[go: up one dir, main page]

CN108410840A - A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application - Google Patents

A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application Download PDF

Info

Publication number
CN108410840A
CN108410840A CN201810290512.4A CN201810290512A CN108410840A CN 108410840 A CN108410840 A CN 108410840A CN 201810290512 A CN201810290512 A CN 201810290512A CN 108410840 A CN108410840 A CN 108410840A
Authority
CN
China
Prior art keywords
pseudomonas aeruginosa
sequence
protein
recombinant
endolysin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810290512.4A
Other languages
Chinese (zh)
Inventor
徐永平
渠坤丽
袁玉玉
王丽丽
李晓宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810290512.4A priority Critical patent/CN108410840A/en
Publication of CN108410840A publication Critical patent/CN108410840A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发公开了一种铜绿假单胞菌噬菌体内溶素及其编码基因与应用。本发明提供了如下a)或b)所示的蛋白质:a)由序列表中序列1所示的氨基酸序列组成的蛋白质;b)将序列表中序列1的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有裂解革兰氏阴性菌功能的由序列表中序列1衍生的蛋白质。本发明提供的蛋白质能够裂解大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德菌和鼠伤寒沙门氏菌等多种革兰氏阴性菌,该蛋白与表面活性剂EDTA协同作用,对革兰氏阴性菌产生更强的抑制作用。为研发新的抗菌制剂奠定了基础。The invention discloses a Pseudomonas aeruginosa phage endolysin and its encoding gene and application. The invention provides the following proteins as shown in a) or b): a) a protein composed of the amino acid sequence shown in sequence 1 in the sequence list; b) a protein derived from sequence 1 in the sequence list, in which the amino acid sequence of sequence 1 in the sequence list is replaced and/or deleted and/or added with one or more amino acid residues and has the function of lysing Gram-negative bacteria. The protein provided by the invention can lyse a variety of Gram-negative bacteria such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium. The protein acts synergistically with the surfactant EDTA to produce a stronger inhibitory effect on Gram-negative bacteria. It lays a foundation for the development of new antibacterial preparations.

Description

一种铜绿假单胞菌噬菌体内溶素及其编码基因与应用A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application

技术领域technical field

本发明属于生物技术领域,涉及一种铜绿假单胞菌噬菌体内溶素及其编码 基因与应用。The invention belongs to the field of biotechnology, and relates to a Pseudomonas aeruginosa phage endolysin, its coding gene and its application.

背景技术Background technique

近年来,很多细菌出现了耐药性,甚至出现了多重耐药菌。多重耐药菌给 人们的健康带来了严重的威胁。因此,当务之急是寻找一种新型的抗菌制剂来 应对耐药菌的威胁。噬菌体作为一种细菌病毒,具有特异性高、对人体无副作 用等优点被科学家所重视。噬菌体是一种能感染细菌、真菌、放线菌以及螺旋 体的病毒,在自然界中含量约为1031,或者可以说环境中约有107噬菌体/cm3。 噬菌体可以分为溶原性噬菌体和裂解性噬菌体。溶原性噬菌体把自己的基因组 与宿主菌的基因组组合共存;而裂解性噬菌体是把自己基因组注入宿主菌后复 制,组装成子代噬菌体进而裂解宿主菌,释放子代噬菌体。根据裂解性噬菌体 的这一特性,可以将噬菌体作为抗菌制剂治疗相关的细菌感染。东欧一些国家 早已利用裂解性噬菌体治疗人类的细菌感染。随着全球范围内细菌耐药性的出 现,人们更加重视噬菌体的抗菌特性,相关研究涉及人医和兽医临床,以及食 品安全和环境净化等领域。In recent years, many bacteria have developed drug resistance, and even multi-drug resistant bacteria have emerged. Multi-drug resistant bacteria pose a serious threat to people's health. Therefore, it is urgent to find a new type of antibacterial agent to deal with the threat of drug-resistant bacteria. As a bacterial virus, bacteriophage has the advantages of high specificity and no side effects on the human body, and has been valued by scientists. Phage is a virus that can infect bacteria, fungi, actinomycetes and spirochetes, and its content in nature is about 10 31 , or it can be said that there are about 10 7 phages/cm 3 in the environment. Phages can be divided into lysogenic and lytic phages. The lysogenic phage coexists with the genome combination of the host bacterium and its own genome; while the lytic phage injects its own genome into the host bacterium, replicates, assembles into progeny phages, and then lyses the host bacterium to release the progeny phages. According to this characteristic of lytic phages, phages can be used as antibacterial agents to treat related bacterial infections. Some countries in Eastern Europe have already used lytic phages to treat bacterial infections in humans. With the emergence of bacterial drug resistance worldwide, more attention has been paid to the antibacterial properties of phages, and related research involves human and veterinary clinics, as well as food safety and environmental purification.

噬菌体作为一个独立的生命体在用作抗菌制剂时会产生抗噬菌体菌株,且 生物安全性一直受到质疑。噬菌体内溶素(bacteriophage endolysins)是dsDNA噬 菌体在感染细菌后期表达的一种水解酶。研究者认为噬菌体内溶素具有以下优 点:1特异性强,在杀灭病原菌的同时不会干扰正常菌群。2不易使细菌产生 耐药性,由于内溶素是噬菌体在与细菌共同进化的过程中产生的,针对细菌细 胞壁上高度保守的肽聚糖,所以产生耐药性的几率很小。3能杀死在粘膜表面 定植病原菌。内溶素作为一种蛋白质大分子在体内可能会产生相应的抗体中和 其杀菌能力,但是一些实验发现其抗体对其没有中和作用。噬菌体内溶素与噬 菌体相比不易产生耐药性,Idelevich等发现嵌合酶PRF-119对噬菌体抗性的金 黄色葡萄球菌突变株,目前还没有相关的内溶素抗性的报告。内溶素在临床应 用的安全性和药代动力学特性的实验正在准备,如内溶素P128已经进入临床Ⅱ 期实验,测试其对人类鼻腔携带的金黄色葡萄球菌的杀菌效力。且内溶素作为 一种蛋白质的理化性质研究已经很成熟,可以对其进行修饰改造,所以噬菌体 内溶素具有新型抗菌制剂的潜力。近年来研究者建立的一些动物模型也很好的 证明了内溶素的抗菌活性。As an independent living organism, phage will produce anti-phage strains when used as an antibacterial agent, and its biological safety has been questioned. Bacteriophage endolysins (bacteriophage endolysins) are a kind of hydrolase expressed by dsDNA phage in the late stage of bacterial infection. Researchers believe that phage endolysin has the following advantages: 1. Strong specificity, it will not interfere with normal flora while killing pathogenic bacteria. 2. It is not easy for bacteria to develop drug resistance. Since endolysin is produced during the co-evolution process of phage and bacteria, it targets the highly conserved peptidoglycan on the bacterial cell wall, so the probability of drug resistance is very small. 3 can kill the colonization of pathogenic bacteria on the mucosal surface. As a protein macromolecule, endolysin may produce corresponding antibodies to neutralize its bactericidal ability in the body, but some experiments have found that the antibodies have no neutralizing effect on it. Phage endolysin is less likely to produce drug resistance than phage. Idelevich et al. found that the chimeric enzyme PRF-119 is resistant to phage-resistant Staphylococcus aureus mutants. At present, there is no relevant report of endolysin resistance. Experiments on the safety and pharmacokinetic properties of endolysin in clinical application are being prepared. For example, endolysin P128 has entered phase II clinical trials to test its bactericidal efficacy against Staphylococcus aureus carried in the human nasal cavity. Moreover, the research on the physicochemical properties of endolysin as a protein is very mature, and it can be modified, so phage endolysin has the potential of new antibacterial agents. In recent years, some animal models established by researchers have also proved the antibacterial activity of endolysin.

发明内容Contents of the invention

本发明的目的是提供一种铜绿假单胞菌噬菌体内溶素及其编码基因与应 用。该内溶素能够降解多种革兰氏阴性(G-)菌的原生质体,与EDTA具有协同作 用,增强对G-菌的抑制。The object of the present invention is to provide a kind of Pseudomonas aeruginosa bacteriophage endolysin and its coding gene and application. The endolysin can degrade the protoplasts of various Gram-negative (G-) bacteria, and has a synergistic effect with EDTA to enhance the inhibition of G- bacteria.

本发明提供的铜绿假单胞菌噬菌体内溶素,名称为Lysin-G78,源于铜绿假 单胞菌噬菌体(Pseudomonas aeruginosa)vB_PaeM_G1,是如下(a)或(b)的蛋白质:Pseudomonas aeruginosa phage endolysin provided by the invention, name is Lysin-G78, derived from Pseudomonas aeruginosa phage (Pseudomonas aeruginosa) vB_PaeM_G1, is the protein of following (a) or (b):

(a)由序列表中序列1所示的氨基酸序列组成的蛋白质;(a) a protein consisting of the amino acid sequence shown in Sequence 1 in the Sequence Listing;

(b)将序列表中序列1的氨基酸序列经过一个或几个氨基酸残基的取代和/ 或缺失和/或添加且具有裂解G-菌功能的由(a)衍生的蛋白质。(b) The amino acid sequence of Sequence 1 in the sequence listing is substituted and/or deleted and/or added by one or several amino acid residues, and the protein derived from (a) has the function of lysing G-bacteria.

其中,序列表中序列1由187个氨基酸组成。Wherein, the sequence 1 in the sequence listing consists of 187 amino acids.

201710089442.1的发明专利申请《一种铜绿假单胞菌噬菌体及其应用》记 载了一种噬菌体vB_PaeM_QKL1,本发明涉及的噬菌体可选用该发明涉及菌体。The invention patent application of 201710089442.1 "A Pseudomonas aeruginosa phage and its application" records a phage vB_PaeM_QKL1, and the phage involved in the present invention can be selected as the phage involved in the invention.

为了便于Lysin-G78蛋白的纯化,可在序列表中序列1的氨基酸残基序列组 成的蛋白质的氨基末端或羧基末端连接上如下表所示的标签。In order to facilitate the purification of Lysin-G78 protein, the amino-terminal or carboxy-terminal of the protein composed of the amino acid residue sequence of Sequence 1 in the sequence listing can be attached with the tags shown in the table below.

表:标签的序列Table: Sequence of Labels

标签Label 残基Residues 序列sequence Poly-ArgPoly-Arg 5-6(通常为5个)5-6 (usually 5) RRRRRRRRRR Poly-HisPoly-His 2-10(通常为6个)2-10 (usually 6) HHHHHHHHHHHH c-mycc-myc 1010 EQKLISEEDL EQKLISEEDL

上述(b)中的蛋白质可人工合成,也可先合成其编码基因,再进行生物表达 得到。The protein in (b) above can be synthesized artificially, or its coding gene can be synthesized first, and then obtained by biological expression.

上述(b)中的蛋白质的编码基因可将序列表中序列2所示的DNA序列中缺失 一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变。The protein-encoding gene in (b) above can delete the codons of one or several amino acid residues in the DNA sequence shown in Sequence 2 in the sequence listing, and/or carry out missense mutations of one or several base pairs .

编码所述Lysin-G78蛋白的核酸分子也属于本发明的保护范围。The nucleic acid molecule encoding the Lysin-G78 protein also belongs to the protection scope of the present invention.

所述核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA等;所述 核酸分子也可以是RNA,如mRNA、hnRNA或tRNA等。The nucleic acid molecule can be DNA, such as cDNA, genomic DNA or recombinant DNA, etc.; the nucleic acid molecule can also be RNA, such as mRNA, hnRNA or tRNA, etc.

本发明的一个实施例中,所述核酸分子具体为编码所述Lysin-G78蛋白的基 因(命名为Lysin-G78),所述Lysin-G78基因为如下任一所示的DNA分子:In one embodiment of the present invention, the nucleic acid molecule is specifically the gene encoding the Lysin-G78 protein (named Lysin-G78), and the Lysin-G78 gene is any one of the following DNA molecules:

1)序列表中序列2所示的DNA分子;1) The DNA molecule shown in sequence 2 in the sequence listing;

2)与1)限定的序列具有99%以上、95%以上、90%以上、85%以上或者80% 以上同源性且编码所述蛋白质Lysin-G78的DNA分子。2) A DNA molecule having more than 99%, more than 95%, more than 90%, more than 85% or more than 80% homology with the sequence defined in 1) and encoding the protein Lysin-G78.

其中,序列2由564个核苷酸组成,整个序列2即为ORF,编码序列表序 列1所示的蛋白质。Wherein, sequence 2 consists of 564 nucleotides, and the whole sequence 2 is ORF, which encodes the protein shown in sequence 1 in the sequence listing.

含有所述核酸分子的重组载体、表达盒或重组菌也属于本发明的保护范围。Recombinant vectors, expression cassettes or recombinant bacteria containing the nucleic acid molecules also belong to the protection scope of the present invention.

所述重组载体可为重组表达载体,也可为重组克隆载体。The recombinant vector can be a recombinant expression vector or a recombinant cloning vector.

在本发明的一个实施例中,所述重组载体为pET-28a(+)的多克隆位点间插 入所述基因得到的重组质粒。In one embodiment of the present invention, the recombinant vector is a recombinant plasmid obtained by inserting the gene between the multiple cloning sites of pET-28a(+).

所述表达盒由能够启动所述基因表达的启动子,所述基因,以及转录终止 序列组成。The expression cassette consists of a promoter capable of initiating expression of the gene, the gene, and a transcription termination sequence.

在本发明的一个实施例中,所述重组菌为含有所述重组载体的大肠杆菌; 所述大肠杆菌具体如BL21(DE3)。In one embodiment of the present invention, the recombinant bacterium is Escherichia coli containing the recombinant vector; specifically, the Escherichia coli is BL21(DE3).

所述蛋白质在抑制G-菌中的应用也属于本发明的保护范围。The application of the protein in inhibiting G-bacteria also belongs to the protection scope of the present invention.

所述核酸在抑制G-菌中的应用也属于本发明的保护范围。The application of the nucleic acid in inhibiting G-bacteria also belongs to the protection scope of the present invention.

所述核酸分子的重组载体、表达盒或重组菌在抑制G-菌中的应用也属于本 发明的保护范围。The application of the recombinant vector, expression cassette or recombinant bacterium of the nucleic acid molecule in inhibiting G-bacteria also belongs to the protection scope of the present invention.

所述蛋白质在如下(c1)或(c2)或(c1)、(c2)组合中的应用也属于本发明的保护范围:The application of the protein in the following (c1) or (c2) or (c1), (c2) combination also belongs to the protection scope of the present invention:

(c1)制备裂解大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德 菌和鼠伤寒沙门氏菌的产品;(c1) Preparation of lysed Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium;

(c2)制备用于治疗由大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克 霍尔德菌和鼠伤寒沙门氏菌感染引起的疾病的产品。(c2) Preparation of products for the treatment of diseases caused by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium infections.

所述核酸分子在如下(c1)或(c2)或(c1)、(c2)组合中的应用也属于本发明的保护范围:The application of the nucleic acid molecule in the following (c1) or (c2) or (c1), (c2) combination also belongs to the protection scope of the present invention:

(c1)制备裂解大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德 菌和鼠伤寒沙门氏菌的产品;(c1) Preparation of lysed Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium;

(c2)制备用于治疗由大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克 霍尔德菌和鼠伤寒沙门氏菌感染引起的疾病的产品。(c2) Preparation of products for the treatment of diseases caused by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium infections.

所述核酸分子的重组载体、表达盒或重组菌在如下(c1)或(c2)或(c1)、(c2)组 合中的应用也属于本发明的保护范围:The application of the recombinant vector, expression cassette or recombinant bacteria of the nucleic acid molecule in the following (c1) or (c2) or (c1), (c2) combination also belongs to the protection scope of the present invention:

(c1)制备裂解大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德 菌和鼠伤寒沙门氏菌的产品;(c1) Preparation of lysed Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium;

(c2)制备用于治疗由大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克 霍尔德菌和鼠伤寒沙门氏菌感染引起的疾病的产品。(c2) Preparation of products for the treatment of diseases caused by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium infections.

本发明所提供的制备铜绿假单胞菌噬菌体内溶素Lysin-G78的方法,具体步 骤如下:The method for preparing Pseudomonas aeruginosa phage endolysin Lysin-G78 provided by the present invention, concrete steps are as follows:

S1根据序列表中序列2设计特异性引物,从铜绿假单胞菌噬菌体基因组 DNA中扩增人工铜绿假单胞菌噬菌体内溶素基因;S1 Design specific primers according to the sequence 2 in the sequence table to amplify the artificial Pseudomonas aeruginosa phage endolysin gene from the Pseudomonas aeruginosa phage genomic DNA;

S2构建人工铜绿假单胞菌噬菌体内溶素的重组表达载体;S2 Construction of recombinant expression vector of artificial Pseudomonas aeruginosa phage endolysin;

S3将重组表达载体转化至大肠杆菌感受态细胞,筛选得到表达人工铜绿假 单胞菌噬菌体内溶素的工程菌;S3 transforms the recombinant expression vector into Escherichia coli competent cells, and screens the engineering bacteria expressing the artificial Pseudomonas aeruginosa phage endolysin;

S4使用异丙基-β-D-硫代吡喃半乳糖苷诱导铜绿假单胞菌噬菌体内溶素工 程菌表达,获得表达产物;S4 uses isopropyl-β-D-thiogalactopyranoside to induce the expression of Pseudomonas aeruginosa phage endolysin engineering bacteria to obtain expression products;

S5将重组基因表达产物,经镍柱亲和层析纯化分离,得到重组的人工铜绿 假单胞菌噬菌体内溶素。In S5, the recombinant gene expression product is purified and separated by nickel column affinity chromatography to obtain a recombinant artificial Pseudomonas aeruginosa phage endolysin.

具体的,步骤S1所述引物为:Specifically, the primers described in step S1 are:

上游引物:5’-GCGGATCCATGATCACCGACAGAGAGTATCAG-3’,其中, 划线部分为BamHI的酶切位点Upstream primer: 5'-GC GGATCC ATGATCACCGACAGAGAGTATCAG-3', where the underlined part is the restriction site of BamHI

下游引物:5’-GCCTCGAGTCAGCCACTAGCTTCAGCATA-3’,其中,划线 部分为Xho I的酶切位点。Downstream primer: 5'-GC CTCGAG TCAGCCACTAGCTTCAGCATA-3', wherein the underlined part is the restriction site of Xho I.

本发明的优点和积极效果是:Advantage and positive effect of the present invention are:

1本发明分离出一株铜绿假单胞菌噬菌体vB_PaeM_G1,并从中克隆得到 内溶素Lysin-G78的编码基因。采用工程菌株生产内溶素Lysin-G78,该蛋白通 过水解细菌细胞壁肽聚糖上的N-乙酰葡萄糖胺和N-乙酰胞壁酸之间的糖苷键最 终使宿主细胞裂解,该蛋白具有水溶性好,活性高,抑菌谱广等优点。1 The present invention isolates a strain of Pseudomonas aeruginosa phage vB_PaeM_G1, and clones therefrom the coding gene of endolysin Lysin-G78. Using engineering strains to produce endolysin Lysin-G78, the protein finally lyses the host cell by hydrolyzing the glycosidic bond between N-acetylglucosamine and N-acetylmuramic acid on the bacterial cell wall peptidoglycan, and the protein is water-soluble Good, high activity, wide antibacterial spectrum and other advantages.

2本发明提供的铜绿假单胞菌噬菌体人工内溶素可以抑制大肠杆菌,肺炎 克 雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德菌和鼠伤寒沙门氏菌的生长,本人工 铜绿假单胞菌噬菌体内溶素与表面活性剂EDTA具有协同作用,可以提高对G- 菌的杀菌活性,制备新型杀菌剂。2 The Pseudomonas aeruginosa phage artificial endolysin provided by the present invention can inhibit the growth of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium. The monocystic phage endolysin has a synergistic effect with the surfactant EDTA, which can improve the bactericidal activity against G- bacteria and prepare a new type of bactericide.

附图说明:Description of drawings:

图1为铜绿假单胞菌噬菌体vB_PaeM_G1的噬菌斑形态;Figure 1 is the plaque morphology of Pseudomonas aeruginosa phage vB_PaeM_G1;

图2为铜绿假单胞菌噬菌体vB_PaeM_G1的透射电镜图;Fig. 2 is the transmission electron micrograph of Pseudomonas aeruginosa phage vB_PaeM_G1;

图3为表达菌BL21-G78单克隆菌落的PCR鉴定;Fig. 3 is the PCR identification of expression strain BL21-G78 monoclonal colony;

图4为Lysin-G78内溶素的SDS-PAGE鉴定结果;Figure 4 is the SDS-PAGE identification result of Lysin-G78 endolysin;

图5为内溶素Lysin-G78的裂解活性和裂解谱;Figure 5 is the cleavage activity and cleavage spectrum of endolysin Lysin-G78;

图6为内溶素Lysin-G78与EDTA的协同作用。Figure 6 shows the synergistic effect of endolysin Lysin-G78 and EDTA.

具体实施方式Detailed ways

下面通过具体实施方式对本发明做进一步的详细描述,给出的实施例仅为 了阐明本发明,而不是为了限制本发明的范围。Below by specific embodiment the present invention is described in further detail, and the embodiment that gives is only in order to clarify the present invention, is not in order to limit the scope of the present invention.

下列实施例中所使用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the following examples are conventional methods unless otherwise specified.

下列实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.

实施例1:噬菌体的分离和鉴定Example 1: Isolation and identification of phage

一、噬菌体的分离1. Isolation of phage

取医院处理前的污水1L,加入CaCl2至1mmol/L,4℃,5000rpm离心10min, 去除污水中的沉淀颗粒,取上清用0.22μm滤膜滤过除菌;取滤液20mL与20mL 2×LB培养基混合,按1%的接种量,接种400μL的对数生长期铜绿假单胞菌, 37℃富集培养12h。取5ml的上述菌液4℃,5000rpm离心10min,取上清用0.22μm 的滤膜滤过除菌,得噬菌体原液。把得到的噬菌体原液10倍梯度稀释(10-1-10-8), 分别取300μL的稀释液与对数生长期的铜绿假单胞菌1:1混合,37℃培养15min, 与4mL 55℃液体LB培养基混合,均匀倾入固体LB琼脂平板上,冷却15min 倒置37℃过夜培养。次日,得到单个噬菌斑。在噬菌斑形成的平板上用枪头挑 取较大的、独立的噬菌斑放入1mL SM液(明胶0.1g,MgSO4·7H2O 2g,NaCl 5.8g,加入50mL 1MTris-HCl(pH 7.5),加水至1000mL)的EP管中,室温放 置1h后4℃过夜,次日取0.1mL经过适当稀释后(10-1-10-8,共8个梯度),与 培养至对数生长期的铜绿假单胞菌1:1混合做双层平板进行纯化,次日得到大小 均匀的噬菌斑。得到均匀大小的噬菌斑后,对此噬菌体再次做双层平板实验, 分别在37℃条件下培养24h和48h后观察噬菌斑的形态,噬菌斑形态如图1。发现在噬菌斑的透明区域外面有一圈半透明的晕环,说明该噬菌体尾刺中有胞 外聚合物的降解酶,该酶类能降解生物被膜胞外聚合物。随时间增加噬菌体扩 散出噬菌斑的透明区而裂解周围的细菌,所以晕环会随着时间的增加而增大。 用灭菌枪头挑取上述纯化好的噬菌斑加入培养至对数生长期的铜绿假单胞菌 中,37℃,140rpm培养6h左右,培养液变的相对澄清,将培养液4℃、8000rpm 离心5min,取上清用0.22μm的滤膜过滤,除去少量的细菌及细菌碎片,即得 高效价的噬菌体原液。Take 1L of sewage before treatment in the hospital, add CaCl 2 to 1mmol/L, centrifuge at 5000rpm at 4°C for 10min to remove the precipitated particles in the sewage, take the supernatant and filter it with a 0.22μm filter membrane to sterilize; take the filtrate 20mL and 20mL 2× LB medium was mixed, and 400 μL of Pseudomonas aeruginosa in the logarithmic growth phase was inoculated at an inoculum volume of 1%, and enriched and cultured at 37° C. for 12 hours. Take 5ml of the above-mentioned bacterial solution and centrifuge at 5000rpm for 10min at 4°C, and filter the supernatant through a 0.22μm filter membrane to obtain the phage stock solution. The obtained phage stock solution was diluted 10 times (10 -1 -10 -8 ), and 300 μL of the diluted solution was mixed with Pseudomonas aeruginosa in logarithmic growth phase 1:1, incubated at 37°C for 15 minutes, and mixed with 4mL of 55°C The liquid LB medium was mixed, evenly poured onto a solid LB agar plate, cooled for 15 minutes, and incubated overnight at 37°C. The next day, a single plaque was obtained. Use a pipette tip to pick a larger, independent plaque on the plaque formation plate and put it into 1mL SM solution (gelatin 0.1g, MgSO4 7H2O 2g, NaCl 5.8g, add 50mL 1MTris-HCl (pH 7.5) , add water to 1000mL) in an EP tube, place at room temperature for 1h and then overnight at 4°C, take 0.1mL after appropriate dilution (10 -1 -10 -8 , a total of 8 gradients) the next day, and culture to logarithmic growth phase Pseudomonas aeruginosa was mixed at a ratio of 1:1 to make a double-layer plate for purification, and phage plaques of uniform size were obtained the next day. After obtaining evenly sized plaques, double-layer plate experiments were performed on the phages again, and the morphology of the plaques was observed after culturing at 37°C for 24 hours and 48 hours, respectively, as shown in Figure 1 . It was found that there was a translucent halo outside the transparent area of the phage plaque, which indicated that there was an extracellular polymer degrading enzyme in the phage tail spine, which could degrade the extracellular polymer of the biofilm. As time increases, the phage diffuses out of the clear zone of the plaque to lyse the surrounding bacteria, so the halo increases in size over time. Use a sterilized gun tip to pick the above-mentioned purified phage plaques and add them to the Pseudomonas aeruginosa cultured to the logarithmic growth phase. Cultivate at 37°C and 140rpm for about 6 hours. The culture medium becomes relatively clear. Centrifuge at 8000rpm for 5min, take the supernatant and filter it with a 0.22μm filter membrane to remove a small amount of bacteria and bacterial fragments to obtain a high-titer phage stock solution.

二、噬菌体的鉴定2. Identification of phage

具体方法为:将350目的铜网浸入噬菌体纯化液中,10min后取出铜网,用 滤纸吸取多余的液体;将铜网放在5%(w/v)的乙酸铀酰液滴上,染色后取出 放在滤纸上待测;待全部样品处理好后,使用加速电压为80kV的TEM观察噬 菌体形态。电镜图显示属于肌尾病毒科(Myoviridae),头部直径约为50nm,尾 长约为65nm。噬菌体形态如图2。The specific method is: immerse the 350-mesh copper mesh in the phage purification solution, take out the copper mesh after 10 minutes, and absorb the excess liquid with filter paper; put the copper mesh on the 5% (w/v) uranyl acetate droplet, and dye Take it out and put it on filter paper for testing; after all the samples are processed, use TEM with an accelerating voltage of 80kV to observe the phage morphology. The electron micrograph shows that it belongs to Myoviridae (Myoviridae), the diameter of the head is about 50nm, and the length of the tail is about 65nm. The morphology of the phage is shown in Figure 2.

实施例2:噬菌体基因组的提取Embodiment 2: Extraction of phage genome

一、噬菌体颗粒的浓缩1. Concentration of phage particles

将铜绿假单胞菌过夜培养物转接到100mL液体LB培养基中,接种量为1%, 扩增培养至对数期(OD600约0.4),加入5mL铜绿假单胞菌噬菌体培养液,37℃ 振荡培养4-6h后得到噬菌体裂解液。向裂解液中加入DNase I和RNase A至终 浓度为5μg/mL,混匀后37℃静置1h。而后加入NaCl至终浓度为0.1mol/L,混 匀溶解后冰浴1h,12000rpm离心20min。将上清液转到另一离心管中后,加入 PEG8000至终浓度为10%(w/v),充分振荡溶解后于4℃静置过夜,12000rpm 离心20min,弃上清。用500μL TM(0.05mol/L Tris-HCl pH7.5、0.2%MgSO4·7H2O) 溶液将沉淀重悬,并用等体积的氯仿抽提一次,12000rpm离心10min,以除去重悬液中的PEG8000,最终得到噬菌体颗粒的粗提物。The overnight culture of Pseudomonas aeruginosa was transferred to 100mL liquid LB medium, the inoculum size was 1%, and the culture was expanded to the logarithmic phase (OD600 about 0.4), and 5mL Pseudomonas aeruginosa phage culture solution was added, 37 The phage lysates were obtained after 4-6 hours of shaking culture at ℃. Add DNase I and RNase A to the lysate to a final concentration of 5 μg/mL, mix well and let stand at 37°C for 1 h. Then add NaCl to a final concentration of 0.1mol/L, mix and dissolve, put in ice bath for 1h, and centrifuge at 12000rpm for 20min. After the supernatant was transferred to another centrifuge tube, PEG8000 was added to a final concentration of 10% (w/v), fully shaken to dissolve, then left at 4°C overnight, centrifuged at 12,000 rpm for 20 min, and the supernatant was discarded. Resuspend the precipitate with 500 μL TM (0.05mol/L Tris-HCl pH7.5, 0.2% MgSO4·7H2O) solution, extract once with an equal volume of chloroform, centrifuge at 12000rpm for 10min to remove PEG8000 in the resuspension, and finally A crude extract of phage particles was obtained.

二、噬菌体基因组DNA的制备2. Preparation of phage genomic DNA

S1在噬菌体颗粒粗提物中加入DNase I和RNase A,终浓度为1μg/mL,37℃ 静置1h,以降解残留的宿主菌DNA或RNA。S1 Add DNase I and RNase A to the crude extract of phage particles at a final concentration of 1 μg/mL, and let stand at 37°C for 1 hour to degrade residual host bacterial DNA or RNA.

S2然后加入1mol/L EDTA(pH8.0)至终浓度50mmol/L,终止DNase I及 RNase A活性;S2 then added 1mol/L EDTA (pH8.0) to a final concentration of 50mmol/L to terminate the DNase I and RNase A activities;

S3加蛋白酶K至终浓度为50μg/mL,加SDS至终浓度为0.5%,混匀,56℃ lh,消化蛋白质;S3 Add proteinase K to a final concentration of 50 μg/mL, add SDS to a final concentration of 0.5%, mix well, digest protein at 56°C for 1 hour;

S4加入等体积苯酚:氯仿:异戊醇(25∶24∶1)混匀,12000rpm离心10min, 收集上清;S4 Add an equal volume of phenol: chloroform: isoamyl alcohol (25:24:1) and mix well, centrifuge at 12000 rpm for 10 min, and collect the supernatant;

S5步骤4重复3次;Step 4 of S5 is repeated 3 times;

S6加入等体积氯仿,混匀,12000rpm,10min,收集上清;S6 Add an equal volume of chloroform, mix well, 12000rpm, 10min, collect the supernatant;

S7加入1/10体积3mol/L NaAc及2倍体积预冷的95%乙醇,混匀, 12000rpm,10min,沉淀DNA;加70%乙醇(500μL)于沉淀中,并将盖紧的离 心管颠倒数次,12000rpm离心5min,回收DNA。S7 Add 1/10 volume of 3mol/L NaAc and 2 times the volume of pre-cooled 95% ethanol, mix well, 12000rpm, 10min, precipitate DNA; add 70% ethanol (500μL) to the precipitate, and turn the capped centrifuge tube upside down Several times, centrifuge at 12000rpm for 5min to recover DNA.

S8去上清液,除去管壁上的酒精液滴,将开口的离心管室温干燥10min, 而后用双蒸水重悬DNA。S8 Remove the supernatant, remove the alcohol droplets on the tube wall, dry the open centrifuge tube at room temperature for 10 min, and then resuspend the DNA with double distilled water.

实施例3:内溶素基因Lysin-G78的克隆、表达载体的构建Example 3: Cloning of endolysin gene Lysin-G78, construction of expression vector

一、目的片段的获得1. Obtaining the target fragment

S1根据Lysin-G78(序列2)基因编码的序列设计一对特异性引物,引物序 列如下:S1 designs a pair of specific primers according to the sequence encoded by the Lysin-G78 (sequence 2) gene, and the primer sequences are as follows:

上游引物:5’-GCGGATCCATGATCACCGACAGAGAGTATCAG-3’,其中, 划线部分为BamHI的酶切位点Upstream primer: 5'-GC GGATCC ATGATCACCGACAGAGAGTATCAG-3', where the underlined part is the restriction site of BamHI

下游引物:5’-GCCTCGAGTCAGCCACTAGCTTCAGCATA-3’,其中,划线 部分为Xho I的酶切位点Downstream primer: 5'-GC CTCGAG TCAGCCACTAGCTTCAGCATA-3', where the underlined part is the restriction site of Xho I

反映体系为:The reflection system is:

PCR反应条件:95℃预变性5min,(94℃变性30s,56℃退火30s,72℃延 伸1.5min)扩增30个循环;72℃延伸10min,4℃保存。PCR扩增产物经1%琼 脂糖凝胶电泳观察是否有特异性条带。PCR reaction conditions: pre-denaturation at 95°C for 5 min, 30 cycles of amplification (denaturation at 94°C for 30 s, annealing at 56°C for 30 s, extension at 72°C for 1.5 min); extension at 72°C for 10 min, storage at 4°C. PCR amplification products were subjected to 1% agarose gel electrophoresis to observe whether there were specific bands.

以噬菌体基因组DNA为模板用上述引物扩增Lysin-G78基因,1%琼脂糖 电泳,鉴定扩增片段的大小。Using the phage genome DNA as a template, amplify the Lysin-G78 gene with the above primers, electrophoresis on 1% agarose, and identify the size of the amplified fragment.

S2将PCR产物直接用QuickCut限制性内切酶(Takara)BamH I和Xho I 进行双酶切,37℃水浴5min,1%琼脂糖电泳,胶回收试剂盒将片段纯化回收, 并将片段与之前用BamHI和XhoI双酶切且纯化的pET-28a载体于T4连接酶 16℃过夜连接,次日转化至大肠杆菌DH5ɑ感受态细胞中。将转化的混合物加 入LB培养基,37℃孵育45min。之后将混合物涂布于含有卡那霉素(50μg/ml) 的LB平板,37℃培养过夜;S2 The PCR product was directly digested with QuickCut restriction endonucleases (Takara) BamH I and Xho I, bathed in water at 37°C for 5 min, electrophoresed on 1% agarose, and the gel recovery kit was used to purify and recover the fragments, and the fragments were compared with the previous The purified pET-28a vector digested with BamHI and XhoI was ligated overnight at 16°C with T4 ligase, and transformed into Escherichia coli DH5α competent cells the next day. The transformation mixture was added to LB medium and incubated at 37°C for 45min. The mixture was then spread on an LB plate containing kanamycin (50 μg/ml), and incubated overnight at 37° C.;

S3阳性克隆菌的鉴定:挑取阳性克隆菌接种于含卡那霉素(50μg/mL)的LB 液体培养基中,37℃培养过夜后,试剂盒提取质粒,送上海生工测序。将测序 正确的质粒命名为pET-28a-G78。Identification of S3-positive clones: Pick positive clones and inoculate them in LB liquid medium containing kanamycin (50 μg/mL), culture overnight at 37°C, extract plasmids with the kit, and send them to Shanghai Sangon for sequencing. The plasmid with correct sequencing was named pET-28a-G78.

S4将测序正确的质粒pET-28a-G78转化到表达菌株大肠杆菌BL21(DE3)感 受态。之后将混合物涂布于含有卡那霉素(50μg/ml)的LB平板,37℃培养过夜; 用上述引物做菌落PCR鉴定。鉴定结果如图3,扩增出的片段在750bp和500bp 之间,大小和目的片段大小一致。含有阳性重组质粒的表达菌命名为BL21-G78。S4 transforms the plasmid pET-28a-G78 with correct sequencing into the competent expression strain Escherichia coli BL21 (DE3). Then spread the mixture on LB plates containing kanamycin (50 μg/ml) and incubate overnight at 37° C.; use the above primers for colony PCR identification. The identification result is shown in Figure 3, the amplified fragment is between 750bp and 500bp, and the size is consistent with the target fragment. The expression strain containing the positive recombinant plasmid was named BL21-G78.

实施例4:内溶素基因Lysin-G78的诱导表达及纯化Example 4: Induced expression and purification of endolysin gene Lysin-G78

将含有重组质粒的表达菌BL21-G78单菌落接种到含有卡那霉素(50μg/mL) 的LB培养液中,37℃振荡过夜培养;次日,按1∶100比例转接至100mL LB 培养基中,37℃振荡培养至OD600值约为0.6时,加入IPTG(异丙基硫代半乳 糖苷)至终浓度0.5mmol/L,16℃诱16h。收集菌体,超声波破碎细胞(130W, 超3s停10s,超声5min),4℃,10000rpm离心10min,收集上清,并将上清经 0.22μm滤膜过滤,SDS-PAGE分析上清中的蛋白表达情况。将过滤的上清用His 亲和层析镍柱(GE Healthcare,Sweden)纯化,具体按试剂盒说明步骤进行,获得蛋白命名为裂解酶Lysin-G78。Inoculate a single colony of expressing bacteria BL21-G78 containing the recombinant plasmid into LB culture medium containing kanamycin (50 μg/mL), shake overnight at 37°C; the next day, transfer to 100 mL LB culture at a ratio of 1:100 In the culture medium, shake culture at 37°C until the OD600 value is about 0.6, add IPTG (isopropylthiogalactopyranoside) to a final concentration of 0.5mmol/L, and induce at 16°C for 16h. Collect the bacteria, sonicate the cells (130W, super 3s and stop for 10s, sonicate for 5min), centrifuge at 10000rpm for 10min at 4°C, collect the supernatant, and filter the supernatant through a 0.22μm filter membrane, analyze the protein in the supernatant by SDS-PAGE Express the situation. The filtered supernatant was purified with a His affinity chromatography nickel column (GE Healthcare, Sweden), specifically according to the kit instructions, and the obtained protein was named Lysin-G78.

SDS-PAGE分析结果如图4所示,含有重组质粒的工程菌BL21-G78经IPTG 诱导后,其上清中在约21kD的位置有诱导蛋白条带,与预期20.8KD相符,从 而表明,重组菌BL21-G78构建正确,且表达的内溶素Lysin-G78为可溶性蛋白The results of SDS-PAGE analysis are shown in Figure 4. After the engineering bacteria BL21-G78 containing the recombinant plasmid was induced by IPTG, there was an induced protein band at the position of about 21kD in the supernatant, which was consistent with the expected 20.8KD, thus indicating that the recombinant Bacteria BL21-G78 was constructed correctly, and the expressed endolysin Lysin-G78 was a soluble protein

实施例5:内溶素Lysin-G78裂解外膜透性化细菌细胞Example 5: Endolysin Lysin-G78 lyses outer membrane permeabilized bacterial cells

S1透性化细菌细胞S1 permeabilized bacterial cells

透性化细胞是指在不造成细胞裂解以及不破坏细胞内部有机结构的情况下, 改变细胞壁和细胞膜的通透性,使得小分子和一些较大分子物质能够自由进出的 细胞。Permeabilized cells refer to cells that change the permeability of cell walls and cell membranes without causing cell lysis or destroying the internal organic structure of cells, so that small molecules and some larger molecules can freely enter and exit cells.

按如下方法制备大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔 德菌,鼠伤寒沙门氏菌,金黄色葡萄球菌和表皮葡萄球菌的透性化细菌细胞。Permeabilized bacterial cells of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia, Salmonella typhimurium, Staphylococcus aureus and Staphylococcus epidermidis were prepared as follows.

过夜培养的菌株转接到250mL LB培养基中,培养至OD600=0.6,培养物 4℃,4000×g,离心15min,收集菌体。使用氯仿饱和的0.05mol/L Tris缓冲液重 悬菌体,室温下轻柔振荡45min。4000×g,4℃,离心15min,弃上清收集沉淀 物。然后使用10mmol/L的磷酸盐缓冲液洗涤并重悬,最终将透性化细菌细胞重 悬至OD600=0.6-1.0。The strains cultivated overnight were transferred to 250mL LB medium, cultivated to OD600=0.6, cultured at 4°C, 4000×g, centrifuged for 15min, and the bacterial cells were collected. Use chloroform-saturated 0.05mol/L Tris buffer to resuspend the bacteria, and shake gently at room temperature for 45min. Centrifuge at 4000×g for 15 minutes at 4°C, discard the supernatant and collect the precipitate. Then use 10mmol/L phosphate buffer to wash and resuspend, and finally resuspend the permeabilized bacterial cells to OD600=0.6-1.0.

S2透性化细菌细胞的裂解Lysis of S2 Permeabilized Bacterial Cells

按如下方法对S1制备的7种透性化细菌细胞进行裂解。The seven permeabilized bacterial cells prepared in S1 were lysed as follows.

终浓度为2μg/mL的30μl内溶素(终浓度为2μg/mL)与170μl透性化细菌细胞 (OD=0.8)混合加入到96孔板中,在室温条件下,使用全波长酶标仪测定每个 样品中的吸光度OD600,并使用10mmol/L磷酸盐缓冲液作对照。吸光度OD600 值比阴性对照值显著降低,说明细菌被裂解。30 μl endolysin (final concentration 2 μg/mL) with a final concentration of 2 μg/mL was mixed with 170 μl permeabilized bacterial cells (OD=0.8) and added to a 96-well plate, at room temperature, using a full-wavelength microplate reader Measure the absorbance OD600 of each sample, and use 10mmol/L phosphate buffer as a control. The absorbance OD600 value was significantly lower than the negative control value, indicating that the bacteria were lysed.

结果:内溶素Lysin-G78可以在2μg/ml的浓度条件下高效降解大肠杆菌, 肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德菌和鼠伤寒沙门氏菌的透性化 细菌细胞。如图5所示,从内溶素Lysin-G78与原生质体作用2h时的OD600值 判断,内溶素Lysin-G78作用的G-菌OD600显著降低,而内溶素Lysin-G78对 G+菌,如金黄色葡萄球菌透性化细菌细胞和表皮葡萄球菌透性化细菌细胞无裂 解作用。Results: The endolysin Lysin-G78 can efficiently degrade the permeabilized bacteria of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium at a concentration of 2 μg/ml cell. As shown in Figure 5, judging from the OD600 value when endolysin Lysin-G78 interacted with protoplasts for 2 hours, the OD600 of G-bacteria treated with endolysin Lysin-G78 was significantly reduced, while endolysin Lysin-G78 was effective against G+ bacteria. Such as Staphylococcus aureus permeabilized bacterial cells and Staphylococcus epidermidis permeabilized bacterial cells without lysis.

实施例6内溶素Lysin-G78与表面活性剂EDTA的协同作用The synergistic effect of embodiment 6 endolysin Lysin-G78 and surfactant EDTA

将过夜活化的菌液按照1%接种量转接到100ml LB培养基中,培养至 OD600=0.6;将100ul菌液加入到10ml 50℃的半固体LB(8%琼脂)中,然后 一起加入无菌培养皿中,在超级工作台中静置15分钟,用200ul的无菌枪头打 孔(直径约7mm),备用。Transfer the overnight activated bacterial solution to 100ml LB medium according to the inoculum size of 1%, and cultivate it to OD600=0.6; add 100ul bacterial solution to 10ml 50°C semi-solid LB (8% agar), and then add In the bacterial culture dish, let it stand for 15 minutes in the super workbench, punch a hole (about 7mm in diameter) with a 200ul sterile pipette tip, and set aside.

用0.9%的生理盐水作阴性对照组,EDTA,内溶素Lysin-G78,内溶素 Lysin-G78和EDTA联合应用作为实验组。加入10ul待测样品至培养皿的孔中, 37℃过夜培养,观察抑菌圈直径大小。0.9% normal saline was used as negative control group, EDTA, endolysin Lysin-G78, endolysin Lysin-G78 and EDTA were used together as experimental group. Add 10ul of the sample to be tested to the well of the petri dish, incubate overnight at 37°C, and observe the diameter of the inhibition zone.

结果如图6所示,实验中,EDTA终浓度为2.5uM,内溶素Lysin-G78终浓 度为2μg/ml时有抑菌圈,且二者联合应用时抑菌作用更强(抑菌圈直径变大)。 说明表面活性剂EDTA与内溶素Lysin-G78有协同作用,可进一步提高Lysin-G78 的抑菌作用,为内溶素Lysin-G78的应用提供有效参考数据。The results are shown in Figure 6. In the experiment, when the final concentration of EDTA was 2.5uM and the final concentration of endolysin Lysin-G78 was 2 μg/ml, there was a zone of inhibition, and the combination of the two had a stronger antibacterial effect (zone of inhibition diameter increases). It shows that the surfactant EDTA has a synergistic effect with the endolysin Lysin-G78, which can further improve the antibacterial effect of Lysin-G78, and provide effective reference data for the application of the endolysin Lysin-G78.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 大连理工大学<110> Dalian University of Technology

<120> 一种铜绿假单胞菌噬菌体内溶素及其编码基因与应用<120> A Pseudomonas aeruginosa bacteriophage endolysin and its coding gene and application

<130> ZR181046LQ<130> ZR181046LQ

<160> 2<160> 2

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 187<211> 187

<212> PRT<212> PRT

<213> 铜绿假单胞菌噬菌体 (Pseudomonas aeruginosa)<213> Pseudomonas aeruginosa

<400> 1<400> 1

Met Ile Thr Asp Arg Glu Tyr Gln Gln Ala Ala Glu Met Leu Gly ValMet Ile Thr Asp Arg Glu Tyr Gln Gln Ala Ala Glu Met Leu Gly Val

1 5 10 151 5 10 15

Asp Val Pro Ala Ile Lys Ala Val Thr Lys Val Glu Ala Pro Val GlyAsp Val Pro Ala Ile Lys Ala Val Thr Lys Val Glu Ala Pro Val Gly

20 25 30 20 25 30

Gly Phe Gln Pro Thr Gly Glu Pro Thr Ile Leu Tyr Glu Arg His GlnGly Phe Gln Pro Thr Gly Glu Pro Thr Ile Leu Tyr Glu Arg His Gln

35 40 45 35 40 45

Met Tyr Arg Gln Leu Gln Ala Lys Gly Leu Pro Thr Glu Gly His ProMet Tyr Arg Gln Leu Gln Ala Lys Gly Leu Pro Thr Glu Gly His Pro

50 55 60 50 55 60

Pro Asp Leu Val Asn Lys Val Ala Gly Gly Tyr Gly Lys Tyr Ser GluPro Asp Leu Val Asn Lys Val Ala Gly Gly Tyr Gly Lys Tyr Ser Glu

65 70 75 8065 70 75 80

Gln His Ala Lys Leu Ala Arg Ala Val Lys Ile Asp Arg Asp Ser AlaGln His Ala Lys Leu Ala Arg Ala Val Lys Ile Asp Arg Asp Ser Ala

85 90 95 85 90 95

Leu Glu Ser Cys Ser Trp Gly Met Phe Gln Ile Met Gly Tyr His TrpLeu Glu Ser Cys Ser Trp Gly Met Phe Gln Ile Met Gly Tyr His Trp

100 105 110 100 105 110

Lys Leu Met Gly Tyr Pro Thr Leu Gln Ala Phe Val Asn Ala Met TyrLys Leu Met Gly Tyr Pro Thr Leu Gln Ala Phe Val Asn Ala Met Tyr

115 120 125 115 120 125

Ala Ser Glu Gly Ala Gln Met Asp Ala Phe Cys Arg Phe Ile Lys AlaAla Ser Glu Gly Ala Gln Met Asp Ala Phe Cys Arg Phe Ile Lys Ala

130 135 140 130 135 140

Gln Pro Thr Thr His Ala Ala Leu Lys Ala His Asp Trp Ala Lys PheGln Pro Thr Thr His Ala Ala Leu Lys Ala His Asp Trp Ala Lys Phe

145 150 155 160145 150 155 160

Ala Arg Leu Tyr Asn Gly Pro Gly Tyr Ala Lys Asn Lys Tyr Asp ValAla Arg Leu Tyr Asn Gly Pro Gly Tyr Ala Lys Asn Lys Tyr Asp Val

165 170 175 165 170 175

Lys Leu Glu Lys Ala Tyr Ala Glu Ala Ser GlyLys Leu Glu Lys Ala Tyr Ala Glu Ala Ser Gly

180 185 180 185

<210> 2<210> 2

<211> 564<211> 564

<212> DNA<212>DNA

<213> 铜绿假单胞菌噬菌体 (Pseudomonas aeruginosa)<213> Pseudomonas aeruginosa

<400> 2<400> 2

atgatcaccg acagagagta tcagcaagct gctgagatgt tgggggtaga tgtcccagcg 60atgatcaccg acagagagta tcagcaagct gctgagatgt tgggggtaga tgtcccagcg 60

atcaaggcag tgaccaaggt ggaggccccg gtagggggct tccagcctac aggagagcca 120atcaaggcag tgaccaaggt ggaggccccg gtagggggct tccagcctac aggagagcca 120

acgatcctct acgagcgtca ccagatgtac cgacagctcc aggccaaagg gctcccaacg 180acgatcctct acgagcgtca ccagatgtac cgacagctcc aggccaaagg gctcccaacg 180

gaaggtcatc ccccagacct ggtaaataag gtagctggtg ggtatggaaa atacagcgag 240gaaggtcatc ccccagacct ggtaaataag gtagctggtg ggtatggaaa atacagcgag 240

caacacgcta aactggcccg cgccgtaaag atcgacaggg acagcgccct ggagtcctgc 300caacacgcta aactggcccg cgccgtaaag atcgacaggg acagcgccct ggagtcctgc 300

tcctggggga tgttccagat catgggctac cactggaagc tgatggggta ccctaccctt 360tcctggggga tgttccagat catgggctac cactggaagc tgatggggta ccctaccctt 360

caagctttcg taaacgccat gtacgccagc gaaggagccc agatggacgc cttctgccgg 420caagctttcg taaacgccat gtacgccagc gaaggagccc agatggacgc cttctgccgg 420

ttcatcaagg cacaacccac cacgcatgct gccttgaaag cccatgattg ggccaagttt 480ttcatcaagg cacaacccac cacgcatgct gccttgaaag cccatgattg ggccaagttt 480

gccagactgt acaacggtcc aggctacgcc aagaacaagt atgacgtgaa attggagaaa 540gccagactgt acaacggtcc aggctacgcc aagaacaagt atgacgtgaa attggagaaa 540

gcatatgctg aagctagtgg ctga 564gcatatgctg aagctagtgg ctga 564

Claims (14)

1.一种铜绿假单胞菌噬菌体内溶素,其特征在于:是如下(a)或(b)的蛋白质:1. a Pseudomonas aeruginosa phage endolysin, is characterized in that: be the protein of following (a) or (b): (a)由序列表中序列1所示的氨基酸序列组成的蛋白质;(a) a protein consisting of the amino acid sequence shown in Sequence 1 in the Sequence Listing; (b)将序列表中序列1的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有裂解革兰氏阴性菌功能的由(a)衍生的蛋白质。(b) The amino acid sequence of Sequence 1 in the sequence listing is subjected to substitution and/or deletion and/or addition of one or several amino acid residues, and the protein derived from (a) has the function of lysing Gram-negative bacteria. 2.编码权利要求1所述蛋白质的核酸分子。2. A nucleic acid molecule encoding the protein of claim 1. 3.根据权利要求2所述的核酸分子,其特征在于:所述核酸分子为编码权利要求1所述蛋白质的基因,所述基因为如下任一所示的DNA分子:3. The nucleic acid molecule according to claim 2, characterized in that: the nucleic acid molecule is a gene encoding the protein of claim 1, and the gene is a DNA molecule as shown in any of the following: 1)序列表中序列2所示的DNA分子;1) The DNA molecule shown in sequence 2 in the sequence listing; 2)与1)限定的序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同源性且编码权利要求1所述蛋白质的DNA分子。2) A DNA molecule that has more than 99%, more than 95%, more than 90%, more than 85% or more than 80% homology with the sequence defined in 1) and encodes the protein described in claim 1. 4.根据权利要求2,其特征在于,所述核酸分子是DNA或RNA。4. According to claim 2, characterized in that said nucleic acid molecule is DNA or RNA. 5.含有权利要求2或3或4所述核酸分子的重组载体、表达盒或重组菌。5. A recombinant vector, expression cassette or recombinant bacterium containing the nucleic acid molecule of claim 2 or 3 or 4. 6.根据权利要求5,其特征在于,所述重组载体可为重组表达载体,也可为重组克隆载体。6. According to claim 5, characterized in that the recombinant vector can be a recombinant expression vector or a recombinant cloning vector. 7.含有权利要求1所述铜绿假单胞菌噬菌体内溶素的制备方法,其特征在于,包括如下步骤:7. the preparation method containing the Pseudomonas aeruginosa phage endolysin described in claim 1, is characterized in that, comprises the steps: S1根据序列表中序列2设计特异性引物,从铜绿假单胞菌噬菌体基因组DNA中扩增人工铜绿假单胞菌噬菌体内溶素基因;S1 Design specific primers according to the sequence 2 in the sequence table to amplify the artificial Pseudomonas aeruginosa phage endolysin gene from the Pseudomonas aeruginosa phage genomic DNA; S2构建人工铜绿假单胞菌噬菌体内溶素的重组表达载体;S2 Construction of recombinant expression vector of artificial Pseudomonas aeruginosa phage endolysin; S3将重组表达载体转化至大肠杆菌感受态细胞,筛选得到表达人工铜绿假单胞菌噬菌体内溶素的工程菌;S3 Transform the recombinant expression vector into Escherichia coli competent cells, and screen to obtain engineering bacteria expressing artificial Pseudomonas aeruginosa phage endolysin; S4使用异丙基-β-D-硫代吡喃半乳糖苷诱导铜绿假单胞菌噬菌体内溶素工程菌表达,获得表达产物;S4 uses isopropyl-β-D-thiogalactopyranoside to induce the expression of Pseudomonas aeruginosa phage endolysin engineering bacteria to obtain expression products; S5将重组基因表达产物,经镍柱亲和层析纯化分离,得到重组的人工铜绿假单胞菌噬菌体内溶素。In S5, the recombinant gene expression product is purified and separated by nickel column affinity chromatography to obtain a recombinant artificial Pseudomonas aeruginosa phage endolysin. 8.根据权利要求7所述铜绿假单胞菌噬菌体内溶素的制备方法,其特征在于,步骤S1所述引物为:8. according to the preparation method of the described Pseudomonas aeruginosa phage endolysin of claim 7, it is characterized in that, the primer described in step S1 is: 上游引物:5’-GCGGATCCATGATCACCGACAGAGAGTATCAG-3’Upstream primer: 5'-GCGGATCCATGATCACCGACAGAGAGTATCAG-3' 下游引物:5’-GCCTCGAGTCAGCCACTAGCTTCAGCATA-3’。Downstream primer: 5'-GCCTCGAGTCAGCCACTAGCTTCAGCATA-3'. 9.权利要求1所述的蛋白质在抑制革兰氏阴性菌中的应用。9. The application of the protein according to claim 1 in inhibiting Gram-negative bacteria. 10.权利要求2或3所述的核酸分子在抑制革兰氏阴性菌中的应用。10. The use of the nucleic acid molecule according to claim 2 or 3 in inhibiting Gram-negative bacteria. 11.权利要求5所述核酸分子的重组载体、表达盒或重组菌在抑制革兰氏阴性菌中的应用。11. The application of the recombinant vector, expression cassette or recombinant bacterium of the nucleic acid molecule described in claim 5 in inhibiting Gram-negative bacteria. 12.权利要求1所述的蛋白质在如下(c1)或(c2)或(c1)、(c2)组合中的应用:12. The application of the protein according to claim 1 in the following (c1) or (c2) or (c1), (c2) combination: (c1)制备裂解大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德菌和鼠伤寒沙门氏菌的产品;(c1) Preparation of products for lysing Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium; (c2)制备用于治疗由大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德菌和鼠伤寒沙门氏菌感染引起的疾病的产品。(c2) Preparation of products for treating diseases caused by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium infection. 13.权利要求3或4所述的核酸分子在如下(c1)或(c2)或(c1)、(c2)组合中的应用:13. The application of the nucleic acid molecule according to claim 3 or 4 in the following (c1) or (c2) or (c1), (c2) combination: (c1)制备裂解大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德菌和鼠伤寒沙门氏菌的产品;(c1) Preparation of products for lysing Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium; (c2)制备用于治疗由大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德菌和鼠伤寒沙门氏菌感染引起的疾病的产品。(c2) Preparation of products for treating diseases caused by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium infection. 14.权利要求5所述核酸分子的重组载体、表达盒或重组菌在如下(c1)或(c2)或(c1)、(c2)组合中的应用:14. The application of the recombinant vector, expression cassette or recombinant bacterium of the nucleic acid molecule described in claim 5 in the following (c1) or (c2) or (c1), (c2) combination: (c1)制备裂解大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德菌和鼠伤寒沙门氏菌的产品;(c1) Preparation of products for lysing Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium; (c2)制备用于治疗由大肠杆菌,肺炎克雷伯菌,铜绿假单胞菌,洋葱伯克霍尔德菌和鼠伤寒沙门氏菌感染引起的疾病的产品。(c2) Preparation of products for treating diseases caused by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Burkholderia cepacia and Salmonella typhimurium infection.
CN201810290512.4A 2018-04-03 2018-04-03 A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application Pending CN108410840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810290512.4A CN108410840A (en) 2018-04-03 2018-04-03 A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810290512.4A CN108410840A (en) 2018-04-03 2018-04-03 A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application

Publications (1)

Publication Number Publication Date
CN108410840A true CN108410840A (en) 2018-08-17

Family

ID=63134504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810290512.4A Pending CN108410840A (en) 2018-04-03 2018-04-03 A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application

Country Status (1)

Country Link
CN (1) CN108410840A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234240A (en) * 2018-08-22 2019-01-18 中国科学院南京土壤研究所 A kind of bacteriophage composition and its application in inactivation antibiotic resistance pathogenic bacteria
CN110563815A (en) * 2019-08-06 2019-12-13 天津科技大学 Pseudomonas aeruginosa bacteriophage K8 putative protein GP075, and mutant strain, mutant protein and application thereof
CN111019876A (en) * 2019-12-30 2020-04-17 延安大学 Construction method and application of pseudomonas aeruginosa engineering bacteria
CN111909917A (en) * 2019-05-10 2020-11-10 中国科学院微生物研究所 An endolysin Lysmeta1 and its encoding gene and application
CN112724257A (en) * 2019-10-14 2021-04-30 江西缘生生物科技有限公司 Hybrid antibacterial protein with strong bactericidal effect and application thereof
CN114774391A (en) * 2022-03-09 2022-07-22 华南农业大学 Bacteriophage lysin for resisting escherichia coli and application thereof
CN114807104A (en) * 2022-04-11 2022-07-29 西南大学 Klebsiella pneumoniae phage lyase and its preparation method and application
CN116334108A (en) * 2022-07-25 2023-06-27 中国科学院南海海洋研究所 A Novel Anti-phage Component and Its Application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403153A (en) * 2010-12-23 2013-11-20 莱桑多公司 Antimicrobial agents
CN104830825A (en) * 2014-09-28 2015-08-12 中国海洋大学 Endolysin sourced from salmonella bacteriophage and application thereof
CN105200028A (en) * 2015-07-27 2015-12-30 中国海洋大学 Endolysin derived from Vibrio parahaemolyticus phage and its application
CN105440139A (en) * 2009-06-26 2016-03-30 勒芬天主教大学,K.U.勒芬R&D Antimicrobial agents
CN106636050A (en) * 2017-01-17 2017-05-10 中国海洋大学 Broad-spectrum endolysin derived from methicillin-resistant staphylococcus aureus bacteriophage and application thereof
CN106929481A (en) * 2017-02-20 2017-07-07 大连理工大学 A kind of Pseudomonas aeruginosa phage and its application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105440139A (en) * 2009-06-26 2016-03-30 勒芬天主教大学,K.U.勒芬R&D Antimicrobial agents
CN103403153A (en) * 2010-12-23 2013-11-20 莱桑多公司 Antimicrobial agents
CN104830825A (en) * 2014-09-28 2015-08-12 中国海洋大学 Endolysin sourced from salmonella bacteriophage and application thereof
CN105200028A (en) * 2015-07-27 2015-12-30 中国海洋大学 Endolysin derived from Vibrio parahaemolyticus phage and its application
CN106636050A (en) * 2017-01-17 2017-05-10 中国海洋大学 Broad-spectrum endolysin derived from methicillin-resistant staphylococcus aureus bacteriophage and application thereof
CN106929481A (en) * 2017-02-20 2017-07-07 大连理工大学 A kind of Pseudomonas aeruginosa phage and its application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACCESSION:YP_004306777.1: "putative endolysin [Pseudomonas phage KPP10]", 《GENBANK》 *
孙卫忠等: "铜绿假单胞菌噬菌体PaPl内溶素基因克隆、表达及活性分析", 《第三军医大学学报》 *
李萌: "宽裂解谱沙门氏菌噬菌体的基因组学分析及其重组内溶素抑菌活性的研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234240A (en) * 2018-08-22 2019-01-18 中国科学院南京土壤研究所 A kind of bacteriophage composition and its application in inactivation antibiotic resistance pathogenic bacteria
CN111909917A (en) * 2019-05-10 2020-11-10 中国科学院微生物研究所 An endolysin Lysmeta1 and its encoding gene and application
CN111909917B (en) * 2019-05-10 2022-10-14 中国科学院微生物研究所 An endolysin Lysmeta1 and its encoding gene and application
CN110563815A (en) * 2019-08-06 2019-12-13 天津科技大学 Pseudomonas aeruginosa bacteriophage K8 putative protein GP075, and mutant strain, mutant protein and application thereof
CN110563815B (en) * 2019-08-06 2022-04-08 天津科技大学 A pseudomonas aeruginosa phage K8 hypothetical protein GP075 and its mutant strain, mutant protein and application
CN112724257A (en) * 2019-10-14 2021-04-30 江西缘生生物科技有限公司 Hybrid antibacterial protein with strong bactericidal effect and application thereof
CN112724257B (en) * 2019-10-14 2023-09-19 江西缘生生物科技有限公司 Hybrid antibacterial protein with strong bactericidal effect and application thereof
CN111019876B (en) * 2019-12-30 2023-04-28 延安大学 Construction method and application of pseudomonas aeruginosa engineering bacteria
CN111019876A (en) * 2019-12-30 2020-04-17 延安大学 Construction method and application of pseudomonas aeruginosa engineering bacteria
CN114774391A (en) * 2022-03-09 2022-07-22 华南农业大学 Bacteriophage lysin for resisting escherichia coli and application thereof
CN114774391B (en) * 2022-03-09 2023-03-14 华南农业大学 Bacteriophage lysin for resisting escherichia coli and application thereof
CN114807104A (en) * 2022-04-11 2022-07-29 西南大学 Klebsiella pneumoniae phage lyase and its preparation method and application
CN114807104B (en) * 2022-04-11 2024-02-20 西南大学 Klebsiella pneumoniae phage lytic enzyme and its preparation method and application
CN116334108A (en) * 2022-07-25 2023-06-27 中国科学院南海海洋研究所 A Novel Anti-phage Component and Its Application
CN116334108B (en) * 2022-07-25 2024-03-26 中国科学院南海海洋研究所 A novel anti-phage element and its application

Similar Documents

Publication Publication Date Title
CN108410840A (en) A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application
Dy et al. Phage-based biocontrol strategies and their application in agriculture and aquaculture
Yan et al. The N-terminal and central domain of colicin A enables phage lysin to lyse Escherichia coli extracellularly
CN108486089B (en) Wide-spectrum lyase derived from salmonella bacteriophage and antibacterial application thereof
CN107058265B (en) Pseudomonas aeruginosa bacteriophage lyase and application thereof
CN113549610B (en) Antibacterial peptide P104 with broad-spectrum lytic activity, lyase LysP53 and application thereof
Lu et al. Isolation of Klebsiella pneumoniae phage vB_KpnS_MK54 and pathological assessment of endolysin in the treatment of pneumonia mice model
JP2015525061A (en) Bacteriophages for the biological control of Salmonella and in the production or processing of food
CN112143747A (en) Phage lyase, gene thereof, gene recombination expression vector and application
CN106854247A (en) A kind of preparation method of the bacterial virus catenase that can crack Escherichia coli and salmonella
CN118240809A (en) Preparation and application of Acinetobacter baumannii phage lyase LysZHSHW
CN105112393A (en) Bacteriophage fusion lyase capable of lysing Escherichia coli
CN105567678A (en) Bacteriophage genome DNA (deoxyribonucleic acid) extraction kit and method
CN116555230A (en) Salmonella enteritidis phage lyase, preparation method and application
CN104017084A (en) Heterozygous antibacterial and antiviral polypeptide as well as preparation method and application thereof
CN108126190A (en) The preparation and application of mycobacteriophage lyases Lysin-Guo1
CN119060987A (en) Use of bacteriophage depolymerase dep253 in degrading bacterial capsular polysaccharides
US20230193409A1 (en) PHAGE-ENCODED AcrVIA1 FOR USE AS AN INHIBITOR OF THE RNA-TARGETING CRISPR-Cas13 SYSTEMS
CN101491671B (en) Cross-protection vaccine and building method thereof
JPS58212781A (en) New species bacteriophage and method for breeding the same
CN105543258B (en) A kind of preparation method and its antibacterial applications of Plesiomonas shigelloides bacterial virus catenase
CN111909917B (en) An endolysin Lysmeta1 and its encoding gene and application
CN114736894B (en) Chimeric enzyme ClyQ for degrading staphylococcus biofilm and preparation method and application thereof
CN114990098B (en) Preparation method and application of lyase, encoding gene, composition and bacteriostatic agent
Yagubi Phage-mediated biological control of Erwinia amylovora: the role of CRISPRs and exopolysaccharide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180817