[go: up one dir, main page]

CN115411198A - Light emitting device and method of manufacturing the same - Google Patents

Light emitting device and method of manufacturing the same Download PDF

Info

Publication number
CN115411198A
CN115411198A CN202110582937.4A CN202110582937A CN115411198A CN 115411198 A CN115411198 A CN 115411198A CN 202110582937 A CN202110582937 A CN 202110582937A CN 115411198 A CN115411198 A CN 115411198A
Authority
CN
China
Prior art keywords
layer
electrode
emitting device
absorbing material
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110582937.4A
Other languages
Chinese (zh)
Inventor
王华民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Technology Group Co Ltd
Original Assignee
TCL Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCL Technology Group Co Ltd filed Critical TCL Technology Group Co Ltd
Priority to CN202110582937.4A priority Critical patent/CN115411198A/en
Publication of CN115411198A publication Critical patent/CN115411198A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种发光器件及其制造方法。发光器件包括第一电极层、电极保护层、发光层和第二电极层。电极保护层设置于第一电极层上。电极保护层中分散有氧气吸收材料。发光层设置于电极保护层远离第一电极层的一侧。第二电极层设置于发光层远离电极保护层的一侧。本申请通过在第一电极层侧形成电极保护层,电极保护层中分散有氧气吸收粒子,氧气吸收粒子能够吸收发光器件中的氧气,从而避免了氧气对电极层的侵蚀,有效地保障了器件的稳定性,并延长器件寿命。

Figure 202110582937

The present application provides a light emitting device and a manufacturing method thereof. The light emitting device includes a first electrode layer, an electrode protection layer, a light emitting layer and a second electrode layer. The electrode protection layer is disposed on the first electrode layer. Oxygen absorbing material is dispersed in the electrode protection layer. The light emitting layer is arranged on the side of the electrode protection layer away from the first electrode layer. The second electrode layer is arranged on the side of the light emitting layer away from the electrode protection layer. In this application, an electrode protection layer is formed on the side of the first electrode layer. Oxygen absorbing particles are dispersed in the electrode protection layer. The oxygen absorbing particles can absorb oxygen in the light-emitting device, thereby avoiding the erosion of the electrode layer by oxygen and effectively ensuring the protection of the device. stability and extend device life.

Figure 202110582937

Description

发光器件及其制造方法Light emitting device and manufacturing method thereof

技术领域technical field

本申请涉及显示领域,尤其涉及一种发光器件及其制造方法。The present application relates to the display field, in particular to a light emitting device and a manufacturing method thereof.

背景技术Background technique

有机电致发光二极管(Organic Light Emitting Diode,OLED)发光器件和量子点有机发光二极管(Quantum Dot Light Emitting Diode,QLED)发光器件等发光器件由于具有广视角、高对比度、高响应速度、高亮度等优点,而逐渐成为显示领域的主流。Light-emitting devices such as Organic Light Emitting Diode (OLED) and Quantum Dot Light Emitting Diode (QLED) light-emitting devices have wide viewing angles, high contrast, high response speed, high brightness, etc. Advantages, and gradually become the mainstream of the display field.

但是,目前的OLED和QLED显示器封装技术和封装材料不能完全避免氧气的入侵。当氧气残留或从外部进入到发光器件内部时,会使电子传输层等功能层与电极之间的界面发生氧化,改变传输性质,降低界面之间的结合力。当发光器件通电或进行加热等处理时,会加剧氧化的进行,造成器件的迅速老化、失效,器件性能急剧降低。因此,需要提出一种方案来降低氧气对发光器件的影响,提高器件光电特性,并延长器件寿命。However, current OLED and QLED display packaging technologies and packaging materials cannot completely avoid the intrusion of oxygen. When oxygen remains or enters the light-emitting device from the outside, the interface between the functional layer such as the electron transport layer and the electrode will be oxidized, the transport property will be changed, and the binding force between the interfaces will be reduced. When the light-emitting device is energized or heated, it will intensify the oxidation process, resulting in rapid aging and failure of the device, and a sharp decrease in device performance. Therefore, it is necessary to propose a scheme to reduce the influence of oxygen on the light-emitting device, improve the photoelectric characteristics of the device, and prolong the lifetime of the device.

发明内容Contents of the invention

有鉴于此,本申请目的在于提供一种能够降低氧气对发光器件的影响的发光器件及其制造方法。In view of this, the purpose of the present application is to provide a light-emitting device capable of reducing the influence of oxygen on the light-emitting device and a manufacturing method thereof.

本申请提供一种发光器件,其包括:The application provides a light emitting device, which includes:

第一电极层;first electrode layer;

电极保护层,设置于所述第一电极层上,所述电极保护层中分散有氧气吸收材料;an electrode protection layer, disposed on the first electrode layer, and an oxygen absorbing material is dispersed in the electrode protection layer;

发光层,设置于所述电极保护层远离所述第一电极层的一侧;以及a light-emitting layer disposed on a side of the electrode protection layer away from the first electrode layer; and

第二电极层,设置于所述发光层远离所述电极保护层的一侧。The second electrode layer is arranged on the side of the light-emitting layer away from the electrode protection layer.

在一种实施方式中,所述氧气吸收材料包括二氧化钛、氧化锌、氧化锡、二氧化锆以及硫化镉中的一种或多种。In one embodiment, the oxygen absorbing material includes one or more of titanium dioxide, zinc oxide, tin oxide, zirconium dioxide and cadmium sulfide.

在一种实施方式中,所述氧气吸收材料由二氧化钛、氧化锌、氧化锡、二氧化锆以及硫化镉中的一种或多种组成。In one embodiment, the oxygen absorbing material is composed of one or more of titanium dioxide, zinc oxide, tin oxide, zirconium dioxide and cadmium sulfide.

在一种实施方式中,所述电极保护层中还分散有氢气吸收材料。In one embodiment, a hydrogen absorbing material is also dispersed in the electrode protection layer.

在一种实施方式中,所述氢气吸收材料包括C60+Ca和TiSi2中的至少一种。In one embodiment, the hydrogen absorbing material includes at least one of C60+Ca and TiSi2 .

在一种实施方式中,所述氢气吸收材料由C60+Ca和TiSi2中的至少一种组成。In one embodiment, the hydrogen absorbing material consists of at least one of C60+Ca and TiSi2 .

在一种实施方式中,所述电极保护层包括有机薄膜,所述氧气吸收材料分散于所述有机薄膜中,所述有机薄膜的材料包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯、丙烯树脂、环氧树脂、聚甲基丙烯酸甲酯以及聚苯乙烯中的一种。In one embodiment, the electrode protection layer includes an organic film, the oxygen absorbing material is dispersed in the organic film, and the material of the organic film includes polyethylene terephthalate, polyimide , polycarbonate, acrylic resin, epoxy resin, polymethyl methacrylate and polystyrene.

在一种实施方式中,所述电极保护层包括有机薄膜和氢气吸收材料,所述氧气吸收材料和所述氢气吸收材料分散于所述有机薄膜中,所述电极保护层中,所述有机薄膜的材料的质量分数为50wt%至75wt%;所述氧气吸收材料的质量分数为12.5wt%至25wt%;所述氢气吸收材料的质量分数为12.5wt%至25wt%。In one embodiment, the electrode protection layer includes an organic film and a hydrogen absorbing material, the oxygen absorbing material and the hydrogen absorbing material are dispersed in the organic film, and in the electrode protection layer, the organic film The mass fraction of the material is 50wt% to 75wt%; the mass fraction of the oxygen absorbing material is 12.5wt% to 25wt%; the mass fraction of the hydrogen absorbing material is 12.5wt% to 25wt%.

在一种实施方式中,所述电极保护层中还分散有空穴消除剂。In one embodiment, a hole eliminating agent is also dispersed in the electrode protection layer.

在一种实施方式中,所述空穴消除剂包括三乙醇胺、聚二乙醇、聚乙烯醇、聚环氧乙烷中的一种或多种。In one embodiment, the hole eliminator includes one or more of triethanolamine, polyethylene glycol, polyvinyl alcohol, and polyethylene oxide.

在一种实施方式中,所述电极保护层包括有机薄膜和氢气吸收材料,所述氧气吸收材料和所述氢气吸收材料分散于所述有机薄膜中,所述电极保护层中,所述有机薄膜的材料的质量分数为50wt%至65wt%;所述氧气吸收材料的质量分数为12.5wt%至15wt%;所述氢气吸收材料的质量分数为12.5wt%至15wt%;所述三乙醇胺的质量分数为10wt%至20wt%。In one embodiment, the electrode protection layer includes an organic film and a hydrogen absorbing material, the oxygen absorbing material and the hydrogen absorbing material are dispersed in the organic film, and in the electrode protection layer, the organic film The mass fraction of the material is 50wt% to 65wt%; the mass fraction of the oxygen absorbing material is 12.5wt% to 15wt%; the mass fraction of the hydrogen absorbing material is 12.5wt% to 15wt%; the mass fraction of the triethanolamine The fraction is from 10 wt% to 20 wt%.

在一种实施方式中,所述第一电极层为阴极层,所述发光器件还包括电子传输层,所述电子传输层设置于所述电极保护层与所述发光层之间。In one embodiment, the first electrode layer is a cathode layer, and the light emitting device further includes an electron transport layer, and the electron transport layer is disposed between the electrode protection layer and the light emitting layer.

本申请提供一种发光器件的制造方法,其包括以下步骤:The present application provides a method for manufacturing a light emitting device, which includes the following steps:

形成第一电极层;forming a first electrode layer;

在所述第一电极层上形成电极保护层;forming an electrode protection layer on the first electrode layer;

在所述电极保护层远离所述第一电极层的一侧形成发光层;以及forming a light emitting layer on a side of the electrode protection layer away from the first electrode layer; and

在所述发光层远离所述电极保护层的一侧形成第二电极层,得到发光器件;forming a second electrode layer on the side of the light-emitting layer away from the electrode protection layer to obtain a light-emitting device;

其中,在所述第一电极层上形成电极保护层的步骤包括:Wherein, the step of forming an electrode protection layer on the first electrode layer comprises:

提供电极保护溶液,所述电极保护溶液包括氧气吸收材料;以及providing an electrode protection solution comprising an oxygen absorbing material; and

将所述电极保护溶液形成于所述第一电极层的表面,并固化成膜,得到电极保护层。The electrode protection solution is formed on the surface of the first electrode layer, and cured to form a film to obtain an electrode protection layer.

在一种实施方式中,所述的发光器件的制造方法还包括对所述发光器件进行封装;以及In one embodiment, the manufacturing method of the light emitting device further includes packaging the light emitting device; and

对封装好的所述发光器件照射紫外线。The packaged light emitting device is irradiated with ultraviolet rays.

本申请提供一种发光器件及其制造方法。发光器件包括第一电极层、电极保护层、发光层和第二电极层。电极保护层设置于第一电极层上。电极保护层中分散有氧气吸收材料。发光层设置于电极保护层远离第一电极层的一侧。第二电极层设置于发光层远离电极保护层的一侧。本申请通过在第一电极层侧形成电极保护层,电极保护层中分散有氧气吸收粒子,氧气吸收粒子能够吸收发光器件中的氧气,从而避免了氧气对电极层的侵蚀,有效地保障了器件的稳定性,并延长器件寿命。The present application provides a light emitting device and a manufacturing method thereof. The light emitting device includes a first electrode layer, an electrode protection layer, a light emitting layer and a second electrode layer. The electrode protection layer is disposed on the first electrode layer. An oxygen absorbing material is dispersed in the electrode protection layer. The light emitting layer is arranged on the side of the electrode protection layer away from the first electrode layer. The second electrode layer is arranged on the side of the light emitting layer away from the electrode protection layer. In this application, an electrode protection layer is formed on the side of the first electrode layer. Oxygen absorbing particles are dispersed in the electrode protection layer. The oxygen absorbing particles can absorb oxygen in the light-emitting device, thereby avoiding the erosion of the electrode layer by oxygen and effectively ensuring the protection of the device. stability and prolong device life.

附图说明Description of drawings

为了更清楚地说明本申请中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in this application more clearly, the drawings that need to be used in the description of the implementation will be briefly introduced below. Obviously, the drawings in the following description are only some implementations of the application. Those skilled in the art can also obtain other drawings based on these drawings without any creative work.

图1为本申请第一实施方式的发光器件的结构示意图。FIG. 1 is a schematic structural diagram of a light emitting device according to a first embodiment of the present application.

图2为图1中的电极保护层的结构示意图。FIG. 2 is a schematic structural diagram of the electrode protection layer in FIG. 1 .

图3为本申请第二实施方式的发光器件中的电极保护层的结构示意图。FIG. 3 is a schematic structural view of an electrode protection layer in a light emitting device according to a second embodiment of the present application.

图4为本申请第三实施方式的发光器件的结构示意图。Fig. 4 is a schematic structural diagram of a light emitting device according to a third embodiment of the present application.

图5为本申请第四实施方式的发光器件的结构示意图。Fig. 5 is a schematic structural diagram of a light emitting device according to a fourth embodiment of the present application.

图6为本申请第五实施方式提供的一种发光器件的制造方法的流程图。Fig. 6 is a flow chart of a method for manufacturing a light emitting device provided in the fifth embodiment of the present application.

图7为图6中在第一电极层上形成电极保护层的流程图。FIG. 7 is a flowchart of forming an electrode protection layer on the first electrode layer in FIG. 6 .

图8为本申请第六实施方式提供的发光器件的制造方法的流程图。Fig. 8 is a flowchart of a method for manufacturing a light emitting device provided in the sixth embodiment of the present application.

具体实施方式Detailed ways

下面将结合本申请实施方式中的附图,对本申请中的技术方案进行清楚、完整地描述。显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。The following will clearly and completely describe the technical solution in the application with reference to the accompanying drawings in the implementation manner of the application. Apparently, the described implementations are only some of the implementations of this application, not all of them. Based on the implementation manners in this application, all other implementation manners obtained by those skilled in the art without creative efforts shall fall within the scope of protection of this application.

本申请提供一种发光器件。例如,发光器件可以为OLED发光器件,也可以为QLED发光器件。The present application provides a light emitting device. For example, the light emitting device may be an OLED light emitting device, or may be a QLED light emitting device.

由于量子点具有发光波长随尺寸和成分连续可调、发光光谱窄、荧光效率高、稳定性好等独特的光学性质,QLED在显示领域得到广泛的关注和研究。以下,基于QLED对本申请进行详细说明。Due to the unique optical properties of quantum dots, such as continuously adjustable emission wavelength with size and composition, narrow emission spectrum, high fluorescence efficiency, and good stability, QLED has received extensive attention and research in the field of display. Hereinafter, the present application will be described in detail based on QLED.

请参考图1和图2,图1为本申请第一实施方式的发光器件的结构示意图。图2为图1中的电极保护层的结构示意图。本申请第一实施方式提供的发光器件100包括:Please refer to FIG. 1 and FIG. 2 . FIG. 1 is a schematic structural diagram of a light emitting device according to a first embodiment of the present application. FIG. 2 is a schematic structural diagram of the electrode protection layer in FIG. 1 . The light emitting device 100 provided in the first embodiment of the present application includes:

第一电极层10;the first electrode layer 10;

电极保护层20,设置于第一电极层10上,电极保护层20中分散有氧气吸收材料21;The electrode protection layer 20 is disposed on the first electrode layer 10, and an oxygen absorbing material 21 is dispersed in the electrode protection layer 20;

发光层30,设置于电极保护层20远离第一电极层10的一侧;以及The light emitting layer 30 is disposed on the side of the electrode protection layer 20 away from the first electrode layer 10; and

第二电极层40,设置于发光层30远离电极保护层20的一侧。The second electrode layer 40 is disposed on a side of the light emitting layer 30 away from the electrode protection layer 20 .

本实施方式中,发光器件100为底发光器件。第一电极层10可以为阴极层。阴极层可以为金属阴极。阴极层的材料可以包括Al、Ca、Ba、Ag中的一种或其叠层金属。In this embodiment, the light emitting device 100 is a bottom emitting device. The first electrode layer 10 may be a cathode layer. The cathode layer can be a metal cathode. The material of the cathode layer may include one of Al, Ca, Ba, Ag or stacked metals thereof.

电极保护层20位于第一电极层10与发光层30之间,用于保护第一电极层10。在一些实施方式中,电极保护层20也可以直接设置于第一电极层10的表面,即电极保护层20与第一电极层10的表面直接接触。在另一些实施方式中,电极保护层20也可以不与第一电极层10直接接触。由于封装材料和工艺的限制,发光器件100中会残留氧气,或者在使用过程中有氧气侵入发光器件100中。电极保护层20中的氧气吸收材料21能够吸收发光器件中的氧气,从而避免了氧气对电极层,特别是第一电极层10的侵蚀,有效地保障了器件的稳定性,并延长器件寿命。The electrode protection layer 20 is located between the first electrode layer 10 and the light emitting layer 30 for protecting the first electrode layer 10 . In some embodiments, the electrode protection layer 20 may also be directly disposed on the surface of the first electrode layer 10 , that is, the electrode protection layer 20 is in direct contact with the surface of the first electrode layer 10 . In other embodiments, the electrode protection layer 20 may not be in direct contact with the first electrode layer 10 . Oxygen will remain in the light emitting device 100 due to limitations of packaging materials and processes, or oxygen will intrude into the light emitting device 100 during use. The oxygen absorbing material 21 in the electrode protection layer 20 can absorb oxygen in the light-emitting device, thereby avoiding the corrosion of the electrode layer, especially the first electrode layer 10 by oxygen, effectively ensuring the stability of the device and prolonging the service life of the device.

氧气吸收材料21可以采用能够产生电子-空穴对的光催化材料。具体地,氧气吸收材料21可以包括二氧化钛、氧化锌、氧化锡、二氧化锆以及硫化镉中的一种或多种。氧气吸收材料21还可以包括三氧化二铁、氧化锡、氧化钴、钙钛矿型复合氧化物三氧化镧铁LaFeO3和三氧化镧钴LaCoO3等。氧气吸收材料21可以单独使用二氧化钛、氧化锌、氧化锡、二氧化锆以及硫化镉中的一种,也可以混合使用多种。在一种实施方式中,氧气吸收材料21由二氧化钛、氧化锌、氧化锡、二氧化锆以及硫化镉中的一种或多种组成。氧气吸收材料21可以为半导体纳米粒子。当能量大于或等于能隙的光照射到作为光催化材料的半导体纳米粒子上时,其价带中的电子将被激发跃迁到导带,在价带上留下相对稳定的空穴,从而形成电子-空穴对。由于光催化材料纳米材料中存在大量的缺陷和悬键,这些缺陷和悬键能俘获电子或空穴并阻止电子和空穴的重新复合。这些被俘获的电子和空穴分别扩散到微粒的表面,扩散到微粒表面的电子被氧气所捕获,由此来吸附氧气。举例而言,在光照下,TiO2能有效地产生电子-空穴对,进而使O2分子与电子结合,生成O2-,从而消除界面中的氧气。The oxygen absorbing material 21 may be a photocatalytic material capable of generating electron-hole pairs. Specifically, the oxygen absorbing material 21 may include one or more of titanium dioxide, zinc oxide, tin oxide, zirconium dioxide and cadmium sulfide. The oxygen absorbing material 21 may also include ferric oxide, tin oxide, cobalt oxide, perovskite type composite oxide lanthanum iron trioxide LaFeO 3 , lanthanum cobalt trioxide LaCoO 3 and the like. As the oxygen absorbing material 21, one of titanium dioxide, zinc oxide, tin oxide, zirconium dioxide, and cadmium sulfide may be used alone, or multiple types may be used in combination. In one embodiment, the oxygen absorbing material 21 is composed of one or more of titanium dioxide, zinc oxide, tin oxide, zirconium dioxide and cadmium sulfide. The oxygen absorbing material 21 may be semiconductor nanoparticles. When light with energy greater than or equal to the energy gap is irradiated on semiconductor nanoparticles as a photocatalytic material, the electrons in its valence band will be excited to jump to the conduction band, leaving relatively stable holes in the valence band, thus forming electron-hole pairs. Due to the existence of a large number of defects and dangling bonds in photocatalytic nanomaterials, these defects and dangling bonds can trap electrons or holes and prevent the recombination of electrons and holes. These trapped electrons and holes diffuse to the surface of the particle respectively, and the electrons diffused to the surface of the particle are captured by oxygen, thereby adsorbing oxygen. For example, under light, TiO 2 can effectively generate electron-hole pairs, and then make O 2 molecules combine with electrons to generate O 2- , thereby eliminating oxygen in the interface.

在一些实施方式中,电极保护层20中还分散有氢气吸收材料22。氢气吸收材料22可以选自能够进行吸氢和储氢功能的材料。具体地,氢气吸收材料22可以包括C60+Ca和TiSi2中的至少一种。C60+Ca和TiSi2均为性能优异的吸氢、储氢材料。C60+Ca为表面修饰有钙的C60。钙在C60上吸附很强,可以均匀地覆盖在C60表面,形成表面掺杂碱金属钙元素的C60。经过表面掺杂碱金属钙元素的C60在其表面附近能形成一个强电场以极化氢分子,从而提高氢分子的吸附能力,能够有效吸附氢气。氢气吸收材料22可以仅使用C60+Ca和TiSi2中的一种,也可以将C60+Ca和TiSi2混合使用。在一种实施方式中,氢气吸收材料由C60+Ca和TiSi2中的至少一种组成。在发光器件100通电工作过程中,水被电解产生微量氢气,氢气使电极鼓泡,不平整,有可能导致黑点产生。这些都会导致发光器件100的光电特性急剧衰退,造成发光器件100的迅速老化、失效。通过在电极保护层20中分散氢气吸收材料22,氢气吸收材料22能够吸收发光器件100中因为通电产生的氢气,防止氢气使电极层鼓泡,不平整,并防止黑点的产生。从而提高发光效率,延长器件寿命。并且,残留在发光器件100中的水汽会在阴极层处被电解产生氢气,将电极保护层20设置在阴极层侧,能够快速吸收氢气,对阴极层产生良好的保护作用。In some embodiments, a hydrogen absorbing material 22 is also dispersed in the electrode protection layer 20 . The hydrogen absorbing material 22 may be selected from materials capable of hydrogen absorbing and hydrogen storage functions. Specifically, the hydrogen absorbing material 22 may include at least one of C60+Ca and TiSi 2 . Both C60+Ca and TiSi 2 are excellent hydrogen absorbing and hydrogen storage materials. C60+Ca is C60 surface-modified with calcium. Calcium is strongly adsorbed on C60, and can evenly cover the surface of C60 to form C60 doped with alkali metal calcium element on the surface. The surface of C60 doped with alkali metal calcium element can form a strong electric field near its surface to polarize hydrogen molecules, thereby improving the adsorption capacity of hydrogen molecules and effectively adsorbing hydrogen. As the hydrogen absorbing material 22, only one of C60+Ca and TiSi 2 may be used, or a mixture of C60+Ca and TiSi 2 may be used. In one embodiment, the hydrogen absorbing material consists of at least one of C60+Ca and TiSi2 . When the light emitting device 100 is energized and working, water is electrolyzed to generate a small amount of hydrogen gas, which makes the electrode bubbling and uneven, which may cause black spots. All of these will cause the photoelectric characteristics of the light emitting device 100 to decline sharply, resulting in rapid aging and failure of the light emitting device 100 . By dispersing the hydrogen absorbing material 22 in the electrode protection layer 20, the hydrogen absorbing material 22 can absorb the hydrogen gas generated in the light-emitting device 100 due to electrification, prevent the hydrogen gas from making the electrode layer bubbling and uneven, and prevent the generation of black spots. Thereby improving luminous efficiency and prolonging device life. Moreover, the water vapor remaining in the light-emitting device 100 will be electrolyzed at the cathode layer to generate hydrogen gas, and the electrode protection layer 20 is disposed on the cathode layer side, which can quickly absorb hydrogen gas and have a good protective effect on the cathode layer.

电极保护层20包括有机薄膜20a。氧气吸收材料21和氢气吸收材料22分散于有机薄膜20a中。由于发光器件100用于显示面板中,有机薄膜20a可以是具有高透光率的有机薄膜。另一方面,有机薄膜20a的材料还可以选自具有良好的隔绝氧气性能的材料。具体地,有机薄膜20a的材料可以包括聚对苯二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯、丙烯树脂、环氧树脂、聚甲基丙烯酸甲酯以及聚苯乙烯中的一种。有机薄膜20a的材料还可以包括聚醚酰亚胺和聚醚砜。在本实施例中,有机薄膜20a的材料为聚对苯二甲酸乙二醇酯。聚对苯二甲酸乙二醇酯具有高透光率以及良好的隔绝氧气的性能,在保证OLED器件透光率的同时,还能够防止氧气入侵。The electrode protection layer 20 includes an organic thin film 20a. The oxygen absorbing material 21 and the hydrogen absorbing material 22 are dispersed in the organic thin film 20a. Since the light emitting device 100 is used in a display panel, the organic thin film 20a may be an organic thin film having high light transmittance. On the other hand, the material of the organic thin film 20a can also be selected from materials with good oxygen barrier properties. Specifically, the material of the organic film 20a may include one of polyethylene terephthalate, polyimide, polycarbonate, acrylic resin, epoxy resin, polymethyl methacrylate and polystyrene. . The material of the organic thin film 20a may also include polyetherimide and polyethersulfone. In this embodiment, the material of the organic film 20a is polyethylene terephthalate. Polyethylene terephthalate has high light transmittance and good performance of isolating oxygen. While ensuring the light transmittance of OLED devices, it can also prevent oxygen intrusion.

为了有机薄膜20a能顺利成膜,达到基底骨架的作用,并保证电极保护层20的氧气吸附和氢气吸附能力,在电极保护层20中,有机薄膜20a的材料的质量分数为50wt%至75wt%;氧气吸收材料21的质量分数为12.5wt%至25wt%;氢气吸收材料22的质量分数为12.5wt%至25wt%。在一种实施方式中,有机薄膜20a的材料的质量分数为60wt%至70wt%;氧气吸收材料21的质量分数为15wt%至25wt%;氢气吸收材料22的质量分数为15wt%至25wt%。In order that the organic thin film 20a can form a film smoothly, achieve the effect of the base skeleton, and ensure the oxygen adsorption and hydrogen adsorption capacity of the electrode protective layer 20, in the electrode protective layer 20, the mass fraction of the material of the organic thin film 20a is 50wt% to 75wt%. ; The mass fraction of the oxygen absorbing material 21 is 12.5wt% to 25wt%; the mass fraction of the hydrogen absorbing material 22 is 12.5wt% to 25wt%. In one embodiment, the mass fraction of the material of the organic thin film 20a is 60wt% to 70wt%; the mass fraction of the oxygen absorbing material 21 is 15wt% to 25wt%; the mass fraction of the hydrogen absorbing material 22 is 15wt% to 25wt%.

发光层30的材料可以为量子点发光材料。量子点发光材料可以选自元素周期表中IV族、II-V族、II-VI族、III-VI、III-V族、IV-VI族、Ⅵ-Ⅵ族、Ⅷ-Ⅵ族、I-III-VI族、II-IV-VI族、II-IV-V族单一或者复合结构量子点中的至少一种。复合结构量子点包括核壳结构量子点,构成核壳结构量子点的核的材料包括CdSe、CdS、CdTe、CdSeTe、CdZnS、PbSe、ZnTe、CdSeS、PbS、PbTe、HgS、HgSe、HgTe、GaN、GaP、GaAs、InP、InAs、InZnP、InGaP和InGaN中的至少一种;构成核壳结构量子点的壳的材料包含ZnSe、ZnS和ZnSeS中的至少一种。The material of the light emitting layer 30 may be quantum dot light emitting material. Quantum dot luminescent materials can be selected from Group IV, II-V, II-VI, III-VI, III-V, IV-VI, VI-VI, VIII-VI, I- At least one of III-VI, II-IV-VI, II-IV-V single or composite structure quantum dots. Composite structure quantum dots include core-shell structure quantum dots, and the core materials of core-shell structure quantum dots include CdSe, CdS, CdTe, CdSeTe, CdZnS, PbSe, ZnTe, CdSeS, PbS, PbTe, HgS, HgSe, HgTe, GaN, At least one of GaP, GaAs, InP, InAs, InZnP, InGaP and InGaN; the material constituting the shell of the core-shell quantum dot contains at least one of ZnSe, ZnS and ZnSeS.

第二电极层40可以为阳极层。阳极层的材料可以选自铟锡氧化物、铟锌氧化物等透明氧化物材料。The second electrode layer 40 may be an anode layer. The material of the anode layer can be selected from transparent oxide materials such as indium tin oxide and indium zinc oxide.

本申请通过在电极层表面形成电极保护层,电极保护层中分散有氧气吸收粒子,氧气吸收粒子能够吸收发光器件中的氧气,从而避免了氧气对电极层的侵蚀,有效地保障了器件的稳定性,并延长器件寿命。此外,通过在电极保护层中分散有氢气吸收材料,氢气吸收材料能够吸收发光器件中因为通电产生的氢气,防止氢气使电极层鼓泡,不平整,防止黑点的产生。从而提高发光效率,延长器件寿命。In this application, an electrode protection layer is formed on the surface of the electrode layer. Oxygen absorbing particles are dispersed in the electrode protection layer. The oxygen absorbing particles can absorb oxygen in the light-emitting device, thereby avoiding the erosion of the electrode layer by oxygen and effectively ensuring the stability of the device. performance and prolong device life. In addition, the hydrogen absorbing material is dispersed in the electrode protection layer, and the hydrogen absorbing material can absorb the hydrogen gas generated in the light-emitting device due to electrification, preventing the hydrogen gas from making the electrode layer bubbling and uneven, and preventing the occurrence of black spots. Thereby improving luminous efficiency and prolonging device life.

请参考图3,图3为本申请第二实施方式的发光器件中的电极保护层的结构示意图。本申请的第二实施方式提供的发光器件100结构与第一实施方式大致相同,不同点仅在于:Please refer to FIG. 3 , which is a schematic structural diagram of an electrode protection layer in a light emitting device according to a second embodiment of the present application. The structure of the light emitting device 100 provided by the second embodiment of the present application is substantially the same as that of the first embodiment, the only differences are:

电极保护层20中还分散有空穴消除剂23。空穴消除剂23可以采用具有孤对电子的有机物。空穴消除剂23能与空穴结合,从而消除氧气吸收材料21产生的空穴。空穴消除剂23可以包括三乙醇胺、聚二乙醇、聚乙烯醇、聚环氧乙烷中的一种或多种。空穴消除剂23还可以包括甲醇、乙醇、异丙醇、甲酸、抗坏血酸和乙二胺四乙酸。在本实施例中,空穴消除剂23为三乙醇胺。三乙醇胺的氮上具有孤对电子,能有效消除TiO2产生的空穴,从而使电子更好地与O2结合。A hole eliminating agent 23 is also dispersed in the electrode protection layer 20 . As the hole eliminator 23, an organic substance having a lone pair of electrons can be used. The hole eliminator 23 can combine with holes, thereby eliminating holes generated by the oxygen absorbing material 21 . The hole eliminator 23 may include one or more of triethanolamine, polyethylene glycol, polyvinyl alcohol, and polyethylene oxide. Cavitation eliminator 23 may also include methanol, ethanol, isopropanol, formic acid, ascorbic acid, and ethylenediaminetetraacetic acid. In this embodiment, the hole eliminator 23 is triethanolamine. The nitrogen of triethanolamine has a lone pair of electrons, which can effectively eliminate the holes generated by TiO2 , so that electrons can better combine with O2 .

为了有机薄膜20a能顺利成膜,达到基底骨架的作用,并保证电极保护层20的氧气吸附和氢气吸附能力,电极保护层20中,有机薄膜20a的材料的质量分数为50wt%至65wt%;氧气吸收材料21的质量分数为12.5wt%至15wt%;氢气吸收材料的质量分数为12.5wt%至15wt%;三乙醇胺的质量分数为10wt%至20wt%。In order that the organic thin film 20a can form a film smoothly, achieve the effect of the base skeleton, and ensure the oxygen adsorption and hydrogen adsorption capacity of the electrode protective layer 20, in the electrode protective layer 20, the mass fraction of the material of the organic thin film 20a is 50wt% to 65wt%; The mass fraction of oxygen absorbing material 21 is 12.5wt% to 15wt%; the mass fraction of hydrogen absorbing material is 12.5wt% to 15wt%; the mass fraction of triethanolamine is 10wt% to 20wt%.

请参考图4,图4为本申请第三实施方式的发光器件的结构示意图。本申请的三实施方式提供的发光器件100结构与第一实施方式大致相同,不同点仅在于:发光器件100还包括电子传输层50、和空穴注入层70和空穴传输层60。电子传输层50设置于电极保护层20与发光层30之间。电子传输层50的材料为n型ZnO、TiO2、SnO、Ta2O3、AlZnO、ZnSnO、InSnO、Alq3、Ca、Ba、CsF、LiF、CsCO3中的一种或多种。空穴传输层60的材料可以为PVK、Poly-TPD、CBP、TCTA和TFB中的一种或多种。Please refer to FIG. 4 , which is a schematic structural diagram of a light emitting device according to a third embodiment of the present application. The structure of the light emitting device 100 provided by the third embodiment of the present application is substantially the same as that of the first embodiment, except that the light emitting device 100 further includes an electron transport layer 50 , and a hole injection layer 70 and a hole transport layer 60 . The electron transport layer 50 is disposed between the electrode protection layer 20 and the light emitting layer 30 . The material of the electron transport layer 50 is one or more of n-type ZnO, TiO 2 , SnO, Ta 2 O 3 , AlZnO, ZnSnO, InSnO, Alq 3 , Ca, Ba, CsF, LiF, and CsCO 3 . The material of the hole transport layer 60 may be one or more of PVK, Poly-TPD, CBP, TCTA and TFB.

空穴传输层60位于第二电极层40与发光层30之间。The hole transport layer 60 is located between the second electrode layer 40 and the light emitting layer 30 .

空穴注入层70位于空穴传输层60与第二电极层40之间。空穴注入层70的材料可以为PEDOT:PSS、氧化镍、氧化钼、氧化钨、氧化钒、硫化钼、硫化钨、氧化铜中的一种或多种。The hole injection layer 70 is located between the hole transport layer 60 and the second electrode layer 40 . The material of the hole injection layer 70 may be one or more of PEDOT:PSS, nickel oxide, molybdenum oxide, tungsten oxide, vanadium oxide, molybdenum sulfide, tungsten sulfide, and copper oxide.

在本实施方式中,电极保护层20位于阴极层与电子传输层50之间。由于当氧气进入到器件内部时,会影响阴极层与电子传输层50之间的接触,使两者结合力降低。将电极保护层20设置于阴极层与电子传输层50之间时,能够增强阴极层与电子传输层50的结合力。并且,残留在发光器件中的水汽会在阴极层处被电解产生氢气,将电极保护层20设置在阴极层侧,能够快速吸收氢气,对阴极层产生良好的保护作用。In this embodiment, the electrode protection layer 20 is located between the cathode layer and the electron transport layer 50 . Because when oxygen enters into the device, it will affect the contact between the cathode layer and the electron transport layer 50, reducing the binding force between the two. When the electrode protective layer 20 is provided between the cathode layer and the electron transport layer 50 , the binding force between the cathode layer and the electron transport layer 50 can be enhanced. Moreover, the water vapor remaining in the light-emitting device will be electrolyzed at the cathode layer to generate hydrogen gas, and the electrode protection layer 20 is arranged on the side of the cathode layer, which can quickly absorb hydrogen gas and have a good protective effect on the cathode layer.

请参考图5,图5为本申请第四实施方式的发光器件的结构示意图。本申请的第四实施方式提供一种发光器件100,其结构与第三实施方式大致相同,不同点仅在于:Please refer to FIG. 5 , which is a schematic structural diagram of a light emitting device according to a fourth embodiment of the present application. The fourth embodiment of the present application provides a light emitting device 100, the structure of which is substantially the same as that of the third embodiment, the only differences are:

发光器件100为顶发射器件。第一电极层10为阳极层。阳极层可以为金属阳极。阳极层的材料可以包括Al、Ca、Mg、Ag中的一种或其叠层金属。第二电极层40为阴极。阴极的材料可以选自铟锡氧化物、铟锌氧化物等透明导电材料。The light emitting device 100 is a top emission device. The first electrode layer 10 is an anode layer. The anode layer can be a metal anode. The material of the anode layer may include one of Al, Ca, Mg, Ag or stacked metals thereof. The second electrode layer 40 is a cathode. The material of the cathode can be selected from transparent conductive materials such as indium tin oxide and indium zinc oxide.

具体地,发光器件包括依次层叠设置的第一电极层10、电极保护层20、空穴注入层70、空穴传输层60、发光层30、电子传输层50以及第二电极层40。Specifically, the light emitting device includes a first electrode layer 10 , an electrode protection layer 20 , a hole injection layer 70 , a hole transport layer 60 , a light emitting layer 30 , an electron transport layer 50 and a second electrode layer 40 stacked in sequence.

请参考图6,图6为本申请第五实施方式提供的一种发光器件的制造方法的流程图。图7为图6中在第一电极层上形成电极保护层的流程图。本申请第五实施方式的发光器件的制造方法,其包括以下步骤:Please refer to FIG. 6 , which is a flowchart of a method for manufacturing a light emitting device according to a fifth embodiment of the present application. FIG. 7 is a flowchart of forming an electrode protection layer on the first electrode layer in FIG. 6 . The method for manufacturing a light emitting device according to the fifth embodiment of the present application includes the following steps:

1:形成第一电极层;1: forming the first electrode layer;

2:在第一电极层上形成电极保护层;2: forming an electrode protection layer on the first electrode layer;

3:在电极保护层远离第一电极层的一侧形成发光层;以及3: forming a light-emitting layer on the side of the electrode protection layer away from the first electrode layer; and

4:在发光层远离电极保护层的一侧形成第二电极层,得到发光器件;4: forming a second electrode layer on the side of the light-emitting layer away from the electrode protection layer to obtain a light-emitting device;

其中,步骤2还包括以下步骤:Wherein, step 2 also includes the following steps:

21:将有机材料以及氧气吸收材料溶解于有机溶剂中,形成电极保护溶液;以及21: dissolving the organic material and the oxygen absorbing material in an organic solvent to form an electrode protection solution; and

22:将电极保护溶液形成于第一电极层的表面,并固化成膜,得到电极保护层。22: forming an electrode protection solution on the surface of the first electrode layer, and curing it to form a film to obtain an electrode protection layer.

在步骤21中,将电极保护溶液形成于第一电极层的表面的方法包括但不限于旋涂法、浸渍提拉法、打印法、印刷法、喷墨法、喷涂法、滚涂法、刮涂法、浇铸法、电解沉积法、狭缝式涂布法、条状涂布法中的一种或多种。氧气吸收材料21可以采用能够产生电子-空穴对的光催化材料。具体地,氧气吸收材料21可以包括二氧化钛、氧化锌、氧化锡、二氧化锆以及硫化镉中的一种或多种。氧气吸收材料21还可以包括三氧化二铁、氧化锡、氧化钴、钙钛矿型复合氧化物三氧化镧铁LaFeO3和三氧化镧钴LaCoO3等。氧气吸收材料21可以单独使用二氧化钛、氧化锌、氧化锡、二氧化锆以及硫化镉中的一种,也可以混合使用多种。In step 21, the method of forming the electrode protection solution on the surface of the first electrode layer includes but not limited to spin coating method, dipping and pulling method, printing method, printing method, inkjet method, spray coating method, roll coating method, scraping method, etc. One or more of coating method, casting method, electrodeposition method, slit coating method and strip coating method. The oxygen absorbing material 21 may be a photocatalytic material capable of generating electron-hole pairs. Specifically, the oxygen absorbing material 21 may include one or more of titanium dioxide, zinc oxide, tin oxide, zirconium dioxide and cadmium sulfide. The oxygen absorbing material 21 may also include ferric oxide, tin oxide, cobalt oxide, perovskite type composite oxide lanthanum iron trioxide LaFeO 3 , lanthanum cobalt trioxide LaCoO 3 and the like. As the oxygen absorbing material 21, one of titanium dioxide, zinc oxide, tin oxide, zirconium dioxide, and cadmium sulfide may be used alone, or multiple types may be used in combination.

在步骤21中,还可以向有机溶剂中加入氢气吸收材料22。氢气吸收材料22可以选自能够进行吸氢和储氢功能的材料。具体地,氢气吸收材料22可以包括C60+Ca和TiSi2中的至少一种。C60+Ca和TiSi2均为性能优异的吸氢、储氢材料。In step 21, a hydrogen absorbing material 22 may also be added to the organic solvent. The hydrogen absorbing material 22 may be selected from materials capable of hydrogen absorbing and hydrogen storage functions. Specifically, the hydrogen absorbing material 22 may include at least one of C60+Ca and TiSi 2 . Both C60+Ca and TiSi 2 are excellent hydrogen absorbing and hydrogen storage materials.

有机溶剂由苯酚与乙醇构成。有机溶剂中的各组分的体积分数为:苯酚,75%-85%;乙醇,15%-25%。在其他实施方式中,有机溶剂也可以由苯酚与氯仿构成。溶液中的各组分的体积分数为:苯酚,75%-85%;氯仿,15%-25%。The organic solvent consists of phenol and ethanol. The volume fraction of each component in the organic solvent is: phenol, 75%-85%; ethanol, 15%-25%. In other embodiments, the organic solvent may also consist of phenol and chloroform. The volume fraction of each component in the solution is: phenol, 75%-85%; chloroform, 15%-25%.

使有机材料、氧气吸收材料以及氢气吸收材料均匀分散在有机溶剂中,每毫升的溶剂加溶质的总质量可以为1mg/ml至20mg/ml。即,有机材料、氧气吸收材料以及氢气吸收材料的浓度可以为1mg/ml至20mg/ml。The organic material, the oxygen absorbing material and the hydrogen absorbing material are uniformly dispersed in the organic solvent, and the total mass of solvent plus solute per milliliter may be 1 mg/ml to 20 mg/ml. That is, the concentrations of the organic material, the oxygen absorbing material, and the hydrogen absorbing material may be 1 mg/ml to 20 mg/ml.

在一个实施方式中,为了有机薄膜20a能顺利成膜,达到基底骨架的作用,并保证电极保护层20的氧气吸附和氢气吸附能力,在电极保护层20中,有机薄膜20a的材料的质量分数为50wt%至75wt%;氧气吸收材料的质量分数为12.5wt%至25wt%;氢气吸收材料的质量分数为12.5wt%至25wt%。In one embodiment, in order that the organic thin film 20a can form a film smoothly, achieve the effect of the base skeleton, and ensure the oxygen adsorption and hydrogen adsorption capabilities of the electrode protective layer 20, in the electrode protective layer 20, the mass fraction of the material of the organic thin film 20a 50wt% to 75wt%; the mass fraction of the oxygen absorbing material is 12.5wt% to 25wt%; the mass fraction of the hydrogen absorbing material is 12.5wt% to 25wt%.

在另一个实施方式中,步骤21为:混合有机材料、氧气吸收材料、氢气吸收材料以及空穴消除剂形成溶液。空穴消除剂23可以包括三乙醇胺、聚二乙醇、聚乙烯醇、聚环氧乙烷中的一种或多种。空穴吸收剂23还可以包括甲醇、乙醇、异丙醇、甲酸、抗坏血酸和乙二胺四乙酸。为了有机薄膜20a能顺利成膜,达到基底骨架的作用,并保证电极保护层的氧气吸附和氢气吸附能力,电极保护层中,有机薄膜20a的材料的质量分数为50wt%至65wt%;氧气吸收材料的质量分数为12.5wt%至15wt%;氢气吸收材料的质量分数为12.5wt%至15wt%;三乙醇胺的质量分数为10wt%至20wt%。In another embodiment, step 21 is: mixing organic material, oxygen absorbing material, hydrogen absorbing material and hole eliminating agent to form a solution. The hole eliminator 23 may include one or more of triethanolamine, polyethylene glycol, polyvinyl alcohol, and polyethylene oxide. The hole absorber 23 may also include methanol, ethanol, isopropanol, formic acid, ascorbic acid, and ethylenediaminetetraacetic acid. In order that the organic thin film 20a can form a film smoothly, achieve the effect of the base skeleton, and ensure the oxygen adsorption and hydrogen adsorption capacity of the electrode protective layer, in the electrode protective layer, the mass fraction of the material of the organic thin film 20a is 50wt% to 65wt%; The mass fraction of the material is 12.5wt% to 15wt%, the mass fraction of the hydrogen absorbing material is 12.5wt% to 15wt%, and the mass fraction of the triethanolamine is 10wt% to 20wt%.

需要说明的是,用于所述方法的步骤的上述顺序仅是为了进行说明,本发明的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。It should be noted that the above sequence of steps used in the method is for illustration only, and the steps of the method of the present invention are not limited to the sequence described above, unless otherwise specified.

请参考图8,图8为本申请第六实施方式提供的发光器件的制造方法的流程图。本申请第六实施方式提供的发光器件的制造方法与第五实施方式的发光器件的制造方法大致相同,不同点仅在于:Please refer to FIG. 8 . FIG. 8 is a flowchart of a method for manufacturing a light emitting device provided in the sixth embodiment of the present application. The manufacturing method of the light emitting device provided in the sixth embodiment of the present application is substantially the same as the manufacturing method of the light emitting device in the fifth embodiment, except that:

发光器件的制造方法还包括:The manufacturing method of the light emitting device also includes:

步骤5:对发光器件进行封装;以及Step 5: packaging the light emitting device; and

步骤6:对封装好的发光器件照射紫外线。Step 6: irradiating ultraviolet rays to the packaged light-emitting device.

在步骤6中,紫外照射时间可以为15min至30min,通过对封装好的发光器件照射紫外线,能有效促进光催化材料产生电子,进而消除氧气,提高器件的抗氧化性能。In step 6, the ultraviolet irradiation time can be 15 minutes to 30 minutes. By irradiating ultraviolet rays to the packaged light-emitting device, the photocatalytic material can be effectively promoted to generate electrons, thereby eliminating oxygen and improving the oxidation resistance of the device.

以下,结合具体实施例说明本申请的发光器件的制造方法。Hereinafter, the manufacturing method of the light-emitting device of the present application will be described with reference to specific examples.

实施例1Example 1

本申请实施例1的发光器件的制造方法包括以下步骤:The manufacturing method of the light-emitting device of Example 1 of the present application includes the following steps:

在衬底上形成透明阳极,透明阳极的材料可以为氧化铟锡,透明阳极形成的方法可以是沉积氧化铟锡并图案化;Forming a transparent anode on the substrate, the material of the transparent anode may be indium tin oxide, and the method of forming the transparent anode may be to deposit indium tin oxide and pattern it;

在透明阳极上旋涂空穴注入层;Spin-coating a hole-injection layer on a transparent anode;

在空穴注入层上旋涂空穴传输层;spin-coating a hole transport layer on the hole injection layer;

在空穴传输层上旋涂量子点发光层;spin-coating quantum dot luminescent layer on the hole transport layer;

在量子点发光层上旋涂电子传输层;Spin-coat the electron transport layer on the quantum dot light-emitting layer;

在电子传输层上旋涂电极保护层;Spin-coat the electrode protection layer on the electron transport layer;

在电极保护层上蒸镀金属电极;以及Evaporating metal electrodes on the electrode protection layer; and

对发光器件进行封装。The light emitting device is packaged.

其中,电极保护层溶液的制备过程为:将聚对苯二甲酸乙二醇酯、TiO2、C60+Ca按照质量比5:1:1共混并溶于体积比为5:1的苯酚:乙醇的有机溶剂得到电极保护层溶液。电极保护层溶液中溶质的浓度为10mg/ml。在搅拌台上一边搅拌,一边加热,加热温度为60℃,加热时间为24h。待充分溶解后超声15min,用0.22μm过滤头过滤后得到电极保护层溶液。电极保护层溶液的旋涂转速为5000RPM,旋涂时间为30s。Among them, the preparation process of the electrode protective layer solution is: blending polyethylene terephthalate, TiO 2 , C60+Ca according to the mass ratio of 5:1:1 and dissolving them in phenol with a volume ratio of 5:1: The organic solvent of ethanol obtains the electrode protection layer solution. The concentration of the solute in the electrode protection layer solution is 10mg/ml. While stirring on the stirring table, heat while heating, the heating temperature is 60°C, and the heating time is 24h. After fully dissolving, sonicate for 15 minutes, and filter through a 0.22 μm filter head to obtain the electrode protection layer solution. The spin-coating speed of the electrode protective layer solution was 5000 RPM, and the spin-coating time was 30s.

实施例2Example 2

本申请实施例2的发光器件的制造方法包括以下步骤:The manufacturing method of the light-emitting device of Example 2 of the present application includes the following steps:

在衬底上形成透明阳极,透明阳极的材料可以为氧化铟锡,透明阳极形成的方法可以是沉积氧化铟锡并图案化;Forming a transparent anode on the substrate, the material of the transparent anode may be indium tin oxide, and the method of forming the transparent anode may be to deposit indium tin oxide and pattern it;

在透明阳极上旋涂空穴注入层;Spin-coating a hole-injection layer on a transparent anode;

在空穴注入层上旋涂空穴传输层;Spin-coating a hole transport layer on the hole injection layer;

在空穴传输层上旋涂量子点发光层;spin-coating quantum dot luminescent layer on the hole transport layer;

在量子点发光层上旋涂电子传输层;Spin-coat the electron transport layer on the quantum dot light-emitting layer;

在电子传输层上旋涂电极保护层;Spin-coat the electrode protection layer on the electron transport layer;

在电极保护层上蒸镀金属电极;以及Evaporating metal electrodes on the electrode protection layer; and

对发光器件进行封装。The light emitting device is packaged.

其中,电极保护层溶液的制备过程为:将聚对苯二甲酸乙二醇酯、TiO2、三乙醇胺、C60+Ca复合材料的混合质量比5:1:1:1共混并溶于体积比为5:1的苯酚:乙醇的有机溶剂得到电极保护层溶液。电极保护层溶液中溶质的浓度为10mg/ml。在搅拌台上一边搅拌,一边加热,加热温度为60℃,加热时间为24h。待充分溶解后超声15min,用0.22μm过滤头过滤后得到电极保护层溶液。电极保护层溶液的旋涂转速为5000RPM,旋涂时间为30s。Among them, the preparation process of the electrode protective layer solution is: blending polyethylene terephthalate, TiO 2 , triethanolamine, and C60+Ca composite materials in a mass ratio of 5:1:1:1 and dissolving them in a volume The organic solvent of phenol:ethanol with a ratio of 5:1 was used to obtain the electrode protection layer solution. The concentration of the solute in the electrode protection layer solution is 10 mg/ml. While stirring on the stirring table, heat while heating, the heating temperature is 60°C, and the heating time is 24h. After fully dissolving, sonicate for 15 minutes, and filter through a 0.22 μm filter head to obtain the electrode protection layer solution. The spin-coating speed of the electrode protective layer solution was 5000 RPM, and the spin-coating time was 30s.

实施例3Example 3

本申请实施例3的发光器件的制造方法包括以下步骤:The manufacturing method of the light-emitting device of Example 3 of the present application comprises the following steps:

在衬底上形成透明阳极,透明阳极的材料可以为氧化铟锡,透明阳极形成的方法可以是沉积氧化铟锡并图案化;Forming a transparent anode on the substrate, the material of the transparent anode may be indium tin oxide, and the method of forming the transparent anode may be to deposit indium tin oxide and pattern it;

在透明阳极上旋涂空穴注入层;Spin-coating a hole-injection layer on a transparent anode;

在空穴注入层上旋涂空穴传输层;spin-coating a hole transport layer on the hole injection layer;

在空穴传输层上旋涂量子点发光层;spin-coating quantum dot luminescent layer on the hole transport layer;

在量子点发光层上旋涂电子传输层;Spin-coat the electron transport layer on the quantum dot light-emitting layer;

在电子传输层上旋涂电极保护层;Spin-coat the electrode protection layer on the electron transport layer;

在电极保护层上蒸镀金属电极;Evaporate metal electrodes on the electrode protection layer;

对发光器件进行封装;以及Encapsulating the light emitting device; and

对封装好的发光器件照射紫外线,照射时间为15min。The packaged light-emitting device is irradiated with ultraviolet rays for 15 minutes.

其中,电极保护层溶液的制备过程为:将聚对苯二甲酸乙二醇酯、TiO2、C60+Ca按照质量比5:1:1共混并溶于体积比为5:1的苯酚:乙醇的混合溶剂得到电极保护层溶液。电极保护层溶液中溶质的浓度为10mg/ml,加入搅拌子在搅拌台上60℃,加热24h,转速为5000RPM,旋转时间为30s。待充分溶解后超声15min,用0.22μm过滤头过滤后使用。Among them, the preparation process of the electrode protective layer solution is: blending polyethylene terephthalate, TiO 2 , C60+Ca according to the mass ratio of 5:1:1 and dissolving them in phenol with a volume ratio of 5:1: A mixed solvent of ethanol is used to obtain an electrode protective layer solution. The concentration of the solute in the electrode protection layer solution is 10 mg/ml, add a stirring bar on the stirring table at 60° C., heat for 24 hours, the rotation speed is 5000 RPM, and the rotation time is 30 s. After fully dissolved, sonicate for 15 minutes, filter with a 0.22 μm filter head and use it.

对比例comparative example

本申请对比例的发光器件的制造方法包括以下步骤:The manufacturing method of the light-emitting device of the comparative example of the present application includes the following steps:

在衬底上形成透明阳极,透明阳极的材料可以为氧化铟锡,透明阳极形成的方法可以是沉积氧化铟锡并图案化;Forming a transparent anode on the substrate, the material of the transparent anode may be indium tin oxide, and the method of forming the transparent anode may be to deposit indium tin oxide and pattern it;

在透明阳极上旋涂空穴注入层;Spin-coating a hole-injection layer on a transparent anode;

在空穴注入层上旋涂空穴传输层;spin-coating a hole transport layer on the hole injection layer;

在空穴传输层上旋涂量子点发光层;spin-coating quantum dot luminescent layer on the hole transport layer;

在量子点发光层上旋涂电子传输层;Spin-coat the electron transport layer on the quantum dot light-emitting layer;

在电子传输层上蒸镀金属电极;以及Evaporating metal electrodes on the electron transport layer; and

对发光器件进行封装。The light emitting device is packaged.

针对上述实施例1至3和对比例测量8h内氢氧总吸收量、电致发光外量子效率(External Quantum Efficiency,EQE)以及手动最大亮度1000nit衰减到95%所用的时间(以T95@1000nit表示),结果如下表1。For the above-mentioned embodiments 1 to 3 and comparative examples, measure the total hydrogen and oxygen absorption amount, electroluminescence external quantum efficiency (External Quantum Efficiency, EQE) and the time used for the manual maximum brightness 1000nit to decay to 95% within 8h (expressed as T95@1000nit ), the results are shown in Table 1.

表1Table 1

Figure BDA0003086394490000131
Figure BDA0003086394490000131

从表1可以看出,根据现有技术制造的对比例的发光器件,对氢气和氧气没有吸收能力,而根据本申请的实施例1至3制造的发光器件能够一定程度上吸收氢气和氧气,从而获得更高的外量子效率以及更长的使用寿命。对比实施例1和2可以看出,通过在电极保护层中添加空穴消除剂,能够进一步提高氢氧吸收能力,外量子效率,并延长使用寿命。再对比实施例1至3可以看出,通过在封装后进行紫外光照射,能够再进一步提高氢氧吸收能力,外量子效率,并延长使用寿命。It can be seen from Table 1 that the light-emitting devices of comparative examples manufactured according to the prior art have no ability to absorb hydrogen and oxygen, while the light-emitting devices manufactured according to Examples 1 to 3 of the present application can absorb hydrogen and oxygen to a certain extent, Thereby obtaining higher external quantum efficiency and longer service life. Comparing Examples 1 and 2, it can be seen that by adding a hole eliminator to the electrode protective layer, the hydrogen and oxygen absorption capacity, external quantum efficiency, and service life can be further improved. Comparing with Examples 1 to 3, it can be seen that by irradiating ultraviolet light after encapsulation, the hydrogen-oxygen absorption capacity, external quantum efficiency, and service life can be further improved.

本申请提供一种发光器件及其制造方法。发光器件包括第一电极层、电极保护层、发光层和第二电极层。电极保护层设置于第一电极层上。电极保护层中分散有氧气吸收材料。发光层设置于电极保护层远离第一电极层的一侧。第二电极层设置于发光层远离电极保护层的一侧。本申请通过在第一电极层侧形成电极保护层,电极保护层中分散有氧气吸收粒子,氧气吸收粒子能够吸收发光器件中的氧气,从而避免了氧气对电极层的侵蚀,有效地保障了器件的稳定性,并延长器件寿命。The present application provides a light emitting device and a manufacturing method thereof. The light emitting device includes a first electrode layer, an electrode protection layer, a light emitting layer and a second electrode layer. The electrode protection layer is disposed on the first electrode layer. Oxygen absorbing material is dispersed in the electrode protection layer. The light emitting layer is arranged on the side of the electrode protection layer away from the first electrode layer. The second electrode layer is arranged on the side of the light emitting layer away from the electrode protection layer. In this application, an electrode protection layer is formed on the side of the first electrode layer. Oxygen absorbing particles are dispersed in the electrode protection layer. The oxygen absorbing particles can absorb oxygen in the light-emitting device, thereby avoiding the erosion of the electrode layer by oxygen and effectively ensuring the protection of the device. stability and extend device life.

以上对本申请实施方式提供了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The above provides a detailed introduction to the embodiments of the present application. In this paper, specific examples are used to illustrate the principles and embodiments of the present application. The descriptions of the above embodiments are only used to help understand the present application. At the same time, for those skilled in the art, based on the idea of this application, there will be changes in the specific implementation and application scope. In summary, the content of this specification should not be construed as limiting the application.

Claims (14)

1. A light emitting device, comprising:
a first electrode layer;
the electrode protection layer is arranged on the first electrode layer, and oxygen absorption materials are dispersed in the electrode protection layer;
the light-emitting layer is arranged on one side, far away from the first electrode layer, of the electrode protection layer; and
and the second electrode layer is arranged on one side of the light-emitting layer, which is far away from the electrode protection layer.
2. A light emitting device according to claim 1, wherein the oxygen absorbing material comprises one or more of titanium dioxide, zinc oxide, tin oxide, zirconium dioxide, and cadmium sulfide.
3. A light emitting device according to claim 1, wherein the oxygen absorbing material is composed of one or more of titanium dioxide, zinc oxide, tin oxide, zirconium dioxide, and cadmium sulfide.
4. A light emitting device according to claim 1, wherein a hydrogen absorbing material is further dispersed in the electrode protection layer.
5. The light-emitting device according to claim 4, wherein the hydrogen-absorbing material comprises C60+ Ca and TiSi 2 At least one of (1).
6. The light-emitting device according to claim 4, wherein the hydrogen-absorbing material is composed of C60+ Ca and TiSi 2 At least one of (a).
7. The light-emitting device according to claim 1 or 4, wherein the electrode protective layer comprises an organic film in which the oxygen absorbing material is dispersed, and a material of the organic film comprises one of polyethylene terephthalate, polyimide, polycarbonate, acryl resin, epoxy resin, polymethyl methacrylate, and polystyrene.
8. The light-emitting device according to claim 1, wherein the electrode protection layer comprises an organic thin film and a hydrogen absorbing material, the oxygen absorbing material and the hydrogen absorbing material being dispersed in the organic thin film, and wherein in the electrode protection layer, a mass fraction of a material of the organic thin film is 50wt% to 75wt%; the mass fraction of the oxygen absorbing material is 12.5wt% to 25wt%; the mass fraction of the hydrogen absorbing material is 12.5wt% to 25wt%.
9. A light-emitting device according to any one of claims 1, 4 and 7, wherein a hole eliminating agent is further dispersed in the electrode protective layer.
10. The light emitting device of claim 9, wherein the hole eliminating agent comprises one or more of triethanolamine, polyvinyl alcohol, polyvinyl oxide.
11. The light-emitting device according to claim 10, wherein the electrode protection layer comprises an organic thin film and a hydrogen absorbing material, the oxygen absorbing material and the hydrogen absorbing material being dispersed in the organic thin film, and wherein in the electrode protection layer, a mass fraction of a material of the organic thin film is 50wt% to 65wt%; the mass fraction of the oxygen absorbing material is 12.5wt% to 15wt%; the mass fraction of the hydrogen absorbing material is 12.5wt% to 15wt%; the triethanolamine accounts for 10-20 wt% of the total weight of the composition.
12. A light emitting device according to claim 1, wherein the first electrode layer is a cathode layer, and further comprising an electron transport layer provided between the electrode protective layer and the light emitting layer.
13. A method of manufacturing a light emitting device, comprising the steps of:
forming a first electrode layer;
forming an electrode protection layer on the first electrode layer;
forming a light-emitting layer on one side of the electrode protection layer away from the first electrode layer; and
forming a second electrode layer on one side of the light-emitting layer, which is far away from the electrode protection layer, so as to obtain a light-emitting device;
wherein the step of forming an electrode protection layer on the first electrode layer comprises:
providing an electrode protection solution comprising an oxygen absorbing material; and
and forming the electrode protection solution on the surface of the first electrode layer, and curing to form a film to obtain the electrode protection layer.
14. The method of manufacturing a light emitting device according to claim 13, further comprising encapsulating the light emitting device; and
and irradiating ultraviolet rays to the packaged light emitting device.
CN202110582937.4A 2021-05-27 2021-05-27 Light emitting device and method of manufacturing the same Pending CN115411198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110582937.4A CN115411198A (en) 2021-05-27 2021-05-27 Light emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110582937.4A CN115411198A (en) 2021-05-27 2021-05-27 Light emitting device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
CN115411198A true CN115411198A (en) 2022-11-29

Family

ID=84154793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110582937.4A Pending CN115411198A (en) 2021-05-27 2021-05-27 Light emitting device and method of manufacturing the same

Country Status (1)

Country Link
CN (1) CN115411198A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653853A (en) * 2002-05-10 2005-08-10 皇家飞利浦电子股份有限公司 Electroluminescence control panel
KR20060002313A (en) * 2004-07-01 2006-01-09 이병철 Front-emitting active organic EL display device and suitable dehumidifying polarizing film
KR20090059606A (en) * 2007-12-07 2009-06-11 엘지전자 주식회사 Organic light emitting device
CN103681768A (en) * 2013-12-20 2014-03-26 合肥京东方光电科技有限公司 OLED (organic light emitting diode) display device, OLED display device preparation method and OLED display unit
CN105118931A (en) * 2015-09-10 2015-12-02 京东方科技集团股份有限公司 Array substrate, organic electroluminescence display panel, and display device
CN107086228A (en) * 2016-02-16 2017-08-22 上海和辉光电有限公司 A kind of OLED display
CN109786579A (en) * 2019-02-02 2019-05-21 北京京东方显示技术有限公司 OLED display panel and preparation method thereof
CN109950419A (en) * 2019-03-25 2019-06-28 京东方科技集团股份有限公司 An OLED device packaging structure, display device and packaging method
CN111384278A (en) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN111384263A (en) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN112420938A (en) * 2019-08-20 2021-02-26 Tcl集团股份有限公司 Packaging layer, photoelectric device and preparation method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653853A (en) * 2002-05-10 2005-08-10 皇家飞利浦电子股份有限公司 Electroluminescence control panel
KR20060002313A (en) * 2004-07-01 2006-01-09 이병철 Front-emitting active organic EL display device and suitable dehumidifying polarizing film
KR20090059606A (en) * 2007-12-07 2009-06-11 엘지전자 주식회사 Organic light emitting device
CN103681768A (en) * 2013-12-20 2014-03-26 合肥京东方光电科技有限公司 OLED (organic light emitting diode) display device, OLED display device preparation method and OLED display unit
CN105118931A (en) * 2015-09-10 2015-12-02 京东方科技集团股份有限公司 Array substrate, organic electroluminescence display panel, and display device
CN107086228A (en) * 2016-02-16 2017-08-22 上海和辉光电有限公司 A kind of OLED display
CN111384278A (en) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN111384263A (en) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN109786579A (en) * 2019-02-02 2019-05-21 北京京东方显示技术有限公司 OLED display panel and preparation method thereof
CN109950419A (en) * 2019-03-25 2019-06-28 京东方科技集团股份有限公司 An OLED device packaging structure, display device and packaging method
CN112420938A (en) * 2019-08-20 2021-02-26 Tcl集团股份有限公司 Packaging layer, photoelectric device and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王冬华;: "石墨烯的制备方法及应用研究进展", 当代化工, no. 09, 28 September 2017 (2017-09-28) *

Similar Documents

Publication Publication Date Title
Wang et al. Molecule‐induced p‐doping in perovskite nanocrystals enables efficient color‐saturated red light‐emitting diodes
CN111989792B (en) Solar cell modules
CN107565033B (en) Nickel oxide film and preparation method thereof, functional material, manufacturing method of film structure and electroluminescent device
CN107833976A (en) The preparation method and QLED devices of QLED devices
CN110265564B (en) Quantum dot light-emitting diode and its preparation method and display screen
Kim et al. Polystyrene enhanced crystallization of perovskites towards high performance solar cells
Song et al. Performance enhancement of crystal silicon solar cell by a CsPbBr3–Cs4PbBr6 perovskite quantum Dot@ ZnO/Ethylene Vinyl acetate copolymer downshifting composite film
Ning et al. Passivating defects in ZnO electron transport layer for enhancing performance of red InP-based quantum dot light-emitting diodes
CN110970569B (en) Quantum dot light-emitting diode and preparation method thereof
KR102077534B1 (en) Manufacturing method for transparent top electrode of optical device based on solution process and transparent top electrode of optical device manufactured by the same
CN111384263B (en) Quantum dot light-emitting diode and preparation method thereof
Lu et al. Highly stable quantum dot light-emitting diodes with improved interface contacting via violet irradiation
CN115411198A (en) Light emitting device and method of manufacturing the same
JP6156797B2 (en) Organic electronic devices
CN114203941B (en) Method for preparing film and light-emitting diode
Shi et al. Mercaptopropionic Acid Capped ZnMgO for Efficient and Stable Quantum Dot Light‐Emitting Diodes
CN109713152B (en) Thin film, preparation method thereof and QLED device
CN115249774A (en) Quantum dot film and preparation method thereof, and quantum dot light-emitting diode and preparation method thereof
CN114039002A (en) Electron transport ink, electron transport film, electroluminescent diode, and display device
CN115867094A (en) Photoelectric device and preparation method thereof, and preparation method of carbon-coated cuprous oxide particles
WO2023051317A1 (en) Tungsten oxide nanomaterial and preparation method therefor, and optoelectronic device
WO2023051461A1 (en) Molybdenum oxide nanomaterial, preparation method therefor, and photoelectric device
WO2023065864A1 (en) Preparation method for qled device, display substrate, and display apparatus
CN116193952A (en) Nanoparticles and compositions including them, light-emitting diodes and display devices
CN109713140B (en) Thin film and preparation method thereof and QLED device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination