CN109694252A - 一种结构渐变的多孔介质太阳能吸热器的制备方法 - Google Patents
一种结构渐变的多孔介质太阳能吸热器的制备方法 Download PDFInfo
- Publication number
- CN109694252A CN109694252A CN201910028996.XA CN201910028996A CN109694252A CN 109694252 A CN109694252 A CN 109694252A CN 201910028996 A CN201910028996 A CN 201910028996A CN 109694252 A CN109694252 A CN 109694252A
- Authority
- CN
- China
- Prior art keywords
- hanging
- solar heat
- heat absorber
- precursor
- sizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/0615—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/349—Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
本发明公开了一种结构渐变的多孔介质太阳能吸热器的制备方法。本发明利用有机模板浸渍法,提出了分层、多次挂浆的工艺流程。通过调节固相质量占比控制浆料黏度,初次挂浆采用高黏度浆料,对整个多孔材料挂浆。后续挂浆采用低粘度浆料并逐次调整挂浆的多孔区域范围,获得沿厚度方向结构渐变的多孔介质吸热体。本发明提出的制备方法能够控制沿多孔介质厚度方向的孔隙率和孔径等结构参数,实现了结构渐变的多孔介质太阳能吸热器的制备。
Description
技术领域
本发明属于太阳能热利用技术领域,特别涉及一种结构渐变的多孔介质太阳能吸热器的制备方法。
背景技术
作为聚光太阳能热发电系统中的关键部件,吸热器承担着将太阳辐射能量传递给换热流体的任务。传统的表面吸收式吸热器由于热流集中、表面温度高,会形成较高的热辐射损失。多孔介质太阳能吸热器是一种容积式吸热器,太阳辐射能够在多孔介质内逐渐衰减,降低了表面的集中热流;同时其复杂的三维网状结构和巨大的换热面积,能够显著增强换热流体和吸热器间的对流传热,从而形成“体吸收”效应,有效提升吸热器的效率。然而,多孔介质太阳能吸热器的推广依然存在以下难题:(1)高效的吸热器结构缺乏设计方案;(2)新型吸热器的制备加工存在技术瓶颈。
目前国内外已有学者提出了多孔介质太阳能吸热器新结构。Roldan等提出了一种双层多孔介质吸热器,其利用多孔介质热平衡模型,揭示了孔隙率沿太阳入射方向减小的吸热器能够减小吸热器内部温度梯度,具有更高的热效率。Chen等和Du等分别采用多孔介质非热平衡模型,利用数值方法发现孔隙率(或孔径)减小的结构有利于提升吸热器效率。Antonio L.Avila-Marin等通过堆叠多孔金属丝网,获得了几何结构参数和光学特性不同双层和三层多孔介质,实验发现,双层多孔介质中,直接接收太阳辐射的外层应该具有较高的孔隙率以保证较大的透射深度,同时内层多孔介质应该具有更大的比表面积以强化对流换热。从以上的分析可以看出,相对于均匀的多孔介质太阳能吸热器,结构参数变化的吸热器具有更优异的性能。从研究方法来看,数值模拟虽然能够指导吸热器结构的设计,但是其有效性尚缺乏实验的证明。同时,在目前的实验研究中,只能通过堆叠不同的均匀多孔介质获得简单的吸热器结构,依然缺乏新型多孔介质太阳能吸热器的制备方法。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种结构渐变的多孔介质太阳能吸热器的制备方法,该方法通过调节陶瓷浆料黏度,采取分层、多次挂浆方法,可以制备孔隙率和孔径渐变的多孔介质太阳能吸热器。
为了实现上述目的,本发明采用的技术方案是:
一种结构渐变的多孔介质太阳能吸热器的制备方法,采用有机模板浸渍法,以聚氨酯有机泡沫作为前驱体,利用陶瓷浆料对前驱体挂浆后经干燥、高温烧结制成,其特征在于,所述挂浆过程中采用多次、分层的工艺,控制前驱体不同厚度处的挂浆量,获得沿前驱体(多孔介质)厚度方向变化的孔隙结构。
优选地,所述陶瓷浆料通过如下步骤制备:
步骤1)混合质量比为2.6:1的碳化硅粉和白刚玉粉构成陶瓷粉主体,添加高岭土和膨润土作为烧结助剂,重量分别为陶瓷粉主体的1/50和1/100;
步骤2)加入质量分别为陶瓷粉体1/4和1/20的碱性硅溶胶和羧甲基纤维素作为粘结剂,与陶瓷粉主体充分混合。加入去离子水调节固相质量占比至70%-76%,球磨3小时获得陶瓷浆料。
优选地,每次利用陶瓷浆料对前驱体挂浆后,使用离心机排出多孔介质内多余的浆料。
优选地,挂浆后胚体置于50℃真空干燥箱干燥4小时,末次挂浆完成后的胚体在90℃条件下真空干燥24h。
优选地,所述多次、分层的工艺中:
1)首次挂浆采用固相质量占比为76%的陶瓷浆料,获得基础陶瓷胚体;
2)后续挂浆采用固相质量占比为70%的陶瓷浆料,仅对沿多孔介质厚度方向的部分区域挂浆;
3)逐渐减少挂浆的区域的范围,挂浆区域分别为前驱体厚度的80%、60%、40%和20%,形成沿多孔介质厚度方向挂浆量线性增加的结构。
同时,第一次挂浆之后各次挂浆区域的厚度可调,若第二次挂浆到第五次挂浆区域分别为前驱体厚度的70%、40%、30%和20%,可形成沿多孔介质厚度方向挂浆量增加先慢后快的结构。若第二次挂浆到第五次挂浆区域分别为前驱体厚度的90%、70%、50%和20%,可形成沿多孔介质厚度方向挂浆量增加先快后慢的结构。
优选地,所述高温烧结的条件为:维持升温速率1℃/分钟,从室温升至600℃;随后以5℃/分钟升温至1450℃,保温4h,最后自然冷却至室温。
本发明结构渐变多孔介质太阳能吸热器充分利用多孔介质结构特性,高孔隙率和高孔径的部分有利于太阳辐射的透射,而低孔隙率和低孔径的部分能够显著强化对流传热。现有技术中直接堆叠的多孔结构,由于各界面之间存在热阻,不利于热量的传递;同时各层之间参数突变,会致吸热器内部热应力增大。相比之下,本发明的渐变结构,不存在界面热阻,结构参数渐变,有利于降低吸热器内部温度梯度。
附图说明
图1为本发明制备的沿厚度方向孔隙率从0.85渐变至0.65的多孔介质太阳能吸热器的实物图。
图2为本发明制备的结构渐变的多孔介质太阳能吸热器的孔隙率分布。
具体实施方式
下面结合附图,以加工沿厚度方向孔隙率从0.85线性渐变至0.65的多孔介质太阳能吸热器为例,对本发明进行详细说明:
首先,对孔密度为10PPI,厚度为4cm的聚氨酯有机泡沫前驱体去除网络间膜和表面改性。
其次,配置黏度较高的陶瓷浆料。混合47.4g碳化硅粉和18.2g白刚玉粉构成陶瓷粉主体,添加1.4g高岭土和0.7g膨润土作为烧结助剂,混合均匀。加入碱性硅溶胶17.2g和4wt%的羧甲基纤维素3.4g,并加入去离子水0.8g,调节固相质量分数为76%。随后,将浆料置于球磨机,转速200转/分钟,球磨3小时。
第一次挂浆过程中,将聚氨酯有机泡沫前驱体完全浸渍于固相质量分数为76%的陶瓷浆料。充分挂浆后将多孔介质样品置于离心机内,以转速300转/分钟离心10秒,排出多孔介质内多余的浆料,避免堵孔。将胚体在50℃真空干燥箱内干燥4小时。
再次,配置黏度相对较低的陶瓷浆料。混合47.4g碳化硅粉和18.2g白刚玉粉构成陶瓷粉主体,添加1.4g高岭土和0.7g膨润土作为烧结助剂,混合均匀。加入碱性硅溶胶17.2g和4wt%的羧甲基纤维素3.4g,并加入去离子水8.4g,调节固相质量分数为70%。随后,将浆料置于球磨机,转速200转/分钟,球磨3小时。
第二次挂浆过程中,将第一次挂浆后干燥的胚体部分浸渍于质量分数为70%的陶瓷浆料,控制浸入浆料的区域厚度为3.2cm。挂浆后的多孔介质样品置于离心机,以转速500转/分钟离心10秒,排出多余浆料。将胚体在50℃真空干燥箱内干燥4小时。
重复同样的挂浆流程,进行第三次、第四次和第五次挂浆,使用质量分数为70%的陶瓷浆料,控制浸入浆料的区域厚度分别为2.4cm、1.6cm和0.8cm。每次挂浆后,以转速500转/分钟离心10秒,排出多余浆料,并将胚体在50℃真空干燥箱内干燥4小时。
完成以上五次分层挂浆后,即获得结构渐变的多孔介质胚体。将胚体在90℃条件下真空干燥24h,排出多孔介质骨架中的水分。
最后,进行高温烧结。初始排塑阶段,从室温升至600℃,维持升温速率为1℃/分钟。随后烧成阶段,以5℃/分钟快速升温至1450℃,保温4h,最后自然冷却至室温。获得结构渐变的多孔介质太阳能吸热器。
烧结后的样品如图1所示,可以看出多孔介质骨架在厚度方向,从上到下逐渐变粗,同时样品未出现明显的分层现象。为了进一步表征样品结构渐变的特性,对样品进行了工业计算机断层扫描,获得了样品真实的三维结构。对其厚度方向的孔隙率分布进行测量,结果如图2所示。多孔介质孔隙率在厚度方向从0.85逐渐变化至0.65,证明了本方法能够控制多孔介质孔隙结构参数,实现结构渐变多孔介质太阳能吸热器的制备。
类似的,通过调整陶瓷浆料的黏度、分层挂浆的层数和各层挂浆的厚度,可以实现不同孔隙率和孔径范围以及不同结构参数分布特性的多孔介质的制备。
本发明提供的结构渐变的多孔介质太阳能吸热器的制备方法,为实验探究新型吸热器的流动传热特性提供支持。
Claims (9)
1.一种结构渐变的多孔介质太阳能吸热器的制备方法,采用有机模板浸渍法,以聚氨酯有机泡沫作为前驱体,利用陶瓷浆料对前驱体挂浆后经干燥、高温烧结制成,其特征在于,所述挂浆过程中采用多次、分层的工艺,控制前驱体不同厚度处的挂浆量,获得沿厚度方向变化的孔隙结构。
2.根据权利要求1所述结构渐变的多孔介质太阳能吸热器的制备方法,其特征在于,所述陶瓷浆料通过如下步骤制备:
步骤1)混合质量比为2.6:1的碳化硅粉和白刚玉粉构成陶瓷粉主体,并添加烧结助剂;
步骤2)加入粘结剂与陶瓷粉体充分混合,然后加入去离子水调节固相质量占比,球磨获得陶瓷浆料。
3.根据权利要求2所述结构渐变的多孔介质太阳能吸热器的制备方法,其特征在于,所述烧结助剂为高岭土和膨润土,添加量分别为陶瓷粉主体重量的1/50和1/100;所述粘结剂为碱性硅溶胶和羧甲基纤维素,添加量分别为陶瓷粉主体重量的1/4和1/20,加入去离子水调节固相质量占比至70%-76%,球磨3小时获得陶瓷浆料。
4.根据权利要求1所述结构渐变的多孔介质太阳能吸热器的制备方法,其特征在于,每次利用陶瓷浆料对前驱体挂浆后,使用离心机排出多孔介质内多余的浆料。
5.根据权利要求1或4所述结构渐变的多孔介质太阳能吸热器的制备方法,其特征在于,末次挂浆完成后的胚体在90℃条件下真空干燥24h,其余每次挂浆后胚体置于50℃真空干燥箱干燥4小时。
6.根据权利要求1所述结构渐变的多孔介质太阳能吸热器的制备方法,其特征在于,所述多次、分层的工艺中:
1)首次挂浆采用固相质量占比为76%的陶瓷浆料,获得基础陶瓷胚体;
2)后续挂浆采用固相质量占比为70%的陶瓷浆料,仅对沿前驱体厚度方向的部分区域挂浆;
3)挂浆区域的范围逐渐减少,挂浆区域分别为前驱体厚度的80%、60%、40%和20%,形成沿前驱体厚度方向挂浆量线性增加的结构。
7.根据权利要求1所述结构渐变的多孔介质太阳能吸热器的制备方法,其特征在于,所述高温烧结的温升过程为:维持升温速率1℃/分钟,从室温升至600℃;随后以5℃/分钟升温至1450℃,保温4h,最后自然冷却至室温。
8.根据权利要求6所述结构渐变的多孔介质太阳能吸热器的制备方法,其特征在于,所述多次、分层的工艺中,第一次挂浆之后各次挂浆区域的厚度可调,第二次挂浆到第五次挂浆区域分别为前驱体厚度的70%、40%、30%和20%,形成沿前驱体厚度方向挂浆量增加先慢后快的结构。
9.根据权利要求6所述结构渐变的多孔介质太阳能吸热器的制备方法,其特征在于,所述多次、分层的工艺中,第一次挂浆之后各次挂浆区域的厚度可调,第二次挂浆到第五次挂浆区域分别为前驱体厚度的90%、70%、50%和20%,形成沿前驱体厚度方向挂浆量增加先快后慢的结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910028996.XA CN109694252B (zh) | 2019-01-12 | 2019-01-12 | 一种结构渐变的多孔介质太阳能吸热器的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910028996.XA CN109694252B (zh) | 2019-01-12 | 2019-01-12 | 一种结构渐变的多孔介质太阳能吸热器的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109694252A true CN109694252A (zh) | 2019-04-30 |
CN109694252B CN109694252B (zh) | 2020-10-27 |
Family
ID=66233277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910028996.XA Active CN109694252B (zh) | 2019-01-12 | 2019-01-12 | 一种结构渐变的多孔介质太阳能吸热器的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109694252B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111233478A (zh) * | 2020-01-20 | 2020-06-05 | 北京交通大学 | 一种碳化钛梯度多孔陶瓷的分层挂浆制备方法 |
CN111253158A (zh) * | 2020-01-21 | 2020-06-09 | 武汉理工大学 | 太阳能热发电吸/储热一体化刚玉/SiC陶瓷材料及其制备方法 |
CN113237239A (zh) * | 2021-04-06 | 2021-08-10 | 河海大学 | 一种梯度多孔/颗粒复合移动床太阳能吸热器 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04119977A (ja) * | 1990-09-10 | 1992-04-21 | Nagao Kogyo:Kk | 多孔性傾斜機能材料の製造方法 |
EP1329438A1 (en) * | 2002-01-14 | 2003-07-23 | "VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK", afgekort "V.I.T.O." | Method for producing metallic and ceramic products |
CN105906370A (zh) * | 2016-04-18 | 2016-08-31 | 上海应用技术学院 | 一种呈现孔径梯度分布的三维网络多孔陶瓷的制备方法 |
CN106588029A (zh) * | 2016-11-03 | 2017-04-26 | 广州凯耀资产管理有限公司 | 一种新型太阳能吸热陶瓷材料及其制备方法 |
CN106839474A (zh) * | 2017-01-19 | 2017-06-13 | 西安交通大学 | 一种多孔介质太阳能吸热器及其设计方法 |
CN107200583A (zh) * | 2017-05-26 | 2017-09-26 | 哈尔滨工业大学 | 一种具有孔隙率连续梯度的多孔材料及其制备方法 |
CN108083811A (zh) * | 2017-12-14 | 2018-05-29 | 西安交通大学 | 一种双梯度多孔陶瓷材料及其制备方法 |
CN108585886A (zh) * | 2018-06-11 | 2018-09-28 | 哈尔滨工业大学 | 一种孔隙率变化可控的多孔陶瓷材料及其制备方法 |
CN108751950A (zh) * | 2018-06-14 | 2018-11-06 | 哈尔滨工业大学 | 一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法 |
CN109081699A (zh) * | 2018-08-29 | 2018-12-25 | 佛山皖和新能源科技有限公司 | 一种太阳能吸热陶瓷材料的制备方法 |
-
2019
- 2019-01-12 CN CN201910028996.XA patent/CN109694252B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04119977A (ja) * | 1990-09-10 | 1992-04-21 | Nagao Kogyo:Kk | 多孔性傾斜機能材料の製造方法 |
EP1329438A1 (en) * | 2002-01-14 | 2003-07-23 | "VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK", afgekort "V.I.T.O." | Method for producing metallic and ceramic products |
CN105906370A (zh) * | 2016-04-18 | 2016-08-31 | 上海应用技术学院 | 一种呈现孔径梯度分布的三维网络多孔陶瓷的制备方法 |
CN106588029A (zh) * | 2016-11-03 | 2017-04-26 | 广州凯耀资产管理有限公司 | 一种新型太阳能吸热陶瓷材料及其制备方法 |
CN106839474A (zh) * | 2017-01-19 | 2017-06-13 | 西安交通大学 | 一种多孔介质太阳能吸热器及其设计方法 |
CN107200583A (zh) * | 2017-05-26 | 2017-09-26 | 哈尔滨工业大学 | 一种具有孔隙率连续梯度的多孔材料及其制备方法 |
CN108083811A (zh) * | 2017-12-14 | 2018-05-29 | 西安交通大学 | 一种双梯度多孔陶瓷材料及其制备方法 |
CN108585886A (zh) * | 2018-06-11 | 2018-09-28 | 哈尔滨工业大学 | 一种孔隙率变化可控的多孔陶瓷材料及其制备方法 |
CN108751950A (zh) * | 2018-06-14 | 2018-11-06 | 哈尔滨工业大学 | 一种基于冷冻流延制备功能梯度陶瓷/金属复合材料的方法 |
CN109081699A (zh) * | 2018-08-29 | 2018-12-25 | 佛山皖和新能源科技有限公司 | 一种太阳能吸热陶瓷材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
FRITZ ZAVERSKY ET AL.: "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer confifigurations", 《APPLIED ENERGY》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111233478A (zh) * | 2020-01-20 | 2020-06-05 | 北京交通大学 | 一种碳化钛梯度多孔陶瓷的分层挂浆制备方法 |
CN111253158A (zh) * | 2020-01-21 | 2020-06-09 | 武汉理工大学 | 太阳能热发电吸/储热一体化刚玉/SiC陶瓷材料及其制备方法 |
CN111253158B (zh) * | 2020-01-21 | 2022-02-01 | 武汉理工大学 | 太阳能热发电吸/储热一体化刚玉/SiC陶瓷材料及其制备方法 |
CN113237239A (zh) * | 2021-04-06 | 2021-08-10 | 河海大学 | 一种梯度多孔/颗粒复合移动床太阳能吸热器 |
Also Published As
Publication number | Publication date |
---|---|
CN109694252B (zh) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109694252A (zh) | 一种结构渐变的多孔介质太阳能吸热器的制备方法 | |
Zhu et al. | Improvement in the strut thickness of reticulated porous ceramics | |
CN103011817B (zh) | 一种钇硅氧多孔高温陶瓷材料的制备方法 | |
CN103086737B (zh) | 大面积陶瓷多孔承烧板及其制备方法 | |
CN111233478B (zh) | 一种碳化钛梯度多孔陶瓷的分层挂浆制备方法 | |
CN110590388A (zh) | 一种低成本、高效氧化铝纤维增强氧化铝复合材料制备方法 | |
CN108178647A (zh) | 一种轻质高强隔热莫来石纤维多孔陶瓷的制备方法 | |
CN105272322A (zh) | 一种轻质耐高温陶瓷纤维刚性隔热瓦及其制造方法 | |
CN105565845A (zh) | 一种陶瓷纤维多孔隔热瓦的制备方法 | |
CN102372499A (zh) | 有机泡沫浸渍工艺制备多孔Ti2AlN陶瓷的方法 | |
CN105906370B (zh) | 一种呈现孔径梯度分布的三维网络多孔陶瓷的制备方法 | |
CN111807843B (zh) | 一种轻质高强碳化硅泡沫陶瓷及其制备方法 | |
CN110218095B (zh) | 一种基于等级孔陶瓷的高效储热单元的制备方法 | |
CN102093075A (zh) | 一种孔梯度泡沫陶瓷的制备方法 | |
CN105237044A (zh) | 多孔纤维状ZrO2陶瓷隔热材料表面的TaSi2-SiO2-BSG高发射率涂层及制备方法 | |
CN114058337A (zh) | 一种三元复合矿物微球基相变储热材料及其制备方法和应用 | |
CN104529505A (zh) | 一种定向多级孔过滤器及其制备方法 | |
CN105780126A (zh) | 一种由原位生成的晶须搭接而成的多孔莫来石的制备方法 | |
CN103553634B (zh) | 一种选择吸收型光热转换陶瓷复合材料及其制备方法 | |
CN111043450B (zh) | 一种透波型隔热阻气构件及其制备方法 | |
Wu et al. | Preparation and properties of reticulated porous γ-Y2Si2O7 ceramics with high porosity and relatively high strength | |
CN102560176B (zh) | 浸浆烧结制备多孔金属的方法 | |
WO2023138179A1 (zh) | 多孔发热基材制备方法 | |
CN110590367A (zh) | 一种梯度TiC多孔陶瓷的有机模板浸渍成形-无压烧结制备方法 | |
CN107151149A (zh) | 一种具有三级孔隙的陶瓷基复合材料零件的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |