
US20070016014A1 (en) | 2005-06-15 | 2007-01-18 | Kenji Hara | Radio therapy apparatus and operating method of the same |
US7349522B2 (en) | 2005-06-22 | 2008-03-25 | Board Of Trustees Of The University Of Arkansas | Dynamic radiation therapy simulation system |
WO2007007276A2 (en) | 2005-07-14 | 2007-01-18 | Koninklijke Philips Electronics | Method of accounting for tumor motion in radiotherapy treatment |
WO2007014105A2 (en) | 2005-07-22 | 2007-02-01 | Tomotherapy Incorporated | Method and system for adapting a radiation therapy treatment plan based on a biological model |
CN101268474A (zh) | 2005-07-22 | 2008-09-17 | 断层放疗公司 | 用于估算实施剂量的方法和系统 |
EP1909904B1 (en) * | 2005-07-25 | 2013-09-04 | Karl Otto | Methods and apparatus for the planning of radiation treatments |
US8406851B2 (en) | 2005-08-11 | 2013-03-26 | Accuray Inc. | Patient tracking using a virtual image |
US20070083114A1 (en) | 2005-08-26 | 2007-04-12 | The University Of Connecticut | Systems and methods for image resolution enhancement |
JP4386288B2 (ja) | 2005-08-31 | 2009-12-16 | 株式会社日立製作所 | 放射線治療装置の位置決めシステム及び位置決め方法 |
DE602005021356D1 (de) | 2005-09-03 | 2010-07-01 | Bruker Biospin Ag | Matrix-Shimsystem mit Gruppen von Spulen |
US7266176B2 (en) | 2005-09-28 | 2007-09-04 | Accuray Incorporated | Workspace optimization for radiation treatment delivery system |
US7295649B2 (en) | 2005-10-13 | 2007-11-13 | Varian Medical Systems Technologies, Inc. | Radiation therapy system and method of using the same |
CA2626536C (en) | 2005-10-17 | 2016-04-26 | Alberta Cancer Board | Real-time dose reconstruction using dynamic simulation and image guided adaptive radiotherapy |
EP1948309B1 (en) | 2005-10-17 | 2011-12-28 | Alberta Health Services | Integrated external beam radiotherapy and mri system |
US7977942B2 (en) | 2005-11-16 | 2011-07-12 | Board Of Regents, The University Of Texas System | Apparatus and method for tracking movement of a target |
US7728311B2 (en) | 2005-11-18 | 2010-06-01 | Still River Systems Incorporated | Charged particle radiation therapy |
US8041103B2 (en) | 2005-11-18 | 2011-10-18 | Kla-Tencor Technologies Corp. | Methods and systems for determining a position of inspection data in design data space |
EP1818078A1 (en) * | 2006-02-09 | 2007-08-15 | DKFZ Deutsches Krebsforschungszentrum | Inverse treatment planning method |
WO2007106558A2 (en) | 2006-03-14 | 2007-09-20 | The Johns Hopkins University | Apparatus for insertion of a medical device within a body during a medical imaging process and devices and methods related thereto |
WO2007126782A2 (en) * | 2006-03-28 | 2007-11-08 | Hampton University | Hadron treatment planning with adequate biological weighting |
US7907772B2 (en) | 2006-03-30 | 2011-03-15 | Accuray Incorporated | Delineation on three-dimensional medical image |
US7902530B1 (en) | 2006-04-06 | 2011-03-08 | Velayudhan Sahadevan | Multiple medical accelerators and a kV-CT incorporated radiation therapy device and semi-automated custom reshapeable blocks for all field synchronous image guided 3-D-conformal-intensity modulated radiation therapy |
US7605589B2 (en) | 2006-04-10 | 2009-10-20 | Bruker Biospin Ag | Method for automatic shimming for nuclear magnetic resonance spectroscopy |
US7532705B2 (en) | 2006-04-10 | 2009-05-12 | Duke University | Systems and methods for localizing a target for radiotherapy based on digital tomosynthesis |
US7840045B2 (en) | 2006-04-21 | 2010-11-23 | The University Of Utah Research Foundation | Method and system for parallel reconstruction in the K-space domain for application in imaging systems |
US8073104B2 (en) | 2006-05-25 | 2011-12-06 | William Beaumont Hospital | Portal and real time imaging for treatment verification |
CN101489477B (zh) | 2006-05-25 | 2011-08-03 | 威廉博蒙特医院 | 用于体积图像引导的适应性放射治疗的实时、在线和离线治疗剂量追踪和反馈过程 |
US7610079B2 (en) | 2006-07-25 | 2009-10-27 | Ast Gmbh | Shock wave imaging system |
US7505559B2 (en) | 2006-08-25 | 2009-03-17 | Accuray Incorporated | Determining a target-to-surface distance and using it for real time absorbed dose calculation and compensation |
US8358818B2 (en) | 2006-11-16 | 2013-01-22 | Vanderbilt University | Apparatus and methods of compensating for organ deformation, registration of internal structures to images, and applications of same |
CN100380406C (zh) | 2006-12-29 | 2008-04-09 | 四川大学 | 放射治疗计划系统中获得三维解剖结构投影轮廓线的方法 |
JP5209277B2 (ja) | 2007-01-17 | 2013-06-12 | 株式会社東芝 | 傾斜磁場コイルユニット、mri装置用ガントリ、及びmri装置 |
CN113520315A (zh) | 2007-01-19 | 2021-10-22 | 桑尼布鲁克健康科学中心 | 具有组合的超声和光学成像装置的成像探头 |
US8460195B2 (en) | 2007-01-19 | 2013-06-11 | Sunnybrook Health Sciences Centre | Scanning mechanisms for imaging probe |
US7602183B2 (en) | 2007-02-13 | 2009-10-13 | The Board Of Trustees Of The Leland Stanford Junior University | K-T sparse: high frame-rate dynamic magnetic resonance imaging exploiting spatio-temporal sparsity |
DE102008007245B4 (de) | 2007-02-28 | 2010-10-14 | Siemens Aktiengesellschaft | Kombiniertes Strahlentherapie- und Magnetresonanzgerät |
US20080235052A1 (en) | 2007-03-19 | 2008-09-25 | General Electric Company | System and method for sharing medical information between image-guided surgery systems |
US8155417B2 (en) | 2007-03-27 | 2012-04-10 | Hologic, Inc. | Post-acquisition adaptive reconstruction of MRI data |
JP5260629B2 (ja) | 2007-04-04 | 2013-08-14 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 分割勾配コイル及びこれを用いるpet/mriハイブリッドシステム |
US7489131B2 (en) | 2007-04-23 | 2009-02-10 | General Electric Co. | System and apparatus for direct cooling of gradient coils |
US7898192B2 (en) | 2007-06-06 | 2011-03-01 | Siemens Medical Solutions Usa, Inc. | Modular linac and systems to support same |
US8378677B2 (en) | 2007-07-02 | 2013-02-19 | Koninklijke Philips Electronics N.V. | Thermally stabilized pet detector for hybrid PET-MR system |
US8570042B2 (en) | 2007-08-31 | 2013-10-29 | The Regents Of The University Of California | Adjustable permanent magnet assembly for NMR and MRI |
US7791338B2 (en) | 2007-09-07 | 2010-09-07 | The Board Of Trustees Of The Leland Stanford Junior University | MRI method of determining time-optimal gradient waveforms with gradient amplitude as a function of arc-length in k-space |
US8315689B2 (en) | 2007-09-24 | 2012-11-20 | MRI Interventions, Inc. | MRI surgical systems for real-time visualizations using MRI image data and predefined data of surgical tools |
EP2050395A1 (en) | 2007-10-18 | 2009-04-22 | Paracelsus Medizinische Privatuniversität | Methods for improving image quality of image detectors, and systems therefor |
CN101452065B (zh) | 2007-12-04 | 2011-10-19 | 西门子(中国)有限公司 | 磁共振设备中的局部线圈、磁共振设备以及成像方法 |
US7801271B2 (en) | 2007-12-23 | 2010-09-21 | Oraya Therapeutics, Inc. | Methods and devices for orthovoltage ocular radiotherapy and treatment planning |
JP5197026B2 (ja) | 2008-01-09 | 2013-05-15 | 株式会社東芝 | 放射線治療システム、放射線治療支援装置及び放射線治療支援プログラム |
US8238516B2 (en) | 2008-01-09 | 2012-08-07 | Kabushiki Kaisha Toshiba | Radiotherapy support apparatus |
JP5197025B2 (ja) | 2008-01-09 | 2013-05-15 | 株式会社東芝 | 放射線治療システム、放射線治療支援装置及び放射線治療支援プログラム |
WO2009107005A2 (en) | 2008-02-25 | 2009-09-03 | Koninklijke Philips Electronics N.V. | Iso-plane backbone for radiation detectors |
WO2009113069A1 (en) | 2008-03-12 | 2009-09-17 | Navotek Medical Ltd. | Combination mri and radiotherapy systems and methods of use |
US7741624B1 (en) | 2008-05-03 | 2010-06-22 | Velayudhan Sahadevan | Single session interactive ultra-short duration super-high biological dose rate radiation therapy and radiosurgery |
CN102036712B (zh) | 2008-05-08 | 2015-02-25 | 约翰霍普金斯大学 | 用于放射治疗的系统和确定放射治疗参数的方法 |
WO2009142548A2 (en) | 2008-05-22 | 2009-11-26 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
WO2009155700A1 (en) | 2008-06-24 | 2009-12-30 | Marco Carlone | Radiation therapy system |
US9606206B2 (en) | 2008-06-25 | 2017-03-28 | Koninklijke Philips Electronics N.V. | Radiation therapy system with real time magnetic resonance monitoring |
US7659718B1 (en) | 2008-07-31 | 2010-02-09 | The Board Of Trustees Of The Leland Stanford Junior University | Blip design for random sampling compressed sensing of flyback 3D-MRSI |
CA2638996C (en) | 2008-08-20 | 2013-04-30 | Imris Inc. | Mri guided radiation therapy |
EP2196240A1 (en) * | 2008-12-12 | 2010-06-16 | Koninklijke Philips Electronics N.V. | Therapeutic apparatus |
JP4728451B2 (ja) | 2008-12-24 | 2011-07-20 | 三菱電機株式会社 | 粒子線治療装置 |
US8310233B2 (en) | 2009-02-18 | 2012-11-13 | Mayo Foundation For Medical Education And Research | Method for image reconstruction from undersampled medical imaging data |
JP5224421B2 (ja) | 2009-03-12 | 2013-07-03 | 独立行政法人放射線医学総合研究所 | オープンpet/mri複合機 |
US8331531B2 (en) | 2009-03-13 | 2012-12-11 | The Board Of Trustees Of The Leland Stanford Junior University | Configurations for integrated MRI-linear accelerators |
EP2230530A1 (en) | 2009-03-20 | 2010-09-22 | Koninklijke Philips Electronics N.V. | A tesseral shim coil for a magnetic resonance system |
JP5759446B2 (ja) | 2009-04-02 | 2015-08-05 | コーニンクレッカ フィリップス エヌ ヴェ | 解剖学的特徴を輪郭抽出するシステム、作動方法及びコンピュータ可読媒体 |
WO2010125486A1 (en) | 2009-04-28 | 2010-11-04 | Koninklijke Philips Electronics N.V. | Interventional mr imaging with motion compensation |
JP2010269067A (ja) | 2009-05-25 | 2010-12-02 | Hitachi Medical Corp | 治療支援装置 |
US20120157402A1 (en) | 2009-05-27 | 2012-06-21 | Liangxian Cao | Methods for treating brain tumors |
WO2010144419A2 (en) | 2009-06-08 | 2010-12-16 | Surgivision, Inc. | Mri-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time |
US9472000B2 (en) | 2009-06-19 | 2016-10-18 | Viewray Technologies, Inc. | System and method for performing tomographic image acquisition and reconstruction |
US8139714B1 (en) | 2009-06-25 | 2012-03-20 | Velayudhan Sahadevan | Few seconds beam on time, breathing synchronized image guided all fields simultaneous radiation therapy combined with hyperthermia |
CA2760055C (en) | 2009-07-15 | 2021-04-06 | Viewray Incorporated | Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other |
DE102009035951B4 (de) * | 2009-08-03 | 2018-02-22 | Siemens Healthcare Gmbh | Bestimmung von Strahlparametern für asymmetrische Photonenstrahlen |
CN102713682B (zh) | 2009-11-20 | 2015-01-28 | 优瑞公司 | 自屏蔽梯度线圈 |
US8427148B2 (en) | 2009-12-31 | 2013-04-23 | Analogic Corporation | System for combining magnetic resonance imaging with particle-based radiation systems for image guided radiation therapy |
US8173983B1 (en) | 2010-01-07 | 2012-05-08 | Velayudhan Sahadevan | All field simultaneous radiation therapy |
US9694205B2 (en) | 2010-02-12 | 2017-07-04 | Elekta Ab (Publ) | Radiotherapy and imaging apparatus |
AU2011220724B2 (en) | 2010-02-24 | 2014-09-18 | Viewray Technologies, Inc. | Split magnetic resonance imaging system |
US8405395B2 (en) | 2010-04-15 | 2013-03-26 | The General Hospital Corporation | Method for simultaneous multi-slice magnetic resonance imaging |
US8710843B2 (en) | 2010-04-27 | 2014-04-29 | University Health Network | Magnetic resonance imaging apparatus for use with radiotherapy |
WO2011143367A2 (en) | 2010-05-11 | 2011-11-17 | Hampton University, Office Of General Counsel | Apparatus, method and system for measuring prompt gamma and other beam-induced radiation during hadron therapy treatments for dose and range verificaton purposes using ionization radiation detection |
US9155908B2 (en) * | 2010-06-11 | 2015-10-13 | Koninklijke Philips N.V. | Simultaneous multi-modality inverse optimization for radiotherapy treatment planning |
EP2400314A1 (en) | 2010-06-14 | 2011-12-28 | Agilent Technologies U.K. Limited | Superconducting magnet arrangement and method of mounting thereof |
DE102010032080B4 (de) | 2010-07-23 | 2012-09-27 | Siemens Aktiengesellschaft | Getriggerte Magnetresonanzbildgebung auf der Grundlage einer partiellen parallelen Akquisition (PPA) |
US8637841B2 (en) | 2010-08-23 | 2014-01-28 | Varian Medical Systems, Inc. | Multi level multileaf collimators |
US20120150016A1 (en) | 2010-10-05 | 2012-06-14 | Satyapal Rathee | Image guided radiation therapy system and shielded radio frequency detector coil for use therein |
WO2012063162A1 (en) | 2010-11-09 | 2012-05-18 | Koninklijke Philips Electronics N.V. | Magnetic resonance imaging and radiotherapy apparatus with at least two-transmit-and receive channels |
US9151815B2 (en) | 2010-11-15 | 2015-10-06 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging apparatus and magnetic resonance imaging method |
CN103260700B (zh) | 2010-12-13 | 2016-06-15 | 皇家飞利浦电子股份有限公司 | 包括辐射治疗设备、机械定位系统和磁共振成像系统的治疗设备 |
CN107126634B (zh) | 2010-12-22 | 2021-04-27 | 优瑞技术公司 | 用于在医疗过程中进行图像引导的系统及记录介质 |
US8565377B2 (en) | 2011-03-07 | 2013-10-22 | Dalhousie University | Methods and apparatus for imaging in conjunction with radiotherapy |
EP2500909A1 (en) | 2011-03-16 | 2012-09-19 | Deutsches Krebsforschungszentrum Stiftung des Öffentlichen Rechts | Position sensoring method and system for a multi-leaf collimator |
US9254112B2 (en) | 2011-03-23 | 2016-02-09 | Siemens Corporation | Respiratory interval-based correlation and processing of dynamic imaging data |
DE102011006582A1 (de) | 2011-03-31 | 2012-10-04 | Siemens Aktiengesellschaft | Strahlentherapieanlage mit Hochfrequenzschirmung |
JP5701671B2 (ja) | 2011-04-27 | 2015-04-15 | 住友重機械工業株式会社 | 荷電粒子線照射装置 |
WO2012164527A1 (en) | 2011-05-31 | 2012-12-06 | Koninklijke Philips Electronics N.V. | Correcting the static magnetic field of an mri radiotherapy apparatus |
US20130066135A1 (en) | 2011-08-29 | 2013-03-14 | Louis Rosa | Neutron irradiation therapy device |
US20130086163A1 (en) | 2011-10-04 | 2013-04-04 | Siemens Medical Solutions Usa, Inc. | Healthcare Information System Interface Supporting Social Media and Related Applications |
US9789337B2 (en) | 2011-10-07 | 2017-10-17 | Siemens Medical Solutions Usa, Inc. | Combined imaging modalities for radiation treatment planning |
US8981779B2 (en) | 2011-12-13 | 2015-03-17 | Viewray Incorporated | Active resistive shimming fro MRI devices |
RU2605525C2 (ru) | 2012-02-09 | 2016-12-20 | Конинклейке Филипс Н.В. | Устройство обнаружения данных для использования в комбинации с устройством mri |
US9119550B2 (en) | 2012-03-30 | 2015-09-01 | Siemens Medical Solutions Usa, Inc. | Magnetic resonance and ultrasound parametric image fusion |
US10561861B2 (en) | 2012-05-02 | 2020-02-18 | Viewray Technologies, Inc. | Videographic display of real-time medical treatment |
EP2664359A1 (en) * | 2012-05-14 | 2013-11-20 | Koninklijke Philips N.V. | Magnetic resonance guided therapy with interleaved scanning |
US20130345545A1 (en) | 2012-06-21 | 2013-12-26 | Siemens Medical Solutions Usa, Inc. | Ultrasound Enhanced Magnetic Resonance Imaging |
US8993898B2 (en) | 2012-06-26 | 2015-03-31 | ETS-Lindgren Inc. | Movable EMF shield, method for facilitating rapid imaging and treatment of patient |
CN102866415B (zh) * | 2012-07-24 | 2015-04-08 | 山东新华医疗器械股份有限公司 | 医用加速器的剂量监测系统 |
WO2014066853A1 (en) | 2012-10-26 | 2014-05-01 | Viewray Incorporated | Assessment and improvement of treatment using imaging of physiological responses to radiation therapy |
EP2914172A4 (en) | 2012-11-02 | 2017-05-17 | The Regents Of The University Of California | Improved cardiac late gadolinium enhancement mri for patients with implanted cardiac devices |
GB2507585B (en) | 2012-11-06 | 2015-04-22 | Siemens Plc | MRI magnet for radiation and particle therapy |
GB2507792B (en) | 2012-11-12 | 2015-07-01 | Siemens Plc | Combined MRI and radiation therapy system |
WO2014121991A1 (en) | 2013-02-06 | 2014-08-14 | Koninklijke Philips N.V. | Active compensation for field distorting components in a magnetic resonance imaging system with a gantry |
US9404983B2 (en) | 2013-03-12 | 2016-08-02 | Viewray, Incorporated | Radio frequency transmit coil for magnetic resonance imaging system |
US9289626B2 (en) | 2013-03-13 | 2016-03-22 | Viewray Incorporated | Systems and methods for improved radioisotopic dose calculation and delivery |
US9675271B2 (en) | 2013-03-13 | 2017-06-13 | Viewray Technologies, Inc. | Systems and methods for radiotherapy with magnetic resonance imaging |
US8952346B2 (en) | 2013-03-14 | 2015-02-10 | Viewray Incorporated | Systems and methods for isotopic source external beam radiotherapy |
US9446263B2 (en) | 2013-03-15 | 2016-09-20 | Viewray Technologies, Inc. | Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging |
US10762167B2 (en) | 2013-09-27 | 2020-09-01 | Varian Medical Systems International Ag | Decision support tool for choosing treatment plans |
CN105980875B (zh) | 2013-10-08 | 2019-03-08 | 皇家飞利浦有限公司 | 经校正的多切片磁共振成像 |
WO2015055473A1 (en) | 2013-10-17 | 2015-04-23 | Koninklijke Philips N.V. | Medical apparatus with a radiation therapy device and a radiation detection system |
US9918639B2 (en) | 2013-11-07 | 2018-03-20 | Siemens Healthcard GmbH | Magnetic resonance imaging with asymmetric radial sampling and compressed-sensing reconstruction |
US11045151B2 (en) | 2013-11-18 | 2021-06-29 | Varian Medical Systems, Inc. | Cone-beam computed tomography imaging devices, systems, and methods |
JP2016539703A (ja) | 2013-12-03 | 2016-12-22 | ビューレイ・テクノロジーズ・インコーポレイテッドViewRay Technologies, Inc. | 位相相関を用いた非剛体変形の存在下での医用画像のシングル及びマルチのモダリティ位置合わせ |
US10737122B2 (en) | 2014-02-27 | 2020-08-11 | ETM Electromatic, Inc. | Self-shielded image guided radiation oncology system |
AU2015229128A1 (en) | 2014-03-14 | 2016-09-22 | The General Hospital Corporation | System and method for free radical imaging |
US9931521B2 (en) | 2014-03-25 | 2018-04-03 | Varian Medical Systems, Inc. | Multi level multileaf collimator leaf tip shape effects and penumbra optimization |
EP3140667B1 (en) | 2014-05-09 | 2020-12-23 | Koninklijke Philips N.V. | A therapy system containing an mri module and means for determining the position of an rf coil |
JP2014209485A (ja) * | 2014-05-26 | 2014-11-06 | ザクリトエ アクツィアニェールナエ オーブシチェストヴォ プロトム | 多方向荷電粒子線癌治療方法及び装置 |
JP6449920B2 (ja) | 2014-06-27 | 2019-01-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 荷電粒子ビーム治療及び磁気共鳴イメージング |
WO2016030772A1 (en) | 2014-08-25 | 2016-03-03 | Panacea Medical Technologies Pvt. Ltd | Radiotherapy apparatus with on-board stereotactic imaging system |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
CN204116945U (zh) * | 2014-09-23 | 2015-01-21 | 山东新华医疗器械股份有限公司 | 基于医用电子直线加速器剂量监测系统的调试装置 |
US11045108B2 (en) | 2014-11-26 | 2021-06-29 | Viewray Technologies, Inc. | Magnetic resonance imaging receive coil assembly |
US9874620B2 (en) | 2015-02-05 | 2018-01-23 | Ohio State Innovation Foundation | Low field magnetic resonance imaging (MRI) scanner for cardiac imaging |
AU2016261914B2 (en) | 2015-05-12 | 2020-12-10 | Hyperfine Operations, Inc. | Radio frequency coil methods and apparatus |
CA2992992A1 (en) | 2015-07-22 | 2017-01-26 | Viewray Technologies, Inc. | Ion chamber for radiation measurement |
US9966160B2 (en) | 2015-11-24 | 2018-05-08 | Viewray Technologies, Inc. | Radiation beam collimating systems and methods |
US10441816B2 (en) | 2015-12-31 | 2019-10-15 | Shanghai United Imaging Healthcare Co., Ltd. | Radiation therapy system |
CN109310879A (zh) | 2016-03-02 | 2019-02-05 | 优瑞技术公司 | 利用磁共振成像的粒子疗法 |
US9849306B2 (en) | 2016-03-21 | 2017-12-26 | Varian Medical Systems International Ag | Systems and methods for generating beam-specific planning target volume design outputs |
KR20190043129A (ko) | 2016-06-22 | 2019-04-25 | 뷰레이 테크놀로지스 인크. | 약한 필드 강도에서의 자기 공명 영상화 |
US10307615B2 (en) | 2016-09-19 | 2019-06-04 | Varian Medical Systems International Ag | Optimization of radiation treatment plans for optimal treatment time in external-beam radiation treatments |
US10143859B2 (en) | 2016-09-22 | 2018-12-04 | Varian Medical Systems International Ag | Controlling and shaping the dose distribution outside treatment targets in external-beam radiation treatments |
EP3523667B1 (en) | 2016-10-06 | 2022-07-20 | Koninklijke Philips N.V. | Impedance matching using multiple rf ports |
US20190353724A1 (en) | 2016-12-15 | 2019-11-21 | Koninklijke Philips N.V. | Magnetic resonance antenna compatible with charged particle accelerator systems |
US10485988B2 (en) | 2016-12-30 | 2019-11-26 | Varian Medical Systems International Ag | Interactive dose manipulation using prioritized constraints |
US10166406B2 (en) | 2017-02-24 | 2019-01-01 | Varian Medical Systems International Ag | Radiation treatment planning and delivery using collision free regions |
US10613171B2 (en) | 2017-03-14 | 2020-04-07 | Siemens Healthcare Gmbh | Multi-banded RF-pulse enhanced magnetization imaging |
US10775460B2 (en) | 2017-06-28 | 2020-09-15 | Alberta Health Services | Image guided radiation therapy system |
CN109420259A (zh) | 2017-08-24 | 2019-03-05 | 上海联影医疗科技有限公司 | 治疗系统和使用治疗系统的方法 |
EP3456383B1 (en) | 2017-09-18 | 2021-03-24 | Medical Intelligence Medizintechnik GmbH | Motion management system for image-guided radiotherapy |
US10661097B2 (en) | 2017-09-21 | 2020-05-26 | Varian Medical Systems, Inc. | VMAT treatment planning using multicriteria optimization and a progressive optimization scheme |
EP3460500A1 (de) | 2017-09-26 | 2019-03-27 | Siemens Healthcare GmbH | Medizinisches bildgebungsgerät zur kombinierten magnetresonanzbildgebung und bestrahlung und verfahren zur bestimmung der bestückung von shim-einheiten |
JP7127126B2 (ja) | 2017-12-06 | 2022-08-29 | ビューレイ・テクノロジーズ・インコーポレイテッド | 放射線治療のシステム、方法およびソフトウェア |
US11209509B2 (en) | 2018-05-16 | 2021-12-28 | Viewray Technologies, Inc. | Resistive electromagnet systems and methods |
CN114796894B (zh) | 2018-11-14 | 2025-03-25 | 上海联影医疗科技股份有限公司 | 放射治疗系统 |
WO2020155137A1 (en) | 2019-02-02 | 2020-08-06 | Shanghai United Imaging Healthcare Co., Ltd. | Radiation therapy system and method |
-
2017
- 2017-02-28 CN CN201780014851.3A patent/CN109310879A/zh active Pending
- 2017-02-28 WO PCT/US2017/020015 patent/WO2017151662A1/en active Application Filing
- 2017-02-28 KR KR1020187026970A patent/KR20180120705A/ko not_active Withdrawn
- 2017-02-28 CN CN202410735024.5A patent/CN118750795A/zh active Pending
- 2017-02-28 EP EP17711417.0A patent/EP3423153B1/en active Active
- 2017-02-28 US US15/445,832 patent/US10413751B2/en active Active
- 2017-02-28 CA CA3016026A patent/CA3016026A1/en active Pending
- 2017-02-28 AU AU2017227590A patent/AU2017227590A1/en not_active Abandoned
- 2017-02-28 JP JP2018545646A patent/JP7066621B2/ja active Active
-
2019
- 2019-09-13 US US16/570,810 patent/US11351398B2/en active Active
-
2022
- 2022-02-04 JP JP2022016716A patent/JP2022070914A/ja active Pending
- 2022-06-03 US US17/832,417 patent/US12017090B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3423153B1 (en) | 2021-05-19 |
CN109310879A (zh) | 2019-02-05 |
EP3423153A1 (en) | 2019-01-09 |
US12017090B2 (en) | 2024-06-25 |
JP7066621B2 (ja) | 2022-05-13 |
KR20180120705A (ko) | 2018-11-06 |
JP2019506972A (ja) | 2019-03-14 |
US11351398B2 (en) | 2022-06-07 |
JP2022070914A (ja) | 2022-05-13 |
US20220305289A1 (en) | 2022-09-29 |
US10413751B2 (en) | 2019-09-17 |
AU2017227590A1 (en) | 2018-08-30 |
CA3016026A1 (en) | 2017-09-08 |
WO2017151662A1 (en) | 2017-09-08 |
US20200001115A1 (en) | 2020-01-02 |
US20170252577A1 (en) | 2017-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12017090B2 (en) | Particle therapy with magnetic resonance imaging | |
JP7408743B2 (ja) | 放射線治療のシステム、方法およびソフトウェア | |
USRE46383E1 (en) | Deceleration of hadron beams in synchrotrons designed for acceleration | |
KR101803346B1 (ko) | 자기장을 이용한 종양표면선량 강화 방사선 치료장치 | |
US20180099154A1 (en) | Medical apparatus comprising a hadron therapy device, a mri, and a prompt-gamma system | |
US20180099157A1 (en) | Apparatus and method for localizing the bragg peak of a hadron beam traversing a target tissue by magnetic resonance imaging | |
US20180099153A1 (en) | Medical apparatus comprising a hadron therapy device, a mri, and a hadron radiography system | |
Fiedler et al. | Online irradiation control by means of PET | |
Schardt | Hadrontherapy | |
Naceur et al. | Extending deterministic transport capabilities for very-high and ultra-high energy electron beams | |
Hernández | Low-dose ion-based transmission radiography and tomography for optimization of carbon ion-beam therapy | |
Ariga et al. | Characterization of the dose distribution in the halo region of a clinical proton pencil beam using emulsion film detectors | |
CN114761078B (zh) | 在受试者的强子疗法治疗期间监测强子束的系统 | |
Hashemizadeh et al. | Dose Perturbation Calculation of 9 MeV Electron Beams in the Presence of a 1.5 Tesla Longitudinal Magnetic Field and Different Inhomogeneities: A Monte Carlo Study | |
Marhou et al. | The impact assessment of a magnetic field dedicated to MRI during a carbon-therapy on treatment efficiency: Application to 1.5 T magnetic field | |
Russell | Physical and Biological Characterisation of Clinically Relevant Combined MRI-radiation Exposures with Conventional and Nanoparticle Contrast Agents | |
Paynter | Unflattened Radiotherapy beams; characterisation, optimisation and application | |
Gholami et al. | Normal lung tissue complication probability in MR-Linac and conventional radiotherapy | |
Spiga | Monte Carlo simulation of dose distributions for synchrotron Microbeam Radiation Therapy | |
Irsal et al. | Verification of Radiation Isocenter on Linac Beam 6 MV using Computed Radiography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |