CN115249774A - Quantum dot film and preparation method thereof, and quantum dot light-emitting diode and preparation method thereof - Google Patents
Quantum dot film and preparation method thereof, and quantum dot light-emitting diode and preparation method thereof Download PDFInfo
- Publication number
- CN115249774A CN115249774A CN202110447958.5A CN202110447958A CN115249774A CN 115249774 A CN115249774 A CN 115249774A CN 202110447958 A CN202110447958 A CN 202110447958A CN 115249774 A CN115249774 A CN 115249774A
- Authority
- CN
- China
- Prior art keywords
- quantum dot
- preparation
- reagent
- dot film
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 297
- 238000002360 preparation method Methods 0.000 title claims abstract description 57
- 239000010408 film Substances 0.000 claims abstract description 124
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 112
- 239000010409 thin film Substances 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- 238000000137 annealing Methods 0.000 claims description 17
- 239000002904 solvent Substances 0.000 claims description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 11
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 10
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 claims description 8
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 8
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 claims description 8
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 8
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 5
- 238000004528 spin coating Methods 0.000 claims description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 4
- 235000011054 acetic acid Nutrition 0.000 claims description 4
- 235000019253 formic acid Nutrition 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- 235000019260 propionic acid Nutrition 0.000 claims description 4
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 38
- 230000000171 quenching effect Effects 0.000 abstract description 13
- 238000010791 quenching Methods 0.000 abstract description 11
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 118
- 230000005525 hole transport Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 18
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 239000003446 ligand Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 8
- 239000002346 layers by function Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 5
- 230000005588 protonation Effects 0.000 description 5
- 239000003292 glue Substances 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 229920000144 PEDOT:PSS Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000012296 anti-solvent Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 239000003586 protic polar solvent Substances 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000004054 semiconductor nanocrystal Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010129 solution processing Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 1
- -1 CdSeS Inorganic materials 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910004262 HgTe Inorganic materials 0.000 description 1
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910007717 ZnSnO Inorganic materials 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000004807 desolvation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(II) oxide Inorganic materials [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 1
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
Abstract
本申请涉及量子点成膜工艺技术领域,尤其涉及一种量子点薄膜及其制备方法和量子点发光二极管及其制备方法。该量子点薄膜的制备方法包括如下步骤:提供初始量子点薄膜;用质子试剂对所述初始量子点薄膜进行处理,得到量子点薄膜。该制备方法可以钝化量子点表面缺陷,减少因缺陷态对激子的猝灭,最终可以提高量子点薄膜的发光效率和使用寿命。
The present application relates to the technical field of quantum dot film-forming technology, and in particular, to a quantum dot film and a preparation method thereof, and a quantum dot light-emitting diode and a preparation method thereof. The preparation method of the quantum dot film includes the following steps: providing an initial quantum dot film; and treating the initial quantum dot film with a proton reagent to obtain the quantum dot film. The preparation method can passivate the surface defects of the quantum dots, reduce the quenching of excitons due to defect states, and finally can improve the luminous efficiency and service life of the quantum dot thin film.
Description
技术领域technical field
本申请属于量子点成膜工艺技术领域,尤其涉及一种量子点薄膜及其制备方法和量子点发光二极管及其制备方法。The application belongs to the technical field of quantum dot film-forming technology, and in particular relates to a quantum dot film and a preparation method thereof, and a quantum dot light-emitting diode and a preparation method thereof.
背景技术Background technique
量子点(Quantum Dot,QD)作为一种具备独特发光特性的纳米材料,其发光波长可随量子点尺寸大小调节,而且具有色域宽、发光效率高、光和热稳定性高、可溶液加工等优点,近年来已经被广泛应用于发光二极管的器件研究中。近年,量子点发光二极管(QuantumDot Light Emitting Diode,QLED)器件的光电性能已经取得了很大的提高,器件结构向有机无机杂化混合结构转变。在QLED器件结构优化的过程中,器件的亮度及寿命已经取得了很大的提高,同时,为了满足商业化应用需求,器件稳定性的研究得到了越来越多的关注。Quantum Dot (QD) is a nanomaterial with unique luminescent properties, its luminescence wavelength can be adjusted with the size of quantum dots, and it has a wide color gamut, high luminous efficiency, high optical and thermal stability, and solution processing. and other advantages, it has been widely used in the device research of light-emitting diodes in recent years. In recent years, the optoelectronic properties of quantum dot light-emitting diode (Quantum Dot Light Emitting Diode, QLED) devices have been greatly improved, and the device structure has changed to an organic-inorganic hybrid structure. In the process of optimizing the QLED device structure, the brightness and lifetime of the device have been greatly improved. At the same time, in order to meet the needs of commercial applications, more and more attention has been paid to the research on device stability.
常规合成方法得到的量子点材料一般通过配位键连接有表面配体,表面配体一方面保证量子点能够稳定的分散在溶剂中不发生团聚沉降,另一方面可以有效钝化量子点表面的空位和悬挂键。但是,量子点用于量子点发光二极管器件的量子点发光层时,表面配体作为绝缘有机物,会增加发光层与相邻功能层之间的界面势垒导致载流子注入困难,从而导致量子点发光二极管器件工作电压升高,同时,造成器件的光电转化效率较低。所以,在保证量子点在溶剂中分散性的前提下,控制较低含量的量子点表面配体是保证量子点发光二极管器件性能的重要因素,但是,随着表面配体的减少,由于高比表面积的特性,量子点的表面未被配体保护的原子将以缺陷态存在,这些缺陷态会捕获量子点处于离域状态中电子和空穴,导致激子淬灭,引起器件性能的快速衰减。The quantum dot materials obtained by conventional synthesis methods are generally connected with surface ligands through coordination bonds. On the one hand, the surface ligands ensure that the quantum dots can be stably dispersed in the solvent without agglomeration and sedimentation, and on the other hand, they can effectively passivate the surface of the quantum dots. Space and dangling keys. However, when quantum dots are used in the quantum dot light-emitting layer of quantum dot light-emitting diode devices, the surface ligands act as insulating organics, which will increase the interface barrier between the light-emitting layer and the adjacent functional layer, which leads to the difficulty of carrier injection, which leads to quantum The operating voltage of the point light-emitting diode device increases, and at the same time, the photoelectric conversion efficiency of the device is low. Therefore, under the premise of ensuring the dispersibility of the quantum dots in the solvent, controlling the lower content of the surface ligands of the quantum dots is an important factor to ensure the performance of the quantum dot light-emitting diode devices. However, with the reduction of the surface ligands, due to the high ratio Due to the characteristics of the surface area, the atoms on the surface of the quantum dot that are not protected by ligands will exist in defect states, and these defect states will trap electrons and holes in the delocalized state of the quantum dot, resulting in quenching of excitons and rapid degradation of device performance. .
无论是量子点发光层的墨水配制,还是量子点发光二极管器件的制备,外界环境对电致发光器件的效率和稳定性都是一个关键影响因素。量子点材料在合成、纯化、墨水配制,再到溶液加工成量子点发光二极管的发光层过程中,不可避免的会在量子点表面产生一定数量的缺陷,同时,量子点的高比表面积特性,未被配体保护的原子将会以缺陷态存在;这些缺陷具有捕获量子点处于离域状态中电子和空穴的能力,这将会给量子点的激子复合引进一些快速的非辐射通道,而且其中大部分缺陷所带来的非辐射通道复合速率远大于辐射通道的复合速率,因此会造成量子点发光效率的急剧降低,即当通过外界光或者电激发进行光电转换过程时,缺陷态的存在会淬灭激子并且增加非辐射复合,降低荧光效率及光电性能。由此制备的量子点发光二极管器件存在着明显的亮度和外量子效率滚降效应,造成光电性能无法满足商业化应用的需求。Whether it is the ink preparation of the quantum dot light-emitting layer or the preparation of the quantum dot light-emitting diode device, the external environment is a key factor affecting the efficiency and stability of the electroluminescent device. In the process of synthesis, purification, ink preparation, and solution processing of quantum dot materials into the light-emitting layer of quantum dot light-emitting diodes, a certain number of defects will inevitably occur on the surface of quantum dots. At the same time, the high specific surface area characteristics of quantum dots, Atoms not protected by ligands will exist in defect states; these defects have the ability to trap electrons and holes in the delocalized state of the quantum dot, which will introduce some fast non-radiative channels for the exciton recombination of the quantum dot, Moreover, the recombination rate of non-radiative channels brought about by most of the defects is much greater than that of the radiation channels, which will cause a sharp decrease in the luminous efficiency of quantum dots. The presence quenches excitons and increases non-radiative recombination, reducing fluorescence efficiency and optoelectronic properties. The thus prepared quantum dot light-emitting diode devices have obvious brightness and external quantum efficiency roll-off effects, resulting in that the optoelectronic properties cannot meet the needs of commercial applications.
发明内容SUMMARY OF THE INVENTION
本申请的目的在于提供一种量子点薄膜及其制备方法和量子点发光二极管及其制备方法,旨在解决如何减少量子点薄膜表面缺陷的技术问题。The purpose of this application is to provide a quantum dot film and its preparation method, and a quantum dot light-emitting diode and its preparation method, aiming to solve the technical problem of how to reduce the surface defects of the quantum dot film.
为实现上述申请目的,本申请采用的技术方案如下:In order to realize the above-mentioned application purpose, the technical scheme adopted in this application is as follows:
第一方面,本申请提供一种量子点薄膜的制备方法,包括如下步骤:In a first aspect, the present application provides a method for preparing a quantum dot film, comprising the following steps:
提供初始量子点薄膜;Provide initial quantum dot film;
用质子试剂对所述初始量子点薄膜进行处理,得到量子点薄膜。The initial quantum dot film is treated with a proton reagent to obtain a quantum dot film.
本申请提供的量子点薄膜的制备方法,用质子试剂对所述初始量子点薄膜进行处理,该处理过程中,质子试剂会对初始量子点薄膜的进行表面接触,具体地,该质子试剂质子化后与量子点表面悬挂键连接,从而钝化量子点表面缺陷,减少因缺陷态对激子的猝灭,最终可以提高量子点薄膜的发光效率和使用寿命。In the preparation method of the quantum dot film provided by the present application, the initial quantum dot film is treated with a proton reagent. During the treatment process, the proton reagent will contact the surface of the initial quantum dot film. Specifically, the proton reagent is protonated. Then, it is connected with dangling bonds on the surface of the quantum dots, thereby passivating the surface defects of the quantum dots, reducing the quenching of excitons due to defect states, and finally improving the luminous efficiency and service life of the quantum dot film.
第二方面,本申请提供一种量子点薄膜,所述量子点薄膜由本申请的量子点薄膜的制备方法制备得到。In a second aspect, the present application provides a quantum dot film prepared by the method for preparing a quantum dot film of the present application.
本申请提供的量子点薄膜由本申请特有的制备方法制备得到,因该制备方法用质子试剂对初始量子点薄膜进行处理,因此该量子点薄膜可以减少量子点表面缺陷态,具有很好的发光效率和使用寿命。The quantum dot film provided by the present application is prepared by the unique preparation method of the present application. Because the preparation method uses a proton reagent to treat the initial quantum dot film, the quantum dot film can reduce the surface defect state of the quantum dot and has a good luminous efficiency. and service life.
第三方面,本申请提供一种量子点发光二极管,包括阳极、阴极以及位于所述阳极和所述阴极之间的量子点发光层,所述量子点发光层为本申请制备方法制备得到的量子点薄膜。In a third aspect, the present application provides a quantum dot light-emitting diode, comprising an anode, a cathode, and a quantum dot light-emitting layer located between the anode and the cathode, and the quantum dot light-emitting layer is a quantum dot light-emitting layer prepared by the preparation method of the present application. Point film.
本申请提供的量子点发光二极管中的量子点发光层为本申请特有的制备方法得到的量子点薄膜,因该由该量子点薄膜可以减少量子点表面缺陷态,降低对激子的猝灭,因此该器件具有很好的发光效率和使用寿命。The quantum dot light-emitting layer in the quantum dot light-emitting diode provided by the present application is the quantum dot film obtained by the unique preparation method of the present application, because the quantum dot film can reduce the surface defect state of the quantum dot and reduce the quenching of excitons, Therefore, the device has good luminous efficiency and service life.
第四方面,本申请提供一种量子点发光二极管的制备方法,包括如下步骤:In a fourth aspect, the present application provides a method for preparing a quantum dot light-emitting diode, comprising the following steps:
提供基板;provide the substrate;
在所述基板上制备初始量子点薄膜,然后用质子试剂对所述初始量子点薄膜进行处理,得到量子点发光层。An initial quantum dot thin film is prepared on the substrate, and then the initial quantum dot thin film is treated with a proton reagent to obtain a quantum dot light-emitting layer.
本申请提供的量子点薄膜的制备方法,其中量子点发光层采用质子试剂对基板上的初始量子点薄膜进行处理得到,因该处理过程中质子试剂会对初始量子点薄膜的进行表面接触,使质子试剂质子化后与量子点表面悬挂键连接,从而钝化量子点表面缺陷,减少因缺陷态对激子的猝灭;因此,该量子点发光二极管的制备方法最终可以提高器件的发光效率和使用寿命。The preparation method of the quantum dot film provided by the present application, wherein the quantum dot light-emitting layer is obtained by using a proton reagent to process the initial quantum dot film on the substrate, because the proton reagent will contact the surface of the initial quantum dot film during the treatment process, so that the After the proton reagent is protonated, it is connected with dangling bonds on the surface of the quantum dot, so as to passivate the surface defects of the quantum dot and reduce the quenching of the excitons due to the defect state; therefore, the preparation method of the quantum dot light-emitting diode can finally improve the luminous efficiency and luminous efficiency of the device. service life.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present application. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是本发明提供的量子点薄膜的制备方法流程示意图;Fig. 1 is the schematic flow sheet of the preparation method of quantum dot film provided by the present invention;
图2是本发明提供的量子点发光二极管器件结构示意图;2 is a schematic structural diagram of a quantum dot light-emitting diode device provided by the present invention;
图3是本发明提供的量子点薄膜的制备方法流程示意图;3 is a schematic flowchart of a method for preparing a quantum dot film provided by the present invention;
图4是本发明提供的实施例1和对比例1的发光二极管器件的电流效率曲线图;4 is a current efficiency curve diagram of the light-emitting diode devices of Example 1 and Comparative Example 1 provided by the present invention;
图5是本发明提供的实施例1和对比例1的器件寿命测试曲线图。FIG. 5 is a graph of the device life test curve of Example 1 and Comparative Example 1 provided by the present invention.
具体实施方式Detailed ways
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present application more clear, the present application will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
本申请实施例第一方面提供一种量子点薄膜的制备方法,如图1所示,该制备方法包括如下步骤:A first aspect of the embodiments of the present application provides a method for preparing a quantum dot film, as shown in FIG. 1 , the preparation method includes the following steps:
S01:提供初始量子点薄膜;S01: Provide initial quantum dot film;
S02:用质子试剂对所述初始量子点薄膜进行处理,得到量子点薄膜。S02: treating the initial quantum dot film with a proton reagent to obtain a quantum dot film.
本申请提供的量子点薄膜的制备方法,用质子试剂对所述初始量子点薄膜进行处理,该过程中,质子试剂会对初始量子点薄膜的进行表面接触,具体地,该质子试剂质子化后与量子点表面悬挂键连接,从而钝化量子点表面缺陷,减少因缺陷态对激子的猝灭,最终可以提高量子点薄膜的发光效率和使用寿命。In the preparation method of the quantum dot film provided by the present application, the initial quantum dot film is treated with a proton reagent. During this process, the proton reagent will contact the surface of the initial quantum dot film. Specifically, after the proton reagent is protonated It is connected with dangling bonds on the surface of the quantum dots, thereby passivating the surface defects of the quantum dots, reducing the quenching of excitons due to defect states, and finally improving the luminous efficiency and service life of the quantum dot thin film.
本申请的上述步骤01中;初始量子点薄膜可以是湿膜也可以是干膜;湿膜可以是将量子点溶液沉积在基板上形成的呈湿润的初始量子点薄膜;干膜可以是将量子点溶液沉积在基板上,进行去溶剂处理,形成干燥的固态初始量子点薄膜。因部分质子试剂可能与量子点溶液中的溶剂互为反溶剂,这样质子试剂处理呈湿润的初始量子点薄膜时,可能稍影响量子点在初始量子点薄膜中的稳固;因此,本申请优选干燥的固态初始量子点薄膜,即本申请优选将量子点溶液沉积在基板上去溶剂处理得到的初始量子点薄膜。In the above-mentioned step 01 of the present application; the initial quantum dot film may be a wet film or a dry film; the wet film may be a wet initial quantum dot film formed by depositing a quantum dot solution on a substrate; the dry film may be a The dot solution is deposited on the substrate and subjected to a desolvation process to form a dry solid-state initial quantum dot film. Because some proton reagents may be anti-solvents with the solvent in the quantum dot solution, when the proton reagent treats the wet initial quantum dot film, it may slightly affect the stability of the quantum dots in the initial quantum dot film; therefore, this application is preferably dry. The solid-state initial quantum dot thin film, that is, the initial quantum dot thin film obtained by depositing the quantum dot solution on the substrate and removing the solvent in the present application is preferred.
用于制备初始量子点薄膜的量子点溶液中,溶剂可以是饱和或者不饱和的烷烃、饱和或者不饱和的芳香烃中的至少一种,如二氯甲烷、氯仿、甲苯、正己烷、环己烷、正庚烷、正辛烷、环庚烷和二氧六环中的一种或多种。常规合成方法得到的量子点材料一般通过配位键连接有表面配体,本申请的上述初始量子点薄膜中,其中量子点表面也结合有表面配体,该表面配体可以是长链配体,如油胺OLAM、油酸OA、三正辛基膦TOP、三正辛基氧膦TOPO、三丁基膦TBP等中的一种或多种;该初始量子点薄膜中,量子点表面会形成一定数量的未被配体保护的阳离子悬挂键,即量子点表面的缺陷态。本申请将质子试剂与所述初始量子点薄膜进行混合处理,质子试剂在量子点表面的缺陷位点处质子化脱氢并与阳离子形成配位键,钝化悬挂键,同时,会有部分原位连接的表面配体会被质子化后的质子试剂取代。最终,通过质子试剂的处理减少因缺陷态对激子的猝灭,从而提高了量子点薄膜的发光效率和使用寿命。In the quantum dot solution used to prepare the initial quantum dot film, the solvent can be at least one of saturated or unsaturated alkanes, saturated or unsaturated aromatic hydrocarbons, such as dichloromethane, chloroform, toluene, n-hexane, cyclohexane One or more of alkane, n-heptane, n-octane, cycloheptane and dioxane. The quantum dot materials obtained by conventional synthesis methods are generally connected with surface ligands through coordination bonds. In the above-mentioned initial quantum dot film of the present application, the surface of the quantum dots is also bound with surface ligands, and the surface ligands can be long-chain ligands. , such as one or more of oleylamine OLAM, oleic acid OA, tri-n-octylphosphine TOP, tri-n-octylphosphine oxide TOPO, tributylphosphine TBP, etc.; in the initial quantum dot film, the surface of the quantum dots will A certain number of cationic dangling bonds that are not protected by ligands are formed, that is, defect states on the surface of the quantum dots. In this application, the proton reagent is mixed with the initial quantum dot film. The proton reagent is protonated and dehydrogenated at the defect site on the surface of the quantum dot and forms a coordination bond with the cation to passivate the dangling bond. At the same time, there will be some original The site-attached surface ligand will be replaced by the protonated proton reagent. Finally, the quenching of excitons due to defect states is reduced by the treatment of proton reagents, thereby improving the luminous efficiency and lifetime of quantum dot films.
需要说明的是,如果质子试剂直接加入量子点溶液中混合改性后再成膜,因部分质子试剂可能与量子点溶液中的溶剂互为反溶剂,这样质子试剂加入量子点溶液中影响溶液体系中量子点稳定,会降低量子点在溶剂中的分散性,甚至从分散溶剂中析出沉降,而且互混后的溶剂表面张力、粘度等会发生变化,从而质子试剂以加入量子点溶液中混合改性的形式不能提升最终量子点薄膜的成膜质量;但如果先将量子点溶液成膜形成初始量子点薄膜,即使是含有部分溶剂的湿膜,如质子试剂与溶剂互为反溶剂,因量子点溶液已成很薄的薄膜层,在薄膜状态下能钝化量子点表面缺陷,减少因缺陷态对激子的猝灭的效果,只是干燥的固态初始量子点薄膜的效果更优。因此,本申请是将质子试剂对成膜的初始量子点薄膜进行处理,使质子试剂对初始量子点薄膜进行表面接触,以对初始薄膜进行改性,而不是采用质子试剂掺杂在量子点溶液中进行改性,进一步优选用质子试剂对干燥的固态初始量子点薄膜进行处理。本申请通过这样的量子点薄膜的制备方法工艺,可以钝化量子点表面缺陷态陷阱,减少缺陷态对激子的猝灭,这样的工艺制备的量子点薄膜用于量子点发光二极管作为发光层可以提升器件发光性能和工作寿命。It should be noted that if the proton reagent is directly added to the quantum dot solution, mixed and modified to form a film, because some proton reagents may be anti-solvents with the solvent in the quantum dot solution, so the proton reagent added to the quantum dot solution affects the solution system. The stability of the quantum dots will reduce the dispersibility of the quantum dots in the solvent, and even precipitate and precipitate from the dispersing solvent, and the surface tension and viscosity of the solvent after mixing will change, so the proton reagent is added to the quantum dot solution. However, if the quantum dot solution is first formed into a film to form the initial quantum dot film, even if it is a wet film containing a part of the solvent, such as the proton reagent and the solvent are anti-solvents to each other, because the quantum dots The dot solution has become a very thin film layer, which can passivate the surface defects of the quantum dots in the thin film state and reduce the quenching effect of the excitons due to the defect state, but the effect of the dry solid initial quantum dot film is better. Therefore, in the present application, the proton reagent is used to treat the initial quantum dot film formed into the film, so that the proton reagent is in surface contact with the initial quantum dot film to modify the initial film, instead of using the proton reagent to dope the quantum dot solution. It is further preferred to treat the dried solid initial quantum dot film with a proton reagent. The present application can passivate the defect state traps on the surface of quantum dots and reduce the quenching of excitons by defect states through the preparation method of such a quantum dot film. The quantum dot film prepared by such a process is used for quantum dot light-emitting diodes as light-emitting layers The luminous performance and working life of the device can be improved.
本申请提供的初始量子点薄膜中,其中量子点包括元素周期表II-VI族、III-V族、IV-VI族、Ⅵ-Ⅵ族、Ⅷ-Ⅵ族、I-III-VI族、II-IV-VI族、II-IV-V族单一或者复合结构量子点中的至少一种。所述复合结构量子点包括核壳结构量子点,构成所述核壳结构量子点的核包括CdSe、CdS、CdTe、CdSeTe、CdZnS、PbSe、ZnTe、CdSeS、PbS、PbTe、HgS、HgSe、HgTe、GaN、GaP、GaAs、InP、InAs、InZnP、InGaP和InGaN中的至少一种;构成所述核壳结构量子点的壳包含ZnSe、ZnS和ZnSeS中的至少一种。In the initial quantum dot film provided in this application, the quantum dots include II-VI, III-V, IV-VI, VI-VI, VIII-VI, I-III-VI, II -At least one of group IV-VI, group II-IV-V single or composite structure quantum dots. The composite structure quantum dots include core-shell structure quantum dots, and the cores constituting the core-shell structure quantum dots include CdSe, CdS, CdTe, CdSeTe, CdZnS, PbSe, ZnTe, CdSeS, PbS, PbTe, HgS, HgSe, HgTe, at least one of GaN, GaP, GaAs, InP, InAs, InZnP, InGaP and InGaN; the shell constituting the core-shell structure quantum dot contains at least one of ZnSe, ZnS and ZnSeS.
其中的质子试剂即指分子中有可以作为氢键给体的-OH键或者-NH键试剂,也称为质子溶剂。所述质子试剂包括含羟基的质子试剂和含氨基的质子试剂中的至少一种。所述含羟基的质子试剂包括水、甲醇、乙醇、丙醇如异丙醇、丁醇如正丁醇、戊醇如正戊醇、甲酸、乙酸、丙酸和丁酸中的至少一种;所述含氨基的质子试剂包括甲胺、乙胺和丙胺中的至少一种。上述质子试剂在与初始量子点薄膜混合时,可在量子点表面的缺陷态位点处脱氢质子化后与量子点表面配位不饱和阳离子结合,同时,量子点表面少部分长链配体也会被质子化试剂替换。The protic reagent refers to a reagent with -OH bond or -NH bond that can be used as a hydrogen bond donor in the molecule, and is also called a protic solvent. The protic reagent includes at least one of a hydroxyl-containing protic reagent and an amino-containing protic reagent. The hydroxyl-containing proton reagent includes at least one of water, methanol, ethanol, propanol such as isopropanol, butanol such as n-butanol, pentanol such as n-pentanol, formic acid, acetic acid, propionic acid and butyric acid; The amino group-containing proton reagent includes at least one of methylamine, ethylamine and propylamine. When the above-mentioned proton reagent is mixed with the initial quantum dot film, it can be dehydrogenated and protonated at the defect state site on the surface of the quantum dot and then combined with the unsaturated cations on the surface of the quantum dot. At the same time, a small amount of long-chain ligands on the surface of the quantum dot Also replaced by protonation reagents.
上述步骤S02中,将质子试剂与初始量子点薄膜进行混合处理的方式可以有两种,一种是将呈液态的质子试剂沉积在初始量子点薄膜表面进行质子化交换,将初始量子点薄膜覆盖,然后退火得到最终改性后的量子点薄膜。一种是将呈气态的质子试剂与初始量子点薄膜进行接触进行质子化交换,然后退火得到最终改性后的量子点薄膜;其中,气态的质子试剂可以通过对液态的质子试剂加热、超声、喷雾等方式进行雾化得到。In the above step S02, there are two ways to mix the proton reagent and the initial quantum dot film. One is to deposit the liquid proton reagent on the surface of the initial quantum dot film for protonation exchange, and cover the initial quantum dot film. , and then annealed to obtain the final modified quantum dot film. One is to contact the gaseous proton reagent with the initial quantum dot film for protonation exchange, and then anneal to obtain the final modified quantum dot film; wherein, the gaseous proton reagent can be heated, sonicated, It is obtained by atomization by spraying and other methods.
具体地,在一个实施例中,所述质子试剂为液态的质子试剂,所述混合处理的步骤包括:将液态的质子试剂沉积在所述初始量子点薄膜表面,然后退火处理。其中,将液态的质子试剂沉积在所述初始量子点薄膜表面,然后退火处理的步骤包括:将所述液态的质子试剂每次以3-20μl/cm2的量旋涂2-5次,即以初始量子点薄膜为参照,每1cm2的单位面积上旋涂2-20μl液态的质子试剂,旋涂2-5次。Specifically, in one embodiment, the proton reagent is a liquid proton reagent, and the mixing step includes: depositing the liquid proton reagent on the surface of the initial quantum dot film, and then annealing. Wherein, the liquid proton reagent is deposited on the surface of the initial quantum dot film, and then the steps of annealing treatment include: spin-coating the liquid proton reagent in an amount of 3-20 μl/cm 2 for 2-5 times each time, that is, Taking the initial quantum dot film as a reference, spin-coat 2-20 μl of liquid proton reagent per unit area of 1 cm 2 , and spin-coat 2-5 times.
具体地,可以使用匀胶机在旋转状态下向初始量子点薄膜上多次滴加液态的质子溶剂;其中,旋转转速1000-3000rpm,每次滴加质子溶剂的体积为3-20μl/cm2,滴加次数为2-5次。由于质子试剂与初始量子点薄膜直接接触,质子试剂容易挥发,为避免覆盖的质子试剂与初始量子点薄膜接触时间的差异性,采取旋转状态下快速滴加质子试剂的方式在量子点表面进行质子化反应;由于在匀胶机旋转状态下一次滴加的质子溶剂与量子点薄膜表面接触时间较短,故采取多次重复的滴加的方式,以便质子化充分进行,更有效地钝化量子点表面缺陷,具体地,质子试剂每次以3-20/cm2的量旋涂2-5次。当该制备方法用于在量子点发光二极管中制备量子点发光层时,滴加次数在2-5次范围内,也不会对下层有机空穴传输材料产生破坏影响。Specifically, the liquid protic solvent can be dripped multiple times on the initial quantum dot film by using a glue dispenser in a rotating state; wherein, the rotation speed is 1000-3000 rpm, and the volume of the protic solvent added each time is 3-20 μl/cm 2 , the number of dripping is 2-5 times. Since the proton reagent is in direct contact with the initial quantum dot film, the proton reagent is easy to volatilize. In order to avoid the difference in the contact time between the covered proton reagent and the initial quantum dot film, the proton reagent is rapidly dripped on the surface of the quantum dot in a rotating state. Because the contact time of the proton solvent added at one time and the surface of the quantum dot film is short under the rotating state of the glue homogenizer, the method of repeated dripping is adopted for many times, so that the protonation can be fully carried out and the quantum dot film can be passivated more effectively. For point surface defects, specifically, the proton reagent was spin-coated 2-5 times in an amount of 3-20/cm 2 each time. When the preparation method is used to prepare a quantum dot light-emitting layer in a quantum dot light-emitting diode, the number of times of dropping is in the range of 2-5 times, and the underlying organic hole transport material will not be damaged.
进一步地,将液态的质子试剂沉积在所述初始量子点薄膜表面,然后退火处理的温度为60-100℃,时间为5-20min。Further, a liquid proton reagent is deposited on the surface of the initial quantum dot film, and then the temperature of the annealing treatment is 60-100° C. and the time is 5-20 min.
在另一个实施例中,所述质子试剂为气态的质子试剂,所述混合处理的步骤包括:将所述初始量子点薄膜置于所述气态的质子试剂中进行静置处理,然后退火处理。其中,所述静置处理的时间为30s-5min;如果静置时间小于30s时,则量子点表面缺陷处的质子化反应没有充分,钝化缺陷的效果低;如果静置时间大于5min,过长时间的质子试剂处理可能产生新的缺陷态,这些缺陷态成为新的发光猝灭中心。当该制备方法用于在量子点发光二极管中制备量子点发光层时,对于正型器件的结构,上述静置处理时间范围内对下层的有机空穴传输材料不会产生影响,不会使其降解。In another embodiment, the proton reagent is a gaseous proton reagent, and the mixing treatment step includes: placing the initial quantum dot film in the gaseous proton reagent for standing treatment, and then annealing treatment. Wherein, the standing treatment time is 30s-5min; if the standing time is less than 30s, the protonation reaction at the surface defects of the quantum dots is not sufficient, and the effect of passivating the defects is low; if the standing time is longer than 5min, the Prolonged proton reagent treatment may generate new defect states that become new luminescence quenching centers. When the preparation method is used to prepare the quantum dot light-emitting layer in the quantum dot light-emitting diode, for the structure of the positive device, the above-mentioned static treatment time range will not affect the underlying organic hole transport material, and will not make it degradation.
进一步地,将所述初始量子点薄膜置于所述气态的质子试剂中进行静置处理,然后退火处理的温度为60-100℃,时间为5-20min。Further, the initial quantum dot film is placed in the gaseous proton reagent for standing treatment, and then the temperature of the annealing treatment is 60-100° C. and the time is 5-20 min.
本申请实施例第二方面一种量子点薄膜,所述量子点薄膜由本申请上述量子点薄膜的制备方法制备得到。A second aspect of the embodiments of the present application is a quantum dot film, wherein the quantum dot film is prepared by the above-mentioned preparation method of the quantum dot film of the present application.
本申请提供的量子点薄膜由本申请特有的制备方法制备得到,因该制备方法用质子试剂对初始量子点薄膜进行处理,因此该量子点薄膜可以减少量子点表面缺陷态,具有很好的发光效率和使用寿命。The quantum dot film provided by the present application is prepared by the unique preparation method of the present application. Because the preparation method uses a proton reagent to treat the initial quantum dot film, the quantum dot film can reduce the surface defect state of the quantum dot and has a good luminous efficiency. and service life.
本申请实施例第三方面提供一种量子点发光二极管,包括阳极、阴极以及位于所述阳极和所述阴极之间的量子点发光层,所述量子点发光层为本申请制备方法制备得到的量子点薄膜。A third aspect of the embodiments of the present application provides a quantum dot light-emitting diode, comprising an anode, a cathode, and a quantum dot light-emitting layer located between the anode and the cathode, and the quantum dot light-emitting layer is prepared by the preparation method of the present application Quantum dot films.
本申请提供的量子点发光二极管中的量子点发光层为本申请特有的制备方法得到的量子点薄膜,因该由该量子点薄膜可以钝化量子点表面缺陷态,钝化后的量子点表面缺陷态明显减少,捕获离域状态下的电子和空穴能力降低,激子淬灭的非辐射复合通道减少,因此该器件具有很好的发光效率和使用寿命。The quantum dot light-emitting layer in the quantum dot light-emitting diode provided by the present application is the quantum dot film obtained by the unique preparation method of the present application, because the quantum dot film can passivate the surface defect state of the quantum dot, and the surface of the quantum dot after passivation is passivated. The defect states are significantly reduced, the ability to capture electrons and holes in the delocalized state is reduced, and the non-radiative recombination channels for exciton quenching are reduced, so the device has good luminous efficiency and lifetime.
具体地,量子点发光二极管器件的外量子效率(EQE)有近30%的提升。Specifically, the external quantum efficiency (EQE) of quantum dot light-emitting diode devices is improved by nearly 30%.
在一个实施例中,所述阳极与所述量子点发光层之间可以设置空穴传输层,进一步地,空穴传输层与阳极之间可以设置空穴注入层;或者,所述阴极与所述量子点发光层之间可以设置电子传输层,进一步地,电子传输层与阴极极之间可以设置电子注入层。该量子点发光二极管可以是正置器件也可以是倒置器件。In one embodiment, a hole transport layer may be arranged between the anode and the quantum dot light-emitting layer, and further, a hole injection layer may be arranged between the hole transport layer and the anode; or, the cathode and the An electron transport layer may be arranged between the quantum dot light-emitting layers, and further, an electron injection layer may be arranged between the electron transport layer and the cathode. The quantum dot light-emitting diode can be an upright device or an inverted device.
进一步地,如图2所示,本申请的量子点发光二极管器件包括阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层和阴极。该量子点发光层为本申请制备方法制备得到的量子点薄膜。Further, as shown in FIG. 2 , the quantum dot light-emitting diode device of the present application includes an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode. The quantum dot light-emitting layer is the quantum dot thin film prepared by the preparation method of the present application.
在一个优选实施例中,采用红色量子点材料CdZnSe/ZnSe/ZnS作为器件发光层,量子点材料的电致发光波长为622nm,半峰宽为22nm,连接的表面配体为油酸;通过超声的方式将甲醇溶剂雾化成蒸汽对发光层薄膜进行处理1min,由此制备得到的量子点发光二极管器件最大电流效率可达30cd/A,且随着亮度的增加没有明显的滚降,测得寿命T95@1000nit=3170h(亮度从1000nit衰减至95%所需要的时间),且在寿命测试初始阶段没有明显的亮度抬升过程,说明量子点表面缺陷的已经被钝化;相比于未经质子试剂处理的器件最大电流效率为20cd/A,并且在高亮度下效率下降明显,T95@1000nit=1000h,在寿命测试初始阶段存在近5h左右的亮度上升过程,表明量子点材料的表面缺陷在被持续钝化引起亮度的升高;导致该差异主要原因是量子点表面未经钝化的缺陷态对电生的激子产生了持续的淬灭效应,导致发光效率随着电流的增加发生滚降。In a preferred embodiment, the red quantum dot material CdZnSe/ZnSe/ZnS is used as the light-emitting layer of the device, the electroluminescence wavelength of the quantum dot material is 622 nm, the half-peak width is 22 nm, and the connected surface ligand is oleic acid; The methanol solvent is atomized into steam to treat the light-emitting layer film for 1 min. The maximum current efficiency of the quantum dot light-emitting diode device prepared by this method can reach 30cd/A, and there is no obvious roll-off with the increase of brightness. The measured life T 95 @1000nit=3170h (the time it takes for the brightness to decay from 1000nit to 95%), and there is no obvious brightness lifting process in the initial stage of the life test, indicating that the surface defects of the quantum dots have been passivated; The maximum current efficiency of the reagent-treated device is 20cd/A, and the efficiency drops significantly at high brightness. T 95 @1000nit=1000h, there is a brightness increase process of about 5h in the initial stage of the life test, indicating that the surface defects of quantum dot materials are The increase in brightness caused by continuous passivation; the main reason for the difference is that the unpassivated defect states on the surface of the quantum dots have a continuous quenching effect on the electro-generated excitons, resulting in the rolling of the luminous efficiency with the increase of the current. drop.
在另一个优选地实施例中,采取匀胶机将水通过旋涂的方式覆盖在绿色量子点发光层上,使用2000rpm的转速,每次滴加50ul,重复三次;量子点选用结构为CdZnSeS/ZnS,电致发光波长为535nm,半峰宽为25nm,表面配体为油胺;由此制备的器件,最大电流效率可达80cd/A,且随着亮度的增加没有明显的滚降,测得寿命T95@1000nit=6400h;未经处理的器件最大电流效率可达55cd/A,且随着亮度的增加没有明显的滚降,测得寿命T95@1000nit=2600h。In another preferred embodiment, a glue dispenser is used to cover the water on the green quantum dot light-emitting layer by spin coating, using a rotation speed of 2000 rpm, dripping 50 ul each time, and repeating three times; the quantum dot selection structure is CdZnSeS/ ZnS, the electroluminescence wavelength is 535nm, the half-peak width is 25nm, and the surface ligand is oleylamine; the maximum current efficiency of the device prepared by this method can reach 80cd/A, and there is no obvious roll-off with the increase of brightness. The lifetime T 95 @1000nit=6400h is obtained; the maximum current efficiency of the untreated device can reach 55cd/A, and there is no obvious roll-off with the increase of brightness, and the measured lifetime T 95 @1000nit=2600h.
在一个实施方式中,阳极选自铟锡氧化物、氟掺氧化锡、铟锌氧化物、石墨烯、纳米碳管中的一种或多种;空穴注入层的材料为PEDOT:PSS、氧化镍、氧化钼、氧化钨、氧化钒、硫化钼、硫化钨、氧化铜中的一种或多种;空穴传输层材料为PVK、Poly-TPD、CBP、TCTA和TFB中的一种或多种;量子点发光层包括红光量子点发光层、绿光量子点发光层以及蓝光量子点发光层;量子点材料包括II-VI半导体的纳米晶、III-V族半导体的纳米晶、II-V族化合物、III-VI化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物、IV族单质中至少的一种,该量子点发光层由本申请的上述量子点薄膜的制备方法制备得到;电子传输层的材料为n型ZnO、TiO2、SnO、Ta2O3、AlZnO、ZnSnO、InSnO、Alq3中的一种或多种;阴极选自Al、Ca、Ba、Ag中的一种或多种。In one embodiment, the anode is selected from one or more of indium tin oxide, fluorine-doped tin oxide, indium zinc oxide, graphene, and carbon nanotubes; the material of the hole injection layer is PEDOT: PSS, oxide One or more of nickel, molybdenum oxide, tungsten oxide, vanadium oxide, molybdenum sulfide, tungsten sulfide, copper oxide; hole transport layer material is one or more of PVK, Poly-TPD, CBP, TCTA and TFB The quantum dot light-emitting layer includes red light quantum dot light-emitting layer, green light quantum dot light-emitting layer and blue light quantum dot light-emitting layer; quantum dot materials include II-VI semiconductor nanocrystals, III-V semiconductor nanocrystals, II-V group semiconductors At least one of compound, III-VI compound, IV-VI group compound, I-III-VI group compound, II-IV-VI group compound, and group IV element, the quantum dot light-emitting layer is composed of the above quantum dot film of the present application The material of the electron transport layer is one or more of n-type ZnO, TiO 2 , SnO, Ta 2 O 3 , AlZnO, ZnSnO, InSnO and Alq 3 ; the cathode is selected from Al, Ca, Ba , one or more of Ag.
本申请第四方面提供一种量子点发光二极管的制备方法,如图3所示,该制备方法包括如下步骤:A fourth aspect of the present application provides a method for preparing a quantum dot light-emitting diode, as shown in FIG. 3 , the preparation method includes the following steps:
E01:提供基板;E01: Provide substrate;
E02:在所述基板上制备初始量子点薄膜,然后用质子试剂对所述初始量子点薄膜进行处理,得到量子点发光层。E02: preparing an initial quantum dot thin film on the substrate, and then treating the initial quantum dot thin film with a proton reagent to obtain a quantum dot light-emitting layer.
本申请提供的量子点薄膜的制备方法,其中量子点发光层采用质子试剂对基板上的初始量子点薄膜进行处理得到,因该处理过程中质子试剂会对初始量子点薄膜的进行表面接触,使质子试剂质子化后与量子点表面悬挂键连接,从而钝化量子点表面缺陷,减少因缺陷态对激子的猝灭;因此,该量子点发光二极管的制备方法最终可以提高器件的发光效率和使用寿命。The preparation method of the quantum dot film provided by the present application, wherein the quantum dot light-emitting layer is obtained by using a proton reagent to process the initial quantum dot film on the substrate, because the proton reagent will contact the surface of the initial quantum dot film during the treatment process, so that the After the proton reagent is protonated, it is connected with dangling bonds on the surface of the quantum dot, so as to passivate the surface defects of the quantum dot and reduce the quenching of the excitons due to the defect state; therefore, the preparation method of the quantum dot light-emitting diode can finally improve the luminous efficiency and luminous efficiency of the device. service life.
具体地,在提供的基板上形成初始量子点薄膜,然后用质子试剂对该初始量子点薄膜进行处理,得到量子点发光层。其中,初始量子点薄膜可以是湿膜也可以是干膜;本申请优选干燥的固态初始量子点薄膜,即本申请优选将量子点溶液沉积在基板上,去溶剂处理,得到初始量子点薄膜。Specifically, an initial quantum dot thin film is formed on the provided substrate, and then the initial quantum dot thin film is treated with a proton reagent to obtain a quantum dot light-emitting layer. Wherein, the initial quantum dot film may be a wet film or a dry film; in this application, a dry solid-state initial quantum dot film is preferred, that is, in this application, the quantum dot solution is preferably deposited on a substrate and treated with solvent removal to obtain an initial quantum dot film.
进一步地,质子试剂为液态的质子试剂,用质子试剂对初始量子点薄膜进行处理的步骤包括:将液态的质子试剂沉积在所述初始量子点薄膜表面,然后退火处理;或者,质子试剂为气态的质子试剂,用质子试剂对初始量子点薄膜进行处理的步骤包括:将初始量子点薄膜置于气态的质子试剂中进行静置处理,然后退火处理。其中,将液态的质子试剂沉积在初始量子点薄膜表面,然后退火处理的步骤包括:将液态的质子试剂每次以3-20μl/cm2的量旋涂2-5次;后续退火处理的温度为60-100℃,时间为5-20min。将初始量子点薄膜置于气态的质子试剂中进行静置处理的时间为30s-5min,后续退火处理的温度为60-100℃,时间为5-20min。该两种情况的具体内容上文已详细阐述。Further, the proton reagent is a liquid proton reagent, and the step of treating the initial quantum dot film with the proton reagent includes: depositing a liquid proton reagent on the surface of the initial quantum dot film, and then annealing; or, the proton reagent is a gaseous state The proton reagent is used, and the steps of treating the initial quantum dot film with the proton reagent include: placing the initial quantum dot film in a gaseous proton reagent for standing treatment, and then annealing treatment. Wherein, the liquid proton reagent is deposited on the surface of the initial quantum dot film, and then the steps of annealing treatment include: spin-coating the liquid proton reagent in an amount of 3-20 μl/cm 2 for 2-5 times each time; the temperature of the subsequent annealing treatment It is 60-100℃, and the time is 5-20min. The initial quantum dot film is placed in a gaseous proton reagent for a standing treatment time of 30s-5min, and the subsequent annealing treatment is performed at a temperature of 60-100° C. and a time of 5-20min. The specific contents of the two cases have been described in detail above.
进一步地,质子试剂包括含羟基的质子试剂和含氨基的质子试剂中的至少一种。含羟基的质子试剂包括水、甲醇、乙醇、丙醇、丁醇、戊醇、甲酸、乙酸、丙酸和丁酸中的至少一种;含氨基的质子试剂包括甲胺、乙胺和丙胺中的至少一种。Further, the protic reagent includes at least one of a hydroxyl-containing protic reagent and an amino-containing protic reagent. The hydroxyl-containing proton reagent includes at least one of water, methanol, ethanol, propanol, butanol, pentanol, formic acid, acetic acid, propionic acid and butyric acid; the amino-containing proton reagent includes methylamine, ethylamine and propylamine at least one of.
上述量子点发光二极管的制备方法中,使用的基板可以是阳极基板,也可以是阴极基板。In the above-mentioned preparation method of a quantum dot light-emitting diode, the substrate used may be an anode substrate or a cathode substrate.
在一个实施例中,该基板为阳极基板,在该阳极基板上制备量子点发光层后,进一步在该量子点发光层上制备阴极。其中,制备量子点发光层之前,可以先在阳极基板上制备空穴功能层(如空穴传输层,或依次层叠的空穴注入层和空穴传输层),然后在该空穴功能层上制备量子点发光层;在制备量子点发光层之后,可以先在量子点发光层上制备电子功能层(如电子传输层,或依次层叠的电子传输层和电子注入层),然后在电子功能层上制备阴极。In one embodiment, the substrate is an anode substrate, and after the quantum dot light-emitting layer is prepared on the anode substrate, a cathode is further prepared on the quantum dot light-emitting layer. Wherein, before preparing the quantum dot light-emitting layer, a hole functional layer (such as a hole transport layer, or a hole injection layer and a hole transport layer stacked in sequence) can be prepared on the anode substrate, and then the hole function layer can be prepared on the anode substrate. Prepare the quantum dot light-emitting layer; after preparing the quantum dot light-emitting layer, an electronic functional layer (such as an electron transport layer, or an electron transport layer and an electron injection layer stacked in sequence) can be prepared on the quantum dot light-emitting layer first, and then the electronic functional layer can be prepared on the quantum dot light-emitting layer. Prepare the cathode.
在一个实施例中,该基板为阴极基板,在该阴极基板上制备量子点发光层后,进一步在该量子点发光层上制备阳极。其中,制备量子点发光层之前,可以先在阴极基板上制备电子功能层(如电子传输层,或依次层叠的电子注入层和电子传输层),然后在该电子功能层上制备量子点发光层;在制备量子点发光层之后,可以先在量子点发光层上制备空穴功能层(如空穴传输层,或依次层叠的空穴传输层和空穴注入层),然后在空穴功能层上制备阴极。In one embodiment, the substrate is a cathode substrate, and after the quantum dot light-emitting layer is prepared on the cathode substrate, an anode is further prepared on the quantum dot light-emitting layer. Wherein, before preparing the quantum dot light-emitting layer, an electronic functional layer (such as an electron transport layer, or an electron injection layer and an electron transport layer stacked in sequence) can be prepared on the cathode substrate, and then the quantum dot light-emitting layer can be prepared on the electronic functional layer. ; After preparing the quantum dot light-emitting layer, a hole functional layer (such as a hole transport layer, or a hole transport layer and a hole injection layer stacked in sequence) can be prepared on the quantum dot light-emitting layer first, and then the hole function layer can be prepared on the quantum dot light-emitting layer. Prepare the cathode.
下面结合具体实施例进行说明。The following description will be given in conjunction with specific embodiments.
实施例1Example 1
一种量子点发光二极管,如图2所示,包括阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层和阴极。A quantum dot light-emitting diode, as shown in Figure 2, includes an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode.
该器件的制备方法包括:The preparation method of the device includes:
在阳极层ITO上旋涂PEDOT:PSS材料,然后100℃退火15min,得到空穴注入层;然后在空穴注入层上旋涂TFB材料,100℃退火15min,形成空穴传输层;在作为承载部的空穴传输层上形成CdZnSe/ZnSe/ZnS红色量子点层,然后将器件置于利用超声雾化的甲醇气氛中静置1min,取出后80℃退火10min,得到量子点发光层;在量子点发光层上制作ZnO电子传输层;最后通过蒸镀Al阴极电极层,封装形成电致发光器件。PEDOT:PSS material was spin-coated on the anode layer ITO, and then annealed at 100 °C for 15 min to obtain a hole injection layer; then spin-coated TFB material on the hole injection layer, annealed at 100 °C for 15 min to form a hole transport layer; A CdZnSe/ZnSe/ZnS red quantum dot layer was formed on the hole transport layer at the part of the device, and then the device was placed in an ultrasonic atomized methanol atmosphere for 1 min, and then taken out and annealed at 80 °C for 10 min to obtain a quantum dot light-emitting layer; A ZnO electron transport layer is made on the point light-emitting layer; finally, an electroluminescent device is formed by evaporating an Al cathode electrode layer and encapsulating it.
对该量子点发光二极管器件的光电性能和寿命进行了测试,测试结果如表1和图3-4所示。The photoelectric properties and lifetime of the quantum dot light-emitting diode device were tested, and the test results are shown in Table 1 and Figures 3-4.
实施例2Example 2
一种量子点发光二极管,如图2所示,包括阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层和阴极。A quantum dot light-emitting diode, as shown in Figure 2, includes an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode.
该器件的制备方法包括:The preparation method of the device includes:
在阳极层ITO上旋涂PEDOT:PSS材料,然后100℃退火15min,得到空穴注入层;然后在空穴注入层上旋涂TFB材料,100℃退火15min,形成空穴传输层;在作为承载部的空穴传输层上形成CdZnSeS/ZnS绿色量子点层,利用匀胶机通过旋涂方式在该绿色量子点层上覆盖蒸馏水膜,转速为2000rpm,每次50ul蒸馏水,重复三次,然后在热板上80℃退火10min,得到量子点发光层;在量子点发光层上制作ZnO电子传输层;最后通过蒸镀Ag阴极电极层,封装形成电致发光器件。PEDOT:PSS material was spin-coated on the anode layer ITO, and then annealed at 100 °C for 15 min to obtain a hole injection layer; then spin-coated TFB material on the hole injection layer, annealed at 100 °C for 15 min to form a hole transport layer; A CdZnSeS/ZnS green quantum dot layer was formed on the hole transport layer in the upper part, and a distilled water film was covered on the green quantum dot layer by spin coating with a glue dispenser. Annealed at 80°C for 10 min on the plate to obtain a quantum dot light-emitting layer; a ZnO electron transport layer was fabricated on the quantum dot light-emitting layer; finally, an electroluminescent device was formed by evaporating the Ag cathode electrode layer and encapsulating it.
对该量子点发光二极管器件的光电性能和寿命进行了测试,测试结果如表1所示。The photoelectric properties and lifetime of the quantum dot light-emitting diode device were tested, and the test results are shown in Table 1.
对比例1Comparative Example 1
一种量子点发光二极管,如图2所示,包括阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层和阴极。A quantum dot light-emitting diode, as shown in Figure 2, includes an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode.
该器件各层材料以及制备方法除了量子点发光层是直接在空穴传输层上形成CdZnSe/ZnSe/ZnS红色量子点层,其他均与实施例1相同。The material and preparation method of each layer of the device are the same as those in Example 1, except that the quantum dot light-emitting layer is directly formed on the hole transport layer to form a CdZnSe/ZnSe/ZnS red quantum dot layer.
对该量子点发光二极管器件的光电性能和寿命进行了测试,测试结果如表1和图3-4所示。The photoelectric properties and lifetime of the quantum dot light-emitting diode device were tested, and the test results are shown in Table 1 and Figures 3-4.
对比例2Comparative Example 2
一种量子点发光二极管,如图2所示,包括阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层和阴极。A quantum dot light-emitting diode, as shown in Figure 2, includes an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode.
该器件各层材料以及制备方法除了量子点发光层是直接在空穴传输层上形成CdZnSeS/ZnS绿色量子点层,其他均与实施例2相同。The material and preparation method of each layer of the device are the same as those in Example 2 except that the quantum dot light-emitting layer is directly formed on the hole transport layer to form a CdZnSeS/ZnS green quantum dot layer.
对该量子点发光二极管器件的光电性能和寿命进行了测试,测试结果如表1所示。The photoelectric properties and lifetime of the quantum dot light-emitting diode device were tested, and the test results are shown in Table 1.
测试结果Test Results
对上述实施例和对比例进行测试,器件的寿命测试采用广州新视界公司定制的128路寿命测试系统。系统架构为恒压恒流源驱动QLED,测试电压或电流的变化;光电二极管探测器和测试系统,测试QLED的亮度(光电流)变化;亮度计测试校准QLED的亮度(光电流);结果如图4-5以及表1所示。The above embodiments and comparative examples are tested, and the life test of the device adopts a 128-channel life test system customized by Guangzhou New Vision Company. The system architecture is to drive the QLED with a constant voltage and constant current source, and test the change of voltage or current; the photodiode detector and test system, test the change of the brightness (photocurrent) of the QLED; the luminance meter test and calibrate the brightness (photocurrent) of the QLED; the results are as follows Figure 4-5 and Table 1.
表1Table 1
从表1数据可知:相对未用质子试剂处理的对比例,本申请的实施例通过对量子点发光二极管中的量子点发光层的制备过程中用质子试剂进行处理,可以钝化量子点表面缺陷态,从而提高了器件的发光效率和使用寿命。It can be seen from the data in Table 1 that compared with the comparative example not treated with proton reagents, the examples of the present application can passivate the surface defects of quantum dots by treating with proton reagents in the preparation process of the quantum dot light-emitting layer in the quantum dot light-emitting diode. state, thereby improving the luminous efficiency and service life of the device.
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application and are not intended to limit the present application. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present application shall be included in the protection of the present application. within the range.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110447958.5A CN115249774A (en) | 2021-04-25 | 2021-04-25 | Quantum dot film and preparation method thereof, and quantum dot light-emitting diode and preparation method thereof |
PCT/CN2021/141738 WO2022227661A1 (en) | 2021-04-25 | 2021-12-27 | Quantum dot film and preparation method therefor, and preparation method for quantum dot light-emitting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110447958.5A CN115249774A (en) | 2021-04-25 | 2021-04-25 | Quantum dot film and preparation method thereof, and quantum dot light-emitting diode and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115249774A true CN115249774A (en) | 2022-10-28 |
Family
ID=83697158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110447958.5A Pending CN115249774A (en) | 2021-04-25 | 2021-04-25 | Quantum dot film and preparation method thereof, and quantum dot light-emitting diode and preparation method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115249774A (en) |
WO (1) | WO2022227661A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116836703A (en) * | 2023-03-07 | 2023-10-03 | 中国计量大学 | Preparation method of solvent-resistant quantum dot film and quantum dot film |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008140495A2 (en) * | 2006-11-22 | 2008-11-20 | The Research Foundation Of State University Of New York | A method to produce water-dispersible highly luminescent quantum dots for biomedical imaging |
CN109928903A (en) * | 2017-12-15 | 2019-06-25 | Tcl集团股份有限公司 | Quantum dot surface ligand, quantum dot film and its preparation method and application |
CN109935737A (en) * | 2017-12-15 | 2019-06-25 | Tcl集团股份有限公司 | Quantum dot film and preparation method thereof, QLED device and preparation method thereof |
CN111129355B (en) * | 2018-10-31 | 2021-08-27 | Tcl科技集团股份有限公司 | Preparation method of quantum dot film and preparation method of quantum dot light-emitting diode |
CN110224074A (en) * | 2018-12-29 | 2019-09-10 | 华南理工大学 | A kind of quanta point electroluminescent device and preparation method thereof |
CN111584724A (en) * | 2020-05-14 | 2020-08-25 | 深圳市华星光电半导体显示技术有限公司 | Porous quantum dot light-emitting film and manufacturing method thereof |
-
2021
- 2021-04-25 CN CN202110447958.5A patent/CN115249774A/en active Pending
- 2021-12-27 WO PCT/CN2021/141738 patent/WO2022227661A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116836703A (en) * | 2023-03-07 | 2023-10-03 | 中国计量大学 | Preparation method of solvent-resistant quantum dot film and quantum dot film |
CN116836703B (en) * | 2023-03-07 | 2024-09-17 | 中国计量大学 | Preparation method of anti-solvent quantum dot film and quantum dot film |
Also Published As
Publication number | Publication date |
---|---|
WO2022227661A1 (en) | 2022-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12238950B2 (en) | Electroluminescent device, manufacturing method thereof, and display apparatus | |
WO2021253923A1 (en) | Quantum dot light-emitting diode component, preparation method therefor, and display panel | |
Zhu et al. | All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer | |
CN113838985B (en) | Zinc oxide nano material, preparation method thereof and luminescent device | |
CN111200066B (en) | Quantum dot light-emitting diode and preparation method thereof | |
CN115249774A (en) | Quantum dot film and preparation method thereof, and quantum dot light-emitting diode and preparation method thereof | |
CN108695413B (en) | A kind of electroluminescent device and preparation method thereof | |
CN114695736A (en) | Preparation method of quantum dot light-emitting diode | |
CN114649490B (en) | A method for processing a quantum dot light-emitting layer, an electroluminescent device and a method for preparing the same | |
CN113120947A (en) | Composite material, preparation method thereof and quantum dot light-emitting diode | |
CN114039002B (en) | Electron transport ink, electron transport film, electroluminescent diode, and display device | |
CN115960601A (en) | A quantum dot light-emitting layer and its preparation method and quantum dot light-emitting diode device | |
CN114695716A (en) | Preparation method of quantum dot light-emitting diode | |
WO2024139449A1 (en) | Core-shell quantum dot and preparation method therefor, and quantum-dot electroluminescent device | |
WO2024120060A1 (en) | Composite material and preparation method therefor, and light-emitting device and preparation method therefor | |
WO2024104139A1 (en) | Composite material, light-emitting device comprising same, and preparation method therefor | |
US20250048911A1 (en) | Light-emitting device preparation method, light-emitting device, and display apparatus | |
CN114725294B (en) | Quantum dot light-emitting device and preparation method thereof, and display device | |
WO2023056838A1 (en) | Thin film and preparation method therefor, photoelectric device | |
CN113122260B (en) | Quantum dot material, preparation method thereof and quantum dot light-emitting diode | |
CN116193948A (en) | Preparation method of light-emitting diode | |
CN115867065A (en) | Doping material, preparation method and quantum dot light-emitting diode | |
CN116437684A (en) | Nanomaterial, preparation method of nanomaterial and light-emitting device | |
CN116694318A (en) | Quantum dot material and preparation method, composition, light emitting diode and display device | |
TW202438608A (en) | Charge transport coating composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |