[go: up one dir, main page]

CN116334108A - A Novel Anti-phage Component and Its Application - Google Patents

A Novel Anti-phage Component and Its Application Download PDF

Info

Publication number
CN116334108A
CN116334108A CN202210879453.0A CN202210879453A CN116334108A CN 116334108 A CN116334108 A CN 116334108A CN 202210879453 A CN202210879453 A CN 202210879453A CN 116334108 A CN116334108 A CN 116334108A
Authority
CN
China
Prior art keywords
phage
seq
novel anti
escherichia coli
chassis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210879453.0A
Other languages
Chinese (zh)
Other versions
CN116334108B (en
Inventor
郭云学
王晓雪
汤开浩
古嘉瑜
林世团
林兼仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Sea Institute of Oceanology of CAS
Original Assignee
South China Sea Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Sea Institute of Oceanology of CAS filed Critical South China Sea Institute of Oceanology of CAS
Priority to CN202210879453.0A priority Critical patent/CN116334108B/en
Publication of CN116334108A publication Critical patent/CN116334108A/en
Application granted granted Critical
Publication of CN116334108B publication Critical patent/CN116334108B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/78Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Pseudomonas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/10Enterobacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01001Phosphorylase (2.4.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/010116-Phosphofructokinase (2.7.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/385Pseudomonas aeruginosa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种新型抗噬菌体元件及其应用。所述的新型抗噬菌体元件,核苷酸序列如SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4、SEQ ID NO.5或SEQ ID NO.6所示。本发明中发现的新型的抗噬菌体元件不但可以扩充噬菌体抗性元件库,增强对抗噬菌体元件成员的认识,还可以将其用于改造大肠杆菌,以增强对不同噬菌体的抗性,具有极强的发酵工业应用价值。

Figure 202210879453

The invention discloses a novel anti-phage element and its application. The novel anti-phage element has a nucleotide sequence as shown in SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4, SEQ ID NO.5 or SEQ ID NO.6 . The novel anti-phage element found in the present invention can not only expand the library of phage-resistant elements and enhance the understanding of anti-phage element members, but also can be used to transform Escherichia coli to enhance resistance to different phages. Application value of fermentation industry.

Figure 202210879453

Description

一种新型抗噬菌体元件及其应用A Novel Anti-phage Component and Its Application

技术领域technical field

本发明属于生物领域,具体涉及一种新型抗噬菌体元件及其应用。The invention belongs to the field of biology, and in particular relates to a novel anti-phage element and its application.

背景技术Background technique

噬菌体是侵染细菌的病毒,也是生物圈中丰度最高的生命形式。宿主细菌特别是致病菌和环境菌在与噬菌体博弈的过程中进化出了多种多样且设计精妙的抗噬菌体元件。比较经典的抗噬菌体元件包括修饰限制系统和CRISPR-Cas系统。修饰限制系统在75%的细菌基因组中广泛存在的修饰限制系统,它们通常由DNA甲基转移酶,限制性内切酶和靶标识别模块组成,可以快速识别和降解特定的噬菌体来源的核苷酸。CRISPR-Cas系统在宿主细菌被噬菌体侵染时,会将自身的CRISPR序列整合进噬菌体基因组,在后续感染过程中,宿主菌的凋亡蛋白酶能够对其特异性序列进行快速地检测以及剪切,以达到抗噬菌体效果。此外,近几年研究比较关注的抗噬菌体元件还包括逆转录子系统、毒素-抗毒素系统等,可以在噬菌体侵染宿主细菌的各个不同阶段发挥抑制作用,其中涉及噬菌体的吸附、注入侵染、复制、释放等过程。泛基因组测序技术的快速发展使得更多的新抗噬菌体元件被发现,这些元件通常由相邻的两个或多个基因成簇存在。此外,相关研究发现,编码防御系统的基因在可变基因组岛中频繁出现或与移动遗传元件相关。最近研究发现,海洋弧菌中内源性可移动遗传元件介导细菌的抗噬菌体进化,单个细菌基因组中的防御元件可以高达6到12个,表明噬菌体防御元件的保护是可累积的,防御元件占可变非核心基因组的90%以上,这也就解释了为什么很多相似细菌基因组最大的差别在于可移动遗传元件的组成和数量。引起大家关注的是,这些可移动遗传元件在细菌间的传播速度也相当快。基于抗噬菌体元件的广泛存在和快速传播的特点,可对其进行技术推广应用。CRISPR-Cas9基因编辑技术对医疗产业的影响巨大,然而虽然不同类型的抗噬菌体元件逐渐被发现,但关于其在发酵工业以及噬菌体治疗过程中的应用报道仍旧缺乏。Phages are viruses that infect bacteria and are the most abundant life form in the biosphere. Host bacteria, especially pathogenic and environmental bacteria, have evolved a variety of well-designed anti-phage elements during the game with phages. More classic anti-phage elements include modified restriction systems and CRISPR-Cas systems. Modification restriction systems Widely present in 75% of bacterial genomes, they are usually composed of DNA methyltransferases, restriction endonucleases and target recognition modules, which can quickly recognize and degrade specific phage-derived nucleotides . When the host bacterium is infected by phage, the CRISPR-Cas system will integrate its own CRISPR sequence into the phage genome. During the subsequent infection process, the caspase of the host bacterium can quickly detect and cut its specific sequence. in order to achieve anti-phage effect. In addition, anti-phage elements that have been paid more attention to in recent years include the reverse transcription subsystem, toxin-antitoxin system, etc., which can play an inhibitory role in various stages of phage infection of host bacteria, including phage adsorption, injection infection, Copying, releasing, etc. The rapid development of pan-genome sequencing technology has led to the discovery of more new anti-phage elements, which are usually clustered by two or more adjacent genes. In addition, related studies have found that genes encoding defense systems are frequently present in variable genomic islands or associated with mobile genetic elements. Recent studies have found that endogenous mobile genetic elements in marine Vibrio mediate the evolution of bacteria's resistance to phages, and the defense elements in a single bacterial genome can be as high as 6 to 12, indicating that the protection of phage defense elements is cumulative, and defense elements It accounts for more than 90% of the variable non-core genome, which explains why the biggest difference between many similar bacterial genomes lies in the composition and quantity of mobile genetic elements. Interestingly, these mobile genetic elements also travel fairly quickly among bacteria. Based on the widespread existence and rapid spread of anti-phage elements, it can be used for technical promotion and application. CRISPR-Cas9 gene editing technology has a huge impact on the medical industry. However, although different types of anti-phage elements have been gradually discovered, there are still few reports on its application in the fermentation industry and phage therapy.

发酵工业中烈性噬菌体污染通常采用常规的方法进行预防,比如轮换菌种、通风质量、筛选噬菌体受体突变的抗性菌株等,但是这些方法治标不治本,而且在有新的噬菌体存在时仍然会导致生产受损。此外,环境中存在多种多样的温和噬菌体,它们侵染宿主后,将其基因组整合到宿主基因组中,沉默下来,在特定环境刺激性进入裂解循环,这种温和噬菌体的污染很难被察觉,但会降低生产效率,部分可能会导致生产失败。高效抗噬菌体的新元件的发现和改造不但可以为发酵工业开发基于噬菌体-宿主互作的抗噬菌体产品提供理论依据和资源,也可以开发针对抗噬菌体元件的相关医疗药剂,在辅助噬菌体治疗抗生素耐药菌方面具有重要的现实意义。Vigorous phage contamination in the fermentation industry is usually prevented by conventional methods, such as strain rotation, ventilation quality, and screening of resistant strains with phage receptor mutations, etc. result in impaired production. In addition, there are a variety of mild phages in the environment. After they infect the host, they integrate their genomes into the host genome, silence them, and enter the lytic cycle in a specific environment. The contamination of such mild phages is difficult to detect. But it will reduce production efficiency, and some may cause production failure. The discovery and transformation of new elements with high efficiency against phages can not only provide theoretical basis and resources for the development of anti-phage products based on phage-host interaction in the fermentation industry, but also can develop related medical agents targeting anti-phage elements. The aspect of medicinal bacteria has important practical significance.

噬菌体时时刻刻都在寻找宿主细菌并试图完成侵染过程,可谓是无孔不入。在工业发酵生产上,工程菌株特别是大肠杆菌容易被噬菌体污染,而污染后的噬菌体如果烈性不强,甚至会整合到宿主基因组,以温和噬菌体形式与宿主共存,很难被检测出来。它们像定时炸弹一样存在,随时可能会被激活进而进入裂解循环,杀死宿主,造成巨大的经济损失。此外,噬菌体是抗生素抗性基因、宿主正常代谢干扰基因的重要传播者,是制约生产进程的主要因素之一。宿主细菌在与噬菌体的斗争过程中进化出了多种多样的抵抗噬菌体遗传元件,但多数是通过高通量筛选的方法鉴定的,缺乏系统性认知。如果想开发利用这些抗噬菌体元件,辅助发酵工业生产过程,就需要对它们抵抗噬菌体侵染的功能和机制进行详细的研究。Phages are always looking for host bacteria and trying to complete the infection process, which can be described as pervasive. In industrial fermentation production, engineering strains, especially Escherichia coli, are easily contaminated by phages. If the contaminated phages are not strong, they may even integrate into the host genome and coexist with the host in the form of mild phages, which is difficult to detect. They exist like time bombs, which may be activated at any time and enter the cracking cycle, killing the host and causing huge economic losses. In addition, phages are important disseminators of antibiotic resistance genes and host normal metabolism interference genes, and are one of the main factors restricting the production process. Host bacteria have evolved a variety of phage-resistant genetic elements in the process of fighting against phages, but most of them were identified through high-throughput screening methods, lacking systematic cognition. If we want to develop and utilize these anti-phage elements to assist the industrial production process of fermentation, we need to conduct detailed research on their function and mechanism of resisting phage infection.

发明内容Contents of the invention

本发明的目的是提供一类新类型的抗噬菌体元件,其可以增强底盘细胞抗噬菌体侵染的效果。The purpose of the present invention is to provide a new type of anti-phage element, which can enhance the effect of chassis cells against phage infection.

本发明是挖掘一类新类型的抗噬菌体元件,检测它的抗噬菌体效果,分析它分布的广度,并将不同来源的该元件转入大肠杆菌,检测对不同大肠杆菌噬菌体的抗性情况,以实现通过对底盘细胞的改造达到增强底盘细胞抗噬菌体侵染的效果,从而实现了本发明的目的。The present invention is to excavate a new type of anti-phage element, detect its anti-phage effect, analyze the breadth of its distribution, and transfer the element from different sources into Escherichia coli to detect the resistance to different E. The effect of enhancing the anti-bacteriophage infection of the chassis cells is achieved through the transformation of the chassis cells, thereby achieving the purpose of the present invention.

本发明的新型抗噬菌体元件,其核苷酸序列如SEQ ID NO.1、SEQ ID NO.2、SEQ IDNO.3、SEQ ID NO.4、SEQ ID NO.5或SEQ ID NO.6所示。The novel anti-phage element of the present invention has a nucleotide sequence as shown in SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4, SEQ ID NO.5 or SEQ ID NO.6 .

本发明的第二个目的是提供一种含有上述新型抗噬菌体元件的底盘细胞。A second object of the present invention is to provide a chassis cell comprising the above-mentioned novel anti-phage element.

本发明的第三个目的是提供上述新型抗噬菌体元件在提高底盘细胞抗噬菌体侵染中的应用。The third object of the present invention is to provide the application of the above-mentioned novel anti-phage element in improving the resistance of chassis cells to phage infection.

本发明的第四个目的是提供一种提高底盘细胞抗噬菌体侵染的方法,其是将上述新型抗噬菌体元件转入大肠杆菌中,增强宿主对噬菌体的抗性。The fourth object of the present invention is to provide a method for improving the resistance of chassis cells to phage infection, which is to transfer the above-mentioned novel anti-phage elements into Escherichia coli to enhance the host's resistance to phages.

所述的底盘细胞可以是大肠杆菌、致病菌铜绿假单胞菌、沙门氏菌、弧菌。The chassis cells can be Escherichia coli, pathogenic bacteria Pseudomonas aeruginosa, Salmonella, Vibrio.

所述的噬菌体可以是噬菌体PAP8、PAO-L5、QDWS、PAP-L5、大肠杆菌噬菌体T1、T4、T5、T7、EEP、λ或M13。The phage may be phage PAP8, PAO-L5, QDWS, PAP-L5, Escherichia coli phage T1, T4, T5, T7, EEP, λ or M13.

本发明聚焦发现的一种分布广泛的全新的抗噬菌体元件,评估它的抗噬菌体效果,通过将其转入到大肠杆菌实现对底盘细胞的改造,增强宿主对噬菌体的抗性。The present invention focuses on a widely distributed brand-new anti-phage element, evaluates its anti-phage effect, and transforms the chassis cells by transferring it into Escherichia coli to enhance the host's resistance to phage.

噬菌体污染在实验室和发酵工业中经常发生,而且一些温和噬菌体把自己基因组整合进宿主基因组,很难被发现并检测出来。实验室噬菌体污染问题的预防改善主要用清理相关用具,更换菌株等方法。而发酵工业中噬菌体污染通常采用净化生产环境、菌种轮换等手段进行预防,但都没有高效持久的解决方案。本发明创造发现了一种新型的抗噬菌体遗传元件,具有良好的抗噬菌体效果。这种新型的抗噬菌体元件在不同细菌中分布广泛,比如致病菌铜绿假单胞菌、沙门氏菌、弧菌、大肠杆菌等,表明它们对不同来源的噬菌体极有可能具有抗噬菌体效果。工业发酵中大肠杆菌是最容易被噬菌体污染的工程菌,我们将不同来源的KKP抗噬菌体元件引入大肠杆菌中,能够增强大肠杆菌抗噬菌体侵染的效果。而且不同来源的KKP元件对不同的噬菌体抗性不一,如果将其进行组合设计,极有可能开发出对不同大肠杆菌噬菌体都有抗性的超强抗噬菌体工程菌,为从源头解决工业发酵噬菌体污染提供切实可行的方案。Phage contamination often occurs in laboratories and fermentation industries, and some mild phages integrate their genomes into the host genome, making it difficult to be found and detected. The prevention and improvement of laboratory phage contamination problems mainly use methods such as cleaning related utensils and replacing bacterial strains. In the fermentation industry, phage pollution is usually prevented by means of cleaning the production environment and strain rotation, but there is no efficient and lasting solution. The invention creates and discovers a novel anti-phage genetic element, which has a good anti-phage effect. This new anti-phage element is widely distributed in different bacteria, such as pathogenic bacteria Pseudomonas aeruginosa, Salmonella, Vibrio, Escherichia coli, etc., indicating that they are very likely to have anti-phage effects on phages from different sources. Escherichia coli is the engineering bacteria that is most likely to be contaminated by phages in industrial fermentation. We introduced KKP anti-phage elements from different sources into Escherichia coli, which can enhance the effect of Escherichia coli against phage infection. Moreover, KKP elements from different sources have different resistance to different phages. If they are combined and designed, it is very likely to develop super-anti-phage engineering bacteria that are resistant to different E. coli phages, and to solve industrial fermentation from the source. Phage contamination offers a practical solution.

综上,本发明中发现的新型的抗噬菌体元件不但可以扩充噬菌体抗性元件库,增强对抗噬菌体元件成员的认识,还可以将其用于改造大肠杆菌,以增强对不同噬菌体的抗性,具有极强的发酵工业应用价值。In summary, the novel anti-phage element found in the present invention can not only expand the library of phage resistance elements and enhance the understanding of anti-phage element members, but also can be used to transform Escherichia coli to enhance resistance to different phages. Strong application value of fermentation industry.

附图说明:Description of drawings:

图1是pfkA,pfkB和PfpC三个基因组成的KKP遗传元件。Figure 1 shows the genetic elements of KKP composed of three genes, pfkA, pfkB and PfpC.

图2是将KKP整合插入铜绿假单胞菌PAO1基因组中的过程。Fig. 2 is the process of integrating KKP into the genome of Pseudomonas aeruginosa PAO1.

图3是铜绿假单胞菌中的三组分基因簇抗噬菌体效果,其中-KKP是不含有Pf6的PAO1,而+KKP是整合KKP三组分基因簇的PAO1。Figure 3 is the anti-phage effect of the three-component gene cluster in Pseudomonas aeruginosa, wherein -KKP is PAO1 that does not contain Pf6, and +KKP is the PAO1 that integrates the KKP three-component gene cluster.

图4是KKP三组分基因簇广泛分布于多个不同细菌的原噬菌体。Figure 4 shows that the KKP three-component gene cluster is widely distributed in prophages of many different bacteria.

图5是携带不同来源KKP的大肠杆菌具有较强的抗大肠杆菌噬菌体侵染能力。Figure 5 shows that Escherichia coli carrying KKP from different sources has a strong ability to resist Escherichia coli phage infection.

具体实施方式:Detailed ways:

以下实施例是对本发明的进一步说明,而不是对本发明的限制。The following examples are to further illustrate the present invention, rather than limit the present invention.

实施例1:Example 1:

1、对共存于铜绿假单胞菌MPAO1的两个丝状原噬菌体Pf4和Pf6的基因组进行比较分析,发现Pf6携带有由两个激酶(PfkA和PfkB)和一个磷酸化酶(PfpC)组成的一个三组分遗传元件(图1),简称为KKP(kinase-kinase-phosphotase),其核苷酸序列如SEQ ID NO.1所示。本发明按照相同的方法对来源于Shewanella sp.W3-18-1、Escherichiacoli15EC039、Escherichia coli strain

Figure BDA0003763628690000051
Salmonellaenterica subsp.enterica serovar Typhi str.CT18、Vibrio tasmaniensis10N.222.48.A2中的KKP三组分基因簇也进行了实验,它的KKP三组分基因簇序列如SEQ IDNO.2、SEQ ID NO.3、SEQ ID NO.4、SEQ ID NO.5、SEQ ID NO.6所示。1. Comparative analysis of the genomes of two filamentous prophages Pf4 and Pf6 co-existing in Pseudomonas aeruginosa MPAO1, and found that Pf6 carries two kinases (PfkA and PfkB) and one phosphorylase (PfpC) A three-component genetic element (Figure 1), referred to as KKP (kinase-kinase-phosphotase), its nucleotide sequence is shown in SEQ ID NO.1. The present invention is derived from Shewanella sp.W3-18-1, Escherichiacoli15EC039, Escherichia coli strain according to the same method
Figure BDA0003763628690000051
The KKP three-component gene cluster in Salmonellaenterica subsp.enterica serovar Typhi str.CT18, Vibrio tasmaniensis10N.222.48.A2 has also been tested, and its KKP three-component gene cluster sequences are as SEQ ID NO.2, SEQ ID NO.3, Shown in SEQ ID NO.4, SEQ ID NO.5, SEQ ID NO.6.

2、由于KKP无法从MPAO1基因组中敲除,我们用如下方法将其整合到不含有Pf6的与MPAO1基因组高度相似的PAO1基因组(图2)。2. Since KKP cannot be knocked out from the MPAO1 genome, we integrated it into the PAO1 genome that does not contain Pf6 and is highly similar to the MPAO1 genome ( FIG. 2 ).

具体操作如下:The specific operation is as follows:

A、从-80℃冰箱接种铜绿假单胞菌MPAO1于LB平板上,37℃恒温过夜培养,挑取MPAO1,接菌至LB液体培养基,37℃恒温震荡培养至OD600约为1。A. Inoculate Pseudomonas aeruginosa MPAO1 from a -80°C refrigerator on an LB plate, culture overnight at a constant temperature of 37°C, pick MPAO1, inoculate it into LB liquid medium, and culture it at a constant temperature of 37°C with shaking until the OD 600 is about 1.

B、将1ml的菌液在12000rpm的转速下离心1min,收集菌体。采用天根的细菌基因组提取试剂盒(货号:DP302-02)对细菌的基因组DNA进行提取。B. Centrifuge 1ml of the bacterial solution at 12000rpm for 1min to collect the bacterial cells. Genomic DNA of bacteria was extracted using Tiangen Bacterial Genome Extraction Kit (Product No.: DP302-02).

C、采用引物对KKP-F1/R1、KKP-F3/R3和KKP-F4/R4,以MPAO1基因组DNA为模板。采用引物对KKP-F2/R2,以质粒pEX18Gm为模板。用Takara公司的Primer Star试剂(货号:AL52850A)进行PCR扩增(条件为95℃,10min;95℃,30s,60℃,30s,72℃,90s,35循环),对PCR产物进行琼脂糖凝胶电泳,然后用Omega公司的胶回收试剂盒(货号:D2500-02)进行回收。C. Using primer pairs KKP-F1/R1, KKP-F3/R3 and KKP-F4/R4, using MPAO1 genomic DNA as a template. The primer pair KKP-F2/R2 was used, and the plasmid pEX18Gm was used as a template. Use Takara’s Primer Star reagent (product number: AL52850A) for PCR amplification (conditions: 95°C, 10min; 95°C, 30s, 60°C, 30s, 72°C, 90s, 35 cycles), and agarose gelation of the PCR product Gel electrophoresis, and then recover with the gel recovery kit of Omega Company (article number: D2500-02).

D、将载体pEx18Ap采用EcoRI和HindIII进行双酶切,然后进行琼脂糖凝胶电泳和胶回收(如上回收PCR片段)。D. The vector pEx18Ap was double digested with EcoRI and HindIII, and then agarose gel electrophoresis and gel recovery (recovering PCR fragments as above).

E、将回收的载体和上述PCR片段采用诺唯赞公司的One Step多片段克隆试剂盒(货号:C113-01),按照说明书进行连接。E. The recovered vector and the above PCR fragments were ligated according to the instruction manual using the One Step Multi-Fragment Cloning Kit (Product No.: C113-01) of Novozyme.

F、将连接好的连接产物转化进营养缺陷型的大肠杆菌WM3064感受态细胞(培养的时候要在培养基中加入0.3mM二氨基丙烯酸),对正确的转化子采用pEX18Ap-F/R引物对进行PCR验证,并送公司进行测序。由此得到含有重组质粒的WM3064菌株。F. Transform the ligated product into auxotrophic Escherichia coli WM3064 competent cells (0.3mM diaminoacrylic acid should be added to the medium when culturing), and use the pEX18Ap-F/R primer pair for the correct transformants Perform PCR verification and send to the company for sequencing. Thus, the WM3064 strain containing the recombinant plasmid was obtained.

G、将含有重组质粒的WM3064菌株(供体菌)和不携带Pf6的铜绿假单胞菌PAO1(受体菌)培养至600nm的吸光度~1.0。将4mL的供体菌与1mL的受体菌进行混合,用LB培养基洗涤3次,每次3000rpm离心5min。最后一次用100μL LB进行悬浮,滴在含0.3mM二氨基丙烯酸和1.5%琼脂的LB固体平板上,将平板放在25℃静置培养8h。将细菌梯度稀释后涂布与含有30μg/ml庆大霉素和1.5%琼脂的LB固体平板上,挑选成功结合转移的受体菌株。将成功进行接合转移,并含有自杀质粒的单交换菌株在37℃用无盐LB培养基(配方:1%蛋白胨,0.5%酵母提取物,溶于蒸馏水)培养,然后用引物PfkC-F和PfkA-R进行PCR验证。接下来对验证正确的菌株,进行双交换筛选,采用含有10%蔗糖和1.5%琼脂的无盐LB固体培养基进行筛选。将得到的菌株进行庆大霉素抗性的筛选,对于失去庆大霉素抗性的菌株采用引物对conf-F/R进行PCR验证,并进行DNA测序。由此得到整合有三组分基因簇的改造PAO1。G. Culture WM3064 strain (donor bacterium) containing the recombinant plasmid and Pseudomonas aeruginosa PAO1 (recipient bacterium) not carrying Pf6 until the absorbance at 600 nm is ~1.0. Mix 4 mL of donor bacteria with 1 mL of recipient bacteria, wash 3 times with LB medium, and centrifuge at 3000 rpm for 5 min each time. Suspend with 100 μL LB for the last time, drop on the LB solid plate containing 0.3 mM diaminoacrylic acid and 1.5% agar, and place the plate at 25° C. for static culture for 8 hours. Bacteria were serially diluted and spread on LB solid plates containing 30 μg/ml gentamycin and 1.5% agar, and the recipient strains successfully combined with transfer were selected. The successful conjugative transfer and the single-crossover strain containing the suicide plasmid were cultured at 37°C in salt-free LB medium (recipe: 1% peptone, 0.5% yeast extract, dissolved in distilled water), and then primed with primers PfkC-F and PfkA -R for PCR verification. Next, double-exchange screening was performed on the correct strains, and the salt-free LB solid medium containing 10% sucrose and 1.5% agar was used for screening. The obtained strains were screened for gentamicin resistance, and the primer pair conf-F/R was used for PCR verification for the strains that lost gentamicin resistance, and DNA sequencing was performed. Thus, the modified PAO1 integrated with the three-component gene cluster was obtained.

3、采用实验室保存的铜绿假单胞菌的噬菌体对其进行侵染实验,采用双层琼脂平板法,将过夜的37℃培养的PAO1和整合有三组分基因簇的改造PAO1进行1%稀释,然后培养至OD600约为1;此时将3ml菌液与10ml R-top培养基(温度约55℃)(配方:1%胰蛋白胨,0.1%酵母粉,1%NaCl,0.8%琼脂)混合平铺于LB平板,在超净台静置10min,用于4种铜绿假单胞菌噬菌体PAP8,PAO-L5,QDWS和PAP-L5点板操作。将噬菌体按101~108梯度稀释,各吸取5μl进行点板,37℃恒温过夜培养,根据噬菌斑多少和强弱检测噬菌体抗性。结果KKP对噬菌体PAP8,PAO-L5,QDWS和PAP-L5均呈现抗性(图3)。3. Use the phage of Pseudomonas aeruginosa preserved in the laboratory to carry out the infection experiment, and use the double-layer agar plate method to dilute the PAO1 cultured overnight at 37 ° C and the modified PAO1 integrated with the three-component gene cluster. , and then cultivated until the OD600 is about 1; at this time, mix 3ml of bacterial liquid with 10ml of R-top medium (temperature about 55°C) (recipe: 1% tryptone, 0.1% yeast powder, 1% NaCl, 0.8% agar) Spread it on LB plates and let it stand for 10 minutes in the ultra-clean bench for 4 kinds of Pseudomonas aeruginosa phage PAP8, PAO-L5, QDWS and PAP-L5 plate operation. Dilute the phage in a gradient of 10 1 to 10 8 , pipette 5 μl each for spotting on a plate, and culture at a constant temperature of 37°C overnight, and detect phage resistance according to the number and strength of phage plaques. Results KKP showed resistance to phages PAP8, PAO-L5, QDWS and PAP-L5 (Fig. 3).

4、采用生物信息学方法进行预测,发现该三组分基因簇广泛分布于多种细菌的不同原噬菌体中,包括海洋希瓦氏菌W3-18-1(P4原噬菌体)、沙门氏菌enterica serovarTyphi str.CT18(P4原噬菌体)、大肠杆菌MPEC4969(P2原噬菌体)、大肠杆菌15EC039(P2原噬菌体),弧菌10N.222.48.A2(P2原噬菌体)(图4)。4. Using bioinformatics methods to predict, it was found that the three-component gene cluster is widely distributed in different prophages of various bacteria, including marine Shewanella W3-18-1 (P4 prophage), Salmonella enterica serovarTyphi str .CT18 (P4 prophage), Escherichia coli MPEC4969 (P2 prophage), Escherichia coli 15EC039 (P2 prophage), Vibrio 10N.222.48.A2 (P2 prophage) ( FIG. 4 ).

5、通过基因合成的方法,将上述步骤4中的四个三组分基因簇进行合成,分别克隆进pHERD20T载体。载体采用的酶切位点为NcoI和HindIII,转化用的是大肠杆菌K12菌株MG1655。用步骤3中同样的双层琼脂平板法,将实验室保存的大肠杆菌噬菌体T1,T4,T5,T7,EEP,λ和M13进行抗噬菌体的检测。只是本次用0.3%的阿拉伯糖诱导三组分基因簇的表达,诱导时间为3h(图5),从图5可以看出,三组分基因簇能提高菌株对噬菌体的侵染。5. Synthesize the four three-component gene clusters in the above step 4 by gene synthesis, and clone them into the pHERD20T vector respectively. The enzyme cutting sites used in the vector are NcoI and HindIII, and Escherichia coli K12 strain MG1655 is used for transformation. Using the same double-layer agar plate method as in step 3, the coliphages T1, T4, T5, T7, EEP, λ and M13 stored in the laboratory were tested against phages. Only this time, 0.3% arabinose was used to induce the expression of the three-component gene cluster, and the induction time was 3 hours ( FIG. 5 ). It can be seen from FIG. 5 that the three-component gene cluster can improve the infection of the strain to phage.

表1本发明中使用的引物Primers used in the present invention in table 1

Figure BDA0003763628690000071
Figure BDA0003763628690000071

Figure BDA0003763628690000081
Figure BDA0003763628690000081

Figure BDA0003763628690000082
Figure BDA0003763628690000082

Figure BDA0003763628690000091
Figure BDA0003763628690000091

Figure BDA0003763628690000092
Figure BDA0003763628690000092

ATGTTTCAAAGGCTATTGCAAAAACACCTTGCCAGAGGAATTCTTGGCAGAAAAATGTTATCTATCGACAAAGGTTCTATTGCCTTAGCTTCAGATCTAGGTCTGAAGAGAACTGAGAATCAAGACAGAACCGCTTTAATGAAATTTAGATCTTCAACAGCTTCGTATACTGTCATAGCCGTAGTTGATGGAATGGGTGGTATGAGAGATGGGGAGAAGTCTGCTGAAATAGCTATTTCAACTTTCTTGTGCTCTATTATGGAAAATGTTCATTTGGGTTCTGAACATGCAATAATGCAAGCCACGATGACTGCCAATAACGCTGTATTCGAATTTACAAATGGTAAAGGTGGAAGTACCTTATCCGCAATTTTATTAGCTAGCGACGGCACTCATATGACCGTTAATGTCGGGGACAGTCGAATTTATGCAAAGGAGTCTATCTTTGGCAAAGTAATTAGACTTACCGTTGATGATTCGTTAGCGGAAACCGTTGGAGGAAGCGGTACAGAATTATTGCAGTTCATAGGTATGGGGGAAGGAATTAGACCACACGTAGTTCCGCTGCCACTTGAAGCTAAGCAAGTATATCTGACAACTGATGGTGTCCATTACATTGAACCAAACACATTGTCTGATATTATAAAACATGCAGAAAAAATCACTCAGGTTGTAGAGCGGTTGATAGCAACTGCACGTTGGTGTGGAGGCCCAGATAACGCTACAGTTAGTGCTCTTGATTTAGAGCTATTAAACTTTGAGGAGTCCCTGGATGATGCCTCGATAGTGCAAATATCTGATCCACATAGCTCTACACAATTCATATTCCCCCAATTTCAGTTGGAAAGTGAAGTATCTCTCCCAGAGACAAGTGTTCAAACTCAAAATAATTCTATTAATACAGCTCAATCTGAGAAATCGGCTGCTCCTAGCAGAACCTCAACTTTGGTCGAAGAAAAAGAATCGATTACTGAAACAGTCAAAGTTGAAGCTAAAACCCCGCCTAAGAGAAAGAAACGTCAATCAAAGAAGGCTGTTGATCATCTAGATTCCGCAGATGAAGTACAAATTAAGATGACCATTTTTGATGAAGCAGGTTGCGAAAGTCATGAGGTTGAAGATGATGATTCCAAGTAGATATGAACTC TGTGGTAACAACGATACTGGTGGTATGGGTGACATTCTCTATTGCAAAGACAAACATTTACAACGCGATGTCATAAT TAAACTCTTAAAAGGTGATGCTGAACAACGAAGGTTAATTGACGAGCAAAAATCTCTTATTCAGCTCCGTTCTAAAC ATGTAGTTCAATTGTACGACGTAGTTAATATTGATAATCAATCCGGTTTAGTATTAGAGTTTATTAAAGGCGAGGAC CTCAAAAATGGTCTTTATGAGTCGAATATGAAAGGACTCATAGAAGTATTGTGGCAAGTTGCGTGCGGTTTATCTGA CATACATAAGGCAGGAATTATTCATCGTGATATCAAACCAAACAATATTCGTCGAGATAACATCGGAGTTATCAAGG TCTTTGATTTTGGGCTTTCGAGAAAACTTGATAGCGCTAAAACACATAGTGTCATTGGTACTGTGGGGTATATGGCA CCTGAATTATGGAAATGTGGTGAAGTTGAGTTTACCACAGCTGTAGATGTTTATGCCTTCGGTATTACGGCAATGGC TCTTTCAAATGCTATTGTCCCAAGAGAACTTTTAGAGTTCCCTCCTCGTTGCGCTAACAATGGTTGGGTTAAAAATA GTTTACCAAGCTTAGATTCGGATATTGCAGAGATTCTAGAGCGATGCCTAGAATACAAACCAGAGGCTCGCCCCACA ATCGATCAGGTTGAAAAAATACTAAGAAAGCATCTCCTGAAAGACAAACACAAAGGTCTTATTGTGATGGGGAATGA AGTTAGAGAGCTTAATAATCAAAATAGACGTGCTAAGATTTCATCTATTCATGGTAATAATTTAAATGGTGAAATTA CCATTGAATATGATAGTTATGAATTTAAAGTTGCTGCTATCGGTGGTTCGGTAACAGTAAATAATGAAGTGATCAAA GTCGGTTATATCCTGCCAGGTGCTTCCGTTATTACTCTAGGTTCCGACTCTAATCGGCGTTTTGTTACTTTCGATAT ATCTAACCCAGAGGTGGTTTCATGATCACATCGAATACTCTGATCGGTGGCCGTTATATGGTTCACCAACACATTGGTGCTGGCGGTATGCAAGATGTTTATCTGGCGCTAGATCAATTCCTCGGTAATTATGTCGCACTTAAGACGCCTCAGCCTGGCCAGAAAACCAGACGATTCCAAGCTAGTGCTGTAATTGCAGGTAGAGTAAATCACCACAATGTAGCCAAGACATTAGATTACTTTGAAGAAAATGGAAATGTTTACCTAATTGAGGAATTTGTTAAAGGTGAAACTCTTGAAGATAAGATTAAGCAGAGAAAATTCCTTGATCCTCATCTAGCCGCTAGAACTATACACCTATTAGCAAAGGGGGTCAGAGCCTCACACATTCAAGGAGTAATACACAGAGATTTGAAGCCAAGTAATATTATGGTTGACTCTAGTACTGGTATCGAAGAGCTAAAGATTACCGATTTTGGTATTGCAACTTTTACCGACGAAGTATTTCAAGAAGAGGCCGACTCCGGCGATATTACTCGTTCCACTTCTGGGACAGTGAAAGGTGCTCTTCCATTTATGGCACCTGAAATGATGTTTCGTAAAAAAGGGGATAGTATTACTCCGGCCTTAGATATTTGGTCAATTGGGGCGATGATGTTCAAAATACTAACAGGTGAGTACCCATTTGGTGTTTTTCTCGATGCTGCTGTGAATGTCAAAACAAGAAATAGGCTAGATTGGCCTGCTTTTATGACTTCTAACGCACAGTTTTCCCCATTATGCAGGGAACTTCAGAAGATAATAGATAGCTGTTTGGAGTATGAACCAACCAAACGCCCTACGGCTGATGCTCTTGTGAAAATGTGCCAAAATTTGTGCTATCAAACTTCTGAACGTTTTGAAGCGACGGTTACGAGGATGATTCAAAACGGATATAGTGGCTTTGCTTCAAACCCTCAACATAGCGTATTTTTTAGTATCCATAGCATCTACGGAGCTTCTAGGGTTAATAGTGGAAGTAAAATTACGTACTCAAAGTTTCCGGGCACCCCTAATTTTAGAGCTCACCCAGTCATTATCTTAAATTAAATGTTTCAAAGGCTATTGCAAAAACACCTTGCCAGAGGAATTCTTGGCAGAAAAATGTTATTCTATCGACAAAGGTTTCTATTGCCTTAGCTTCAGATCTAGGTCTGAAGAGAACTGAGAATCAAGACAGAACCGCTTTAATGAAATTTAGATCTTCAACAGCTTCGTATACTGTCATAGCCGTAGTTGATGGAATGGGTGGTATGAGAGATGGGGAGAAGTCTG CTGAAATAGCTATTTCAACTTTCTTGTGCTCTATTATGGAAAATGTTCATTTGGGTTCTGAACATGCAATAATGCAAGCCACGATGACTGCCAATAACGCTGTATTCGAATTTACAAATGGTAAAGGTGGAAGTACCTTATCCGCAATTTTATTAGCTAGCGACGGCACTCATATGACCGTTAATGTCGGGGACAGTCGAATTTATGCAAAGGAGTCTATCTTTGGC AAAGTAATTAGACTTACCGTTGATGATTCGTTAGCGGAAACCGTTGGAGGAAGCGGTACAGAATTATTGCAGTTCATAGGTATGGGGGAAGGAATTAGACCACACGTAGTTCCGCTGCCACTTGAAGCTAAGCAAGTATCTGACAACTGATGGTGTCCATTACATTGAACCAAACACATTGTCTGATATTATAAAACATGCAGAAAAAAATCACTCAGGTTG TAGAGCGGTTGATAGCAACTGCACGTTGGTGTGGAGGCCCAGATAACGCTACAGTTAGTGCTCTTGATTTAGAGCTATTAAACTTTGAGGAGTCTAAACTTTGAGGAGTCCCCTGGATGCCTCGATAGTGCAAATATCTGATCCACATAGCTCTACACAATTCATATTCCCCAATTTCAGTTGGAAAGTGAAGTATCTCCCAGAGACAAGTGTTCAAAATAATTCTATTAATACAG CTCAATCTGAGAAATCGGCTGCTCCTAGCAGAACCTCAACTTTGGTCGAAGAAAAAGAATCGATTACTGAAACAGTCAAAGTTGAAGCTAAAACCCCGCCTAAGAGAAAGAAACGTCAATCAAAGAAGGCTGTTGATCATCTAGATTCCGCAGATGAAGTACAAATTAAGATGACCATTTTTGATGAAGCAGGTTGCGAAAGTCATGAGGTTGAAGATGATGATTCCAAGTAGATATGAACTC TGTGGTAACAACGATACTGGTGGTATGGGTGACATTCTCTATTGCAAAGACAAACATTTACAACGCGATGTCATAAT TAAACTCTTAAAAGGTGATGCTGAACAACGAAGGTTAATTGACGAGCAAAAATCTCTTATTCAGCTCCGTTTCTAAAC ATGTAGTTCAATTGTACGACGTAGTTAATATTGATAATCAATCCGGTTTAGTATTAGAGTTTATTAAAGGCGAGGAC CTCAAAAATGGTCTTTATGAGTCGAATATGAAAGGACTCATAGAAGTATTGTGGCAAGTTGCGTGCGGTTTATCTGA CATACATAAGGCAGGAATTATTCATCGTGATATCAAACCAAACAATATTCGTCGAGATAACATCGGAGTTATCAAGG TCTTTGATTTTGGGCTTTCGAGAAAACTTGATAGCGCTAAAACACATAGTGTCATTGGTACTGTGGGGTATATGGCA CCTGAATTATGGAAATGTGGTGAAGTTGAGTTTACCACAGCTGTAGATGTTTATGCCTTCGGTATTACGGCAATGGC TCTTTCAAATGCTATTGTCCCAAGAGAACTTTTAGAGTTCCTCTCTCGTTGCGCTAACAATGGTTGGGTTAAAAATA GTTTACCAAGCTTAGATTCGGATATTGCAGAGATTCTAGAGCGATGCCTAGAATACAAACCAGAGGCTCGCCCCACA ATCGATCAGGTTGAAAAAATACTAAGAAAGCATCTCCTGAAAGACAAACACAAAGGTCTTATTGTGATGGGGAATGA AGTTAGAGAGCTTAATAATCAAAATAGACGTGCTAAGATTTCATCTATTCATGGTAATAATTTAAATGGTGAAATTA CCATTGAATATGATAGTTATGAATTTAAAGTTGCTGCTATCGGTGGTTCGGTAACAGTAAATAATGAAGTGATCAAAA GTCGGTTATATCCTGCCAGGTGCTTCCGTTATACTCTAGGTTCCGACTCTAATCGGCGTTTTGTTACTTTCGATAT ATCTAACCCAGAGGTGGTTTCATGATCACATCGAATACTCTGATCGGTGGCCGTTATATGGTTCACCAACACATTGGTGCTGGCGGTATGCAAGATGTTTATCTGGCGCTAGATCAATTCCTCGGTAATTATGTCGCACTTAAGACGCCTCAGCCTGGCCAGAAAACCAGACGATTCCAAGCTAGTGCTGTAATTGCAGGTAAGAGTAAATCACCACAATGTAGCCAAGACATTAGATTACTTTGAAGA AAATGGAAATGTTTACCTAATTGAGGAATTTGTTAAAGGTGAAACTCTTGAAGATAAGATTAAGCAGAGAAAATTCCTTGATCCTCATCTAGCCGCTAGAACTATACACCCTATTAGCAAAGGGGGTCAGAGCCTCACACATTCAAGGAGTAATACACAGAGATTTGAAGCCAAGTAATATTATGGTTGACTCTAGTACTGGTATCGAAGAGCTAAAGATTACCGATTTT GGTATTGCAACTTTTACCGACGAAGTATTTCAAGAAGAGGCCGACTCCGGCGATATTACTCGTTCCACTTCTGGGACAGTGAAAGGTGCTCTTCCATTTATGGCACCTGAAATGATGTTTCGTAAAAAAGGGGATAGTATTACTCCGGCCTTAGATATTTGGTCAATTGGGGCGATGATGTTCAAAATACTAACAGGTGAGTACCCATTTGGTGTTTT TCTCGATGCTGCTGTGAATGTCAAAAACAAGAAATAGGCTAGATTGGCCTTTTTATGACTTCTAACGCACAGTTTTTCCCCATTATGCAGGGAACTTCAGAAGATAATAGATAGCTGTTTGGAGTATGAACCAACCAAACGCCCTACGGCTGATGCTCTTGTGAAAATGTGCCAAAATTTGTGCTATCAAACTTCTGAACGTTTTGAAGCGACGGTTACGAGGAT GATTCAAAAACGGATATAGTGGCTTTGCTTCAAACCCTCAACATAGCGTATTTTTAGTATCCATAGCATCTACGGAGCTTCTAGGGTTAATAGTGGAAGTAAAATTACGTACTCAAAGTTTCCGGGCACCCCTAATTTTAGAGCTCACCCAGTCATTATCTTAAATTAA

Figure BDA0003763628690000101
Figure BDA0003763628690000101

GTGAGCCGTGATTCTTACGAAATCCTTCATGAGCATATTCACGGATGGCTACATCGAAAAAATATAGCATCCTCAGTGCGTCGTGTCTCAACCTTACCAGTGGCTATAGCTACTGATATTGGGTTGGTACGGAAGGAAAACCAAGATAGGGTTGCTATATTGAAATTCCGCCCAAGTAGCAAAGCTAAAGATATCGTTGTTGTTGCGTTAGCCGATGGTATGGGGGGGATGGAGGGGGGTGCCAATGCAGCATCTTTAACTTTATCTACATTTTTTACTGAAATAATAAGAAATTCTCATTTACCAATACGTTCTTGTCTTGAGAAAGCTGTGCTACAAGCGAATGATTCTGTTTTGAATGTATATAAGGGTAATGGAGGGGCGACATTATCAGCGATAGCTTTAGAAGATGATGATAATATTACCGCAGTAAATGTAGGTGATAGCCGTATTTATTATGTCTCGCATGAAGAAACTACTCAGTTGAGCGAGGACGATACTTTAGTTGCCTTAGCCAAAAAGTATAATAATCATCTAAATATGGATCCACAGGATATTGATTTACGCTTTGGTGGCGAATTAGTACAATTTATAGGCATAGATGGCACATTGGAAATACACTTTCATCATATCCAAGCCTTGGAGAGTGGCGTAATTATTTTAAGTTCTGATGGTGCGCATTCTATCGGTAAGGATAATTTAAGAAAGTTATATGTGCACTCGGCGAATCTAGGTGTTTATTCTAGGCGGGTTATTGATCTTGCTAGTTGGTTTGGTGGTTTCGACAATGCAAGTATAGCAGTTATAGACCTTTTTAATACTCTAAAAGAGTTAGATGTTTCATCTGGAGATGTAATAAATCTCTGGGATCCATTTGGTGAATTAAAAGTCATTAGCGTGCCGAATAAGTCATCTTCATTAGAGCCTTTAAATACAGTTGAGCTTGAAAAAAATAATAAAGGCACTTCTGGTGTTAGAAAAGTGTCAAACAAAAAAAATACTGATTCAGTCGTTAGCGATATAAACAAAGCAACAACAAAAAGAAAGGCAAGAACAAAAAATAAGAATAAATCTCTTCAGGAATTAGATGAGAAAAAAAATGGGTTAAATAAAAATAATAGACTTGATTGTATTTCACAACTTGACATGTCATTCCTTGAAAGGAATTCAATAAAAGGAGATGGTGATGATGAGTGATTTTCTCCCAGAAAGATATCAAGTGGT TGGGGATCCTGATTTAGGGGGATTCGGTAGTGTAATCAAATGCCGCGATTCTCATCTTGAGAGATTTGTTGCAATAA AGACTATAAATGATCCATCAGATACAGAGCGAATGAAAGACGAGTTGGCTGCTCTAATGACACTACGTTCAAAACAT GTTGTTGAACTGTTTGATGTGATTAATTATGCTGAAGGCAATCTTGCAATTGTTGAAGAGTTTATCGATGGTCCATC GTTGAATGAAGTTAATAATAAAATTACTACAGTAGGGGAGCTTATTAAGATTTTGTGGCAAATAGCATCAGGTATTT GCGAGATACATGAACATGATATCATTCATCGTGATATAAAGCCTGGGAATATGAAGATTGATAAAGAAGGGCTTGTA AAAATATATGATTTTGGCTTGTCAAGAAAAATAGATAATGCAAAAACAATTGGGTTTAAAGGTACCCCAATTTTTGC AGCTCCTGAGTTGTATTTGCAGAACGTAGACTTTACTAAAGCAATTGATACATATGCCTTTGCTGTTACAGCAATGT GCTTAGCTAAAACCCCTGTCCCAGATGAATTGACCCGTTACCCTAAGATTCTGACATCTAATCCATTTGATTTGTCG GTAATAAAATTACCAAGTATTGTAAAGGAATTGTTTTTCAAATGTCTTGATGCAAATCCTCAAGCTAGGCCCCCTAT GAAAGATGTTTGCGATGTTTTGAAAAAAATATTATTGCACAACTCTCATCGAGCATTGCTTATATCTGATAATAAAA AACCAGTAGTGCTCTCAGCTACACACAAGACGGAGTCTTATAACAATCCAGGGGTGGGTAGTGTGGAAATTACTTAC TCTGGTTCCGAGTTTTATATTTCAGATATATCAGGGGATGTCTATGTTAATAACATTAGGGCTAAAAAACGAAATTT ATTGCCTAGCTCATGCGTGATAATACTTGGCCCTGCCGGAAGAACAACTACAAAACGTATATTTATCACATTTGATC TTTCTCATCCGGAGGTTGTGTTATGATTGAGTTGGTTCCTGGGACTAATATAAATCGTTATACTATTATCAGCGAAATTGGTGAGGGGGGGATGCAAAAGGTTTACCTTGCGAATGATAAGATATTAAATAGGCAAGTTGCTCTTAAGACCCCTAAAAATAAGTCTGCTGAAAAACGATTCCATAGAAGTGCTATTTTAGCATCTAGGGTCAACCATCCTAACGTCGCTAAAACATTAGATTATTTTGCCGAAGATGGACGTGAATTTTTAACGGAGGAATTTATCGATGGAGTAGATCTGGATAAAGCATTGTTGAGTAGCTATACAAGTGTTGATCCTTACTTGACTGCAAAGATATTTCATAACTTAGCGAAGGCTCTTTCGGCTTCCCATCATGTGGATGTAATACATCGAGACCTCAAACCTTCTAACATAATGGTTATTGGAGGAGTTAGTGCTACAGGTGTTAAAATCACCGATTTTGGAATTTCAAAAATGGCCGGTGATGAAATTGATGAGGCCGCAAAGAATGGGCAAGGATCGATTACTTCATCTCAAACAGCTATGGGGGCATTGCCATATATGGCCCCGGAAATTATACAAAGTCAGGGGCAAGTTTCAAAACCATCTGATGTCTGGGCATTAGGTGCGATGATGTTCAGAATCCTCACGGGAGAGTATCCTTTTGGATTAGGGTATATGGCTATTCCGAACATCTTATCTGGAAAGCATACTCAATATCCTGATTTTATTAAGTCAAATAAGCAGTTTGCTCCGCTGGCAAATGAAATTATAGATATAATTGAAAAATGTTTAAATCTAGACCCTTCTAAACGCCCCACTGCAGATGAGCTCGTGTCATTATGTGGTCAATTATGCTATCCGGTTTGTAATAGAGAAGAAGGAGTAATAGGTGATACTAGACTAGCTTATGGTTTCATTCGTATACCAAACCAACCACAAGTATTTTTTCATTACGATAGTGTGTATGGTAGTAAACCAGTGAGTAATGATAAGGTGATTTTTTCAAAGTTCTTGGGAGGGGGCCATGACCGGGCTCATCCAGTTATCAAGGCTAAGTAG GTGAGCCGTGATTCTTACGAAATCCTTCATGAGCATATTCACGGATGGCTACATCGAAAAAATATAGCATCCTCAGTGCGTCGTGTCTCAACCTTACCAGTGGCTATAGCTACTGATATTGGGTTGGTACGGAAGGAAAACCAAGATAGGGTTGCTATATTGAAATTCCGCCCAAGTAGCAAAGCTAAAGATATCGTTGTTGTTGCGTTAGCCGATGGTATGGGGGGGATGGAGGGGGTGCCAATGCAGCATCTTTAACTTTATCTACATTTTTACTGAAATAATAAGAAATTCTCATTTACCAATACGTTCTTGTCTTGAGAAAGCTGTGCTACAAGC GAATGATTCTGTTTTGAATGTATATAAGGGTAATGGAGGGGCGACATTATCAGCGATAGCTTTAGAAGATGATGATAATATCCGCAGTAAATGTAGGTGATAGCCGTATTTATTATGTCTCGCATGAAGAAACTACTCAGTTGAGCGAGGACGATACTTTAGTTGCCTTAGCCAAAAGTATAATAATCATCTAAATATGGATCCACAGGATATTGATTTACG CTTTGGTGGCGAATTAGTACAATTTATAGGCATAGATGGCACATTGGAAATACACTTTTCATCATATCCAAGCCTTGGAGAGTGGCGTAATTATTTTAAGTTCTGATGGTGCGCATTCTATCGGTAAGGATAATTTAAGAAAGTTATATGTGCACTCGGCGAATCTAGGTGTTTTATTCTAGGCGGGTTATTGATCTTGCTAGTTGGTTTGGTGGTTTCGACAAT GCAAGTATAGCAGTTATAGACCTTTTTAATACTCTAAAAGAGTTAGATGTTTCATCTGGAGATGTAATAAATCTCTGGGATCCATTTGGTGAATTAAAAGTCATTAGCGTGCCGAATAAGTCATCTTCATTAGAGCCTTTAAATACAGTTGAGCTTGAAAAAAATAATAAAGGCACTTCTGGTGTGAAAAGTGTCAAAAAAAAATACTGATTCAGTCGTTAGCGATA TAAACAAAGCAACAACAAAAAGAAAGGCAAGAACAAAAAATAAGAATAAAATCTCTTCAGGAATTAGATGAGAAAAAAAATGGGTTAAATAAAAATAATAGACTTGATTGTATTTCACAACTTGACATGTCATTCCTTGAAAGGAATTCAATAAAAGGAGATGGTGATGATGAGTGATTTTCTCCCCAGAAAGATATCAAGTGGT TGGGGATCCTGATTTAGGGGGATTCGGTAGTGTAATCAAATGCCGCGATTCTCATCTTGAGAGATTTGTTGCAATAA AGACTATAAATGATCCATCAGATACAGAGCGAATGAAAGACGAGTTGGCTGCTCTAATGACACTACGTTCAAAACAT GTTGTTGAACTGTTTGATGTGATTAATTATGCTGAAGGCAATCTTGCAATTGTTGAAGAGTTTATCGATGGTCCATC GTTGAATGAAGTTAATAATAAAATTACTACAGTAGGGGAGCTTATTAAGATTTTGTGGCAAATAGCATCAGGTATTT GCGAGATACATGAACATGATATCATTCATCGTGATATAAAGCCTGGGAATATGAAGATTGATAAAGAAGGGCTTGTA AAAATATATGATTTTGGCTTGTCAAGAAAAATAGATAATGCAAAAACAATTGGGTTTAAAGGTACCCCAATTTTTGC AGCTCCTGAGTTGTATTTGCAGAACGTAGACTTTACTAAAGCAATTGATACATATGCCTTTGCTGTTACAGCAATGT GCTTAGCTAAAACCCCTGTCCCAGATGAATTGACCCGTTACCCTAAAGATTCTGACATCTAATCCATTTGATTTGTCG GTAATAAAAATTACCAAGTATTGTAAAGGAATTGTTTTTCAAATGTCTTGATGCAAATCCTCAAAGCTAGGCCCCCTAT GAAAGATGTTTGCGATGTTTTGAAAAAAAATATTATTGCACAACTCTCATCGAGCATTGCTTATATCTGATAATAAAA AACCAGTAGTGCTCTCAGGCTACACACAAGACGGAGTCTTATAACAATCCAGGGGTGGGTAGTGTGGAAATTACTTAC TCTGGTTCCGAGTTTTATATTTCAGATATCAGGGGATGTCTATGTTAATAACATTAGGGCTAAAAAACGAAATTT ATTGCCTAGCTCATGCGTGATAATACTTGGCCCTGCCGGAAGAACAACTACAAAACGTATATTTATCACATTTGATC TTTCTCATCCGGAGGTTGTGTTATGATTGAGTTGGTTCCTGGGACTAATAATAAATCGTTATACTATTATCAGCGAAATTGGTGAGGGGGGATGCAAAAGGTTTACCTTGCGAATGATAAGATATTAATAGGCAAGTTGCTCTTAAGACCCCTAAAAATAAGTCTGCTGAAAACGATTCCATAGAAGTGCTATTTTAGCATCTAGGGTCAACCATCCTAACGTCGCTAAAACATTAGATTA TTTTGCCGAAGATGGACGTGAATTTTTAACGGAGGAATTTATCGATGGAGTAGATCTGGATAAAGCATTGTTGAGTAGCTATACAAGTGTTGATCCTACTTGACTGCAAAGATATTTCATAACTTAGCGAAGGCTCTTTCGGCTTCCCATCATGTGGATGTAATACATCGAGACCTCAAACCTTCTAACATAATGGTTATTGGAGGAGTTAGTGCTACAGGT GTTAAAATCACCGATTTTGGAATTTCAAAAAATGGCCGGTGATGAAATTGATGAGGCCGCAAAGAATGGGCAAGGATCGATTACTTCATCTCAAACAGCTATGGGGGCATTGCCATATATGGCCCCGGAAATTATACAAAGTCAGGGGCAAGTTTCAAAACCATCTGATGTCTGGGCATTAGGTGCGATGATGTTCAGAATCCTCACGGGAGA GTATCCTTTTGGATTAGGGTATATGGCTATTCCGAACATCTTATCTGGAAAGCATACTCAATATCCTGATTTTATTAAGTCAAATAAGCAGTTTGCTCCGCTGGCAAATGAAATTATAGATAATAATTGAAAAATGTTTAAATCTAGACCCTTCTAAACGCCCCACTGCAGATGAGCTCGTGTCATTATGTGGTCAATTATGCTATCCGGTTTGTAATAGAGAAGAAGGAG TAATAGGTGATACTAGACTAGCTTATGGTTTCATTCGTATACCAAACCAACCACAAGTATTTTTTCATTACGATAGTGTGTATGGTAGTAAACCAGTGAGTAATGATAAGGTGATTTTTTCAAAGTTCTTGGGAGGGGGCCATGACCGGGCTCATCCAGTTATCAAGGCTAAGTAG

Figure BDA0003763628690000111
Figure BDA0003763628690000111

GTGAGCCGTGATTCTTACGAAATCCTTCATGAGCATATTCACGGATGGCTACATCGAAAAAATATAGCATCCTCAGTGCGTCGTGTCTCAACCTTACCAGTGGCTATAGCTACTGACATTGGGTTGGTACGGAAGGAAAACCAAGATAGGGTTGCTATATTGAAATTCCGCCCAAGTAGCAAAGCTAAAGATATCGTTGTTGTTGCGTTAGCCGATGGTATGGGGGGGATGGAGGGGGGTGCCAATGCAGCATCTTTAACTTTATCTACATTTTTTACTGAAATAATAAGAAATTCTCATTTACCAATACGTTCTTGTCTTGAGAAAGCTGTGCTACAAGCGAATGATTCTGTTTTGAATGTATATAAGGGTAATGGAGGGGCGACATTATCAGCGATAGCTTTAGAAGATGATGATAATATTACCGCAGTAAATGTAGGTGATAGCCGTATTTATTATGTCTCGCATGAAGAAACTACTCAGTTGAGCGAGGACGATACTTTAGTTGCCTTAGCCAAAAAGTATAATAATCATCTAAATATGGATCCACAGGATATTGATTTACGCTTTGGTGGTGAATTAGTACAATTTATAGGCATAGATGGCACATTGGAAATACACTTTCATCATATCCAAGCCTTGGAGAGTGGCGTAATTATTTTAAGTTCTGATGGTGCGCATTCTATCGGTAAGGATAATTTAAGAAAGTTATATGTGCACTCGGCGAATCTAGGTGTTTATTCTAGGCGGGTTATTGATCTTGCTAGTTGGTTTGGTGGTTTCGACAATGCAAGTATAGCAGTTATAGACCTTTTTAATACTCTAAAAGAGTTAGATGTTTCATCTGGAGATGTAATAAATCTCTGGGATCCATTTGGTGAATTAAAAGTCATTAGCGTGCCGAATAAGTCATCTTCATTAGAGCCTTTAAATACAGTTGAGCTTGAAAAAAATAATAAAGGCACTTCTGGTGTTAGAAAAGTGTCAAACAAAAAAAATACTGATTCAGTCGTTAGCGATATAAACAAAGCAACAACAAAAAGAAAGGCAAGAACAAAAAATAAGAATAAATCTCTTCAGGAATTAGATGAGAAAAAAAATGGGTTAAATAAAAATAATAGACTTGATTGTATTTCACAGCTTGACATGTCATTCCTTGAAAGGAATTCAATAAAAGGAGATGGTGATGATGAGTGATTTTCTCCCAGAAAGATATCAAGTGGTTGGGGATCCTGATTTAGGGGGATTTGGTAGTGTAATCAAATGCCGCGATTCTCATCTTGAGAGATTTGTTGCAATAAAGACTATAAATGATCCATCAGATACAGAGCGAATGAAAGACGAGTTGGCTGCTCTAATGACACTACGTTCAAAACATGTTGTTGAACTGTTTGATGTGATTAATTATGCTGAAGGCAATCTTGCAATTGTTGAAGAGTTTATCGATGGTCCATCGTTGAATGAAGTTAATAATAAAATTACTACAGTAGGGGAGCTTATTAAGATTTTGTGGCAAATAGCATCAGGTATTTGCGAGATACATGAACATGATATCATTCATCGTGATATAAAGCCTGGGAATATGAAGATTGATAAAGAAGGGCTTGTAAAAATATATGATTTTGGCTTGTCAAGAAAAATAGATAATGCAAAAACAATTGGGTTTAAAGGTACCCCAATTTTTGCAGCTCCTGAGTTGTATTTGCAGAACGTAGACTTTACTAAAGCAATTGATACATATGCCTTTGCTGTTACAGCAATGTGCTTAGCTAAAACCCCTGTCCCAGATGAATTGACCCGTTACCCTAAGATTCTGACATCTAATCCATTTGATTTGTCGGTAATAAAATTACCAAGTATTGTAAAGGAATTGTTTTTCAAATGTCTTGATGCAAATCCTCAAGCTAGGCCCCCTATGAAAGATGTTTGCGATGTTTTGAAAAAAATATTATTGCACAACTCTCATCGAGCATTGCTTATATCTGATAATAAAAAACCAGTAGTGCTCTCAGCTACACACAAGACGGAGTCTTATAACAATCCAGGGGTGGGTAGTGTGGAAATTACTTACTCTGGTTCCGAGTTTTATATTTCAGATATATCAGGGGATGTCTATGTTAATAATATTAGGGCTAAAAAACGAAATTTATTGCCTAGCTCATGCGTGATAATACTTGGCCCTGCCGGAAGAACAACTACAAAACGTATATTTATCACATTTGATCTTTCTCATCCGGAGGTTGTGTTATGATTGAGTTGGTTCCTGGGACTAATATAAATCGTTATACTATTATCAGCGAAATTGGTGAGGGGGGGATGCAAAAGGTTTACCTTGCGAATGATAAGATATTAAATAGGCAAGTTGCTCTTAAGACCCCTAAAAATAAGTCTGCTGAAAAACGATTCCATAGAAGTGCTATTTTAGCATCTAGGGTCAACCATCCTAACGTCGCTAAAACATTAGATTATTTTGCCGAAGATGGACGTGAATTTTTAACGGAGGAATTTATCGATGGAGTAGATCTGGATAAAGCATTGTTGAGTAGCTATACAAGTGTTGATCCTTACTTGACTGCAAAGATATTTCATAACTTAGCGAAGGCTCTTTCGGCTTCCCATCATGTGGATGTAATACATCGAGACCTCAAACCTTCTAACATAATGGTTATTGGAGGAGTTAGTGCTACAGGTGTTAAAATCACCGATTTTGGAATTTCAAAAATGGCCGGTGATGAAATTGATGAGGCCGCAAAGAATGGGCAAGGATCGATTACTTCATCTCAAACAGCTATGGGGGCATTGCCATATATGGCCCCGGAAATTATACAAAGTCAGGGGCAAGTTTCAAAACCATCTGATGTCTGGGCATTAGGTGCGATGATGTTCAGAATCCTCACGGGAGAGTATCCTTTTGGATTAGGGTATATGGCTATTCCGAACATCTTATCTGGAAAGCATACTCAATATCCTGATTTTATTAAGTCAAATAAGCAGTTTGCTCCGCTGGCAAATGAAATTATAGATATAATTGAAAAATGTTTAAATCTAGACCCTTCTAAACGCCCCACTGCAGATGAGCTCGTGTCATTATGTGGTCAATTATGCTATCCGGTTTGTAATAGAGAAGAAGGAGTAATAGGTGATACTAGACTAGCTTATGGTTTCATTCGTATACCAAACCAACCACAAGTATTTTTTCATTACGATAGTGTGTATGGTAGTAAACCAGTGAGTAATGATAAGGTGATTTTTTCAAAGTTCTTGGGAGGGGGCCATGACCGGGCTCATCCAGTTATCAAGGCTAAGTAGGTGAGCCGTGATTCTTACGAAATCCTTCATGAGCATATTCACGGATGGCTACATCGAAAAAATATAGCATCCTCAGTGCGTCGTGTCTCAACCTTACCAGTGGCTATAGCTACTGACATTGGGTTGGTACGGAAGGAAAACCAAGATAGGGTTGCTATATTGAAATTCCGCCCAAAGTAAGCAAAGCTAAAGATATCGTTGTTGTTGCGTTAGCCGATGGTAT GGGGGGGGATGGAGGGGGGTGCCAATGCAGCATCTTTAACTTTATCTACATTTTTACTGAAATAATAAAGAAATTCTCATTTACCAATACGTTCTTGTCTTGAGAAAGCTGTGCTACAAGCGAATGATTCTGTTTTGAATGTATATAAGGGTAATGGAGGGGCGACATTATCAGCGATAGCTTTAGAAGATGATGATAATATTACCCGCAGTAAATGTAG GTGATAGCCGTATTTATTATGTCTCGCATGAAGAAACTACTCAGTTGAGCGAGGACGATACTTTAGTTGCCTTAGCCAAAAAGTATAATAATCATCTAAATATGGATCCACAGGATATTGATTTACGCTTTGGTGGTGAATTAGTACAATTTATAGGCATAGATGGCACATTGGAAATACACTTTTCATCATATCCAAGCCTTGGAGAGTGGCGTAATTATTTTAAG TTCTGATGGTGCGCATTCTATCGGTAAGGATAATTTAAGAAAGTTATATGTGCACTCGGCGAATCTAGGTGTTTTATTCTAGGCGGGTTATTGATCTTGCTAGTTGGTTTGGTGGTTTCGACAATGCAAGTATAGCAGTTATAGACCTTTTTAATACTCTAAAAGAGTTAGATGTTTCATCTGGAGATGTAATAAATCCTGGGATCCATTTGGTGAATTAAAAG TCATTAGCGTGCCGAATAAGTCATCTTCATTAGAGCCTTTAAATACAGTTGAGCTTGAAAAAAATAATAAAGGCACTTCTGGTGTTAGAAAAGTGTCAAACAAAAAAATACTGATTCAGTCGTTAGCGATATAAACAAAGCAACAACAAAAAGAAAGGCAAGAACAAAAAATAAGAATAAATCTCTTCAGGAATTAGATGAGAAAAAAAATGGGGTTAAATAAAAATAATAGACTT GATTGTATTTCACAGCTTGACATGTCATTCCTTGAAAGGAATTCAATAAAAGGAGATGGTGATGATGAGTGATTTTCTCCCCAGAAAGATATCAAGTGGTTGGGGATCCTGATTTAGGGGGATTTGGTAGTGTAATCAAATGCCGCGATTCCATCTTGAGAGATTTGTTGCAATAAAGACTATAAATGATCCATCAGATACAGAGCGAATGAAAGACGAGTTGGCTGCTCTAATGACACTACGTTCAAAACATGTTGTTGAACTGTTTGATGTGATTAATTATGCTGAAGGCAATCTTGCAATTGTTGAAGAGTTTATCGATGGTCCATCGTTGAATGAAGTTAATA ATAAAATTACTACAGTAGGGGAGCTTATTAAGATTTTGTGGCAAATAGCATCAGGTATTTGCGAGATACATGAACATGATATCATTCATCGTGATATAAAGCCTGGGAATATGAAGATTGATAAAGAAGGGCTTGTAAAAATATATGATTTTGGCTTGTCAAGAAAAATAGATAATGCAAAAACAATTGGGTTTAAAGGTACCCCAAATTTTTGCAGCTCCTGAGTTGTATTTGCAGAACGTAGACTTTACTAAAGCAATTGATACATATGCCTTTGCTGTTACAGCAATGTGCTTAGCTAAAACCCCTGTCCCAGATGAATTGACCCGTTACCCTAAGATTCTGACATCTAATCCATTTGATTTGTCGGTAATAAAATTA CCAAGTATTGTAAAGGAATTGTTTTTCAAATGTCTTGATGCAAATCCTCCAAGCTAGGCCCCCTATGAAAGATGTTTGCGATGTTTTGAAAAAAATATTTATTGCACAACTCTCATCGAGCATTGCTTATATCTGATAAAAAACCAGTAGTGCTCTCAGCTACACCAAGACGGAGTCTTATAACAATCCAGGGGTGGGTAGTGTGGAAATTACTTACTCTG GTTCCGAGTTTTATATTTCAGATATATCAGGGGATGTCTATGTTAATAATATTAGGGCTAAAAAACGAAATTTATTGCCTAGCTCATGCGTGATAATACTTGGCCCTGCCGGAAGAACAACTACAAAACGTATATTTATCACATTTGATCTTTCTCATCCGGAGGTTGTGTTATGATTGAGTTGGTTCCTGGGACTAATATAAATCGTTATACTATTATCAGCGAAATTGGTGAGGGGGGGATGCAAAAGGTTTACCTTGCGAATGATAAGATATTAAATAGGCAAGTTGCTCTTAAGACCCCTAAAAATAAGTCTGCTGAAAAACGATTCCATAGAAGTGCTATTTTAGCATCTAGGGTCAACCATCCTAACGTCGCTAAAACATTAGATTATTTTGCCGAAGATGGACGTGAATTTTTAACGGAGGAATTTATCGATGGAGTAGATCTGGATAAAGCATTGT TGAGTAGCTATACAAGTGTTGATCCTTACTTGACTGCAAAGATATTTCATAACTTAGCGAAGGCTCTTTCGGCTTCCCATCATGTGGATGTAATACATCGAGACCTCAAACCTTCTAACATAATGGTTATTGGAGGAGTTAGTGCTACAGGTGTTAAAATCACCGATTTTGGAATTTCAAAAATGGCCGGTGATGAAATTGATGAGGCCGCAAAGAATGGGCAAGGATCGATTACTTCATCTCAAACAGCTATGGGGGCATTGCCATATGGCCCCGGAAATTATACAAAGTCAGGGGCAAGTTTCAAAACCATCTGATGTCTGGGCATTAGGTGCGATGATGTTCAGAATCCTCACGGGAGAGTATCCTTTTGGATTAGG GTATATGGCTATTCCGAACATCTTATCTGGAAAGCATACTCAATATCCTGATTTTATTAAGTCAAATAAGCAGTTTGCTCCGCTGGCAAATGAAATTATAGATAATTGAAAAATGTTTAAATCTAGACCCTTCTAAACGCCCCACTGCAGATGAGCTCGTGTCATTATGTGGTCAATTATGCTATCCGGTTTGTAATAGAGAAGAAGGAGTAATAGGTGATACTAGACTA GCTTATGGTTTCATTCGTATACCAAACCAACCACAAGTATTTTTTCATTACGATAGTGTGTATGGTAGTAAACCAGTGAGTAATGATAAGGTGATTTTTTCAAAGTTCTTGGGAGGGGGCCATGACCGGGCTCATCCAGTTATCAAGGCTAAGTAG

Figure BDA0003763628690000121
Figure BDA0003763628690000121

ATGTTTACAGAACGACTTGCTCGCTGGTTAGCTCGTTCTTCGGCCAAAAGCGGCATTAACCGGCCAGAAGACCTCAACGCTGTCCTTAGCACGGATATAGGACTGGTTAGAGCTGAGAATCAGGATCTAATAGCCGCGATTAGAGTTAACACTCCGTCAAACGTTGGCAATCCTTTTTTTGCAATGGCGTTATTAGATGGCATGGGTGGAATGCAAGATGGAAAGCAATGCGCAACAATTGCTTTATCAACTTTATTCTATTCTTTGATTAAGTTTAGAAGTGATCCTCCCGAGTCTCGGTTATTAAAAGCGACTTTAGAAGCAAACTCCGTTGTATATGACTATGCAAAAGGACATGGCGGTTCAACATTATCCGCTGTAATTATTGAAAATGGGTCTGCTCCTGTAATTGTCAACGTTGGCGACAGTCGAATATATAGCTTTTCTCTGGACTGTGGACTTACAGCAATTAGCAGTGATGACTCTCTAGAAGCATTGGGTGGCAGAGGGCGCGGATTACTCCAGTTTATAGGAATGGGGGAATCTATAAAGCCTCATATCAATATCTTAGATAAAAATCATAAAAATATAATATTGACATCCGATGGAACTCATTTCATTTCTCATTCAGCATTCGAAGAGTTATTAAGTCATTCATCTGATTTTTCTACATCAGCGCAGAGAATAGCTCAATATGTTCAATGGTGCGGTGCGAAAGATAACGCTTCATTTGGAATTATTAATTGCAATGATATAGAAAACAGCCTCAACTCCCATAAAGATATTGGTGTAGAGTTATGGGACCCTCATGGGAATCTACATATCATGTGGATGAAAAATTATCCTGCAGCGCAGAATTACTTCTCTCAAAATATAGTGGATGATCAAGATAAAGAACCTTCACCTATTATAGACGATGATGGTTTTGAAAATAAAAAAACACTAAACAATCCTTCAACAAAAAATCTAGAATTAGATTCTGAAACACCACAAAGAGAGCTATTCTCAAACGAATCCCCAGAAAAATCTCAAGATCCATCCATTACAAGCAAAGCAATCAAACAAAGAAAAAACAAAGATAAAAAGAAAGCTATTGAAAAGATCAAAAAAGACCAATCTGTAATGATAAATATCAAGGATGAGGAAA ACAAAAATGAAGATTAATCACGTCCTACCAGAAAGATATTCATTAAAGAGCACTGAACTCGGTGGTGGCATGGGGGACATTTTAATATGTAAGGATAATCATTTAGATAGAGATGTAATTGTAAAGTTGTTAAAGGATGGAGAAGAAGAGAGACGTTTACTAGATGAACAGAAAGCGCTACTCAAACTTCGTTCTAAACATGTAGTACAACTTTATGATTTAATTGACATAACAGTCTCCGAAAAAACTAAAAAAGGATTAGTTCTGGAGTATATTAACGGAGTGGATTTAAATTATAACCCGTCAGAAAGTCACCCCGAAAAACTAAAGAAATTATGGCAGATAGCATGCGGGTTAAGTGACATCCACTCTGCTAAAGTAATTC ACAGAGATATAAAGCCCAATAATATTAGAGTAGACGAGAATAAAATTGTTAAAATATTAGATTTTGGTTTAGCAAGGACCTCAGGCACAGAAGCATTCACTCATTCTGTTATTGGAACCTTAGGATATATGGCTCCTGAACTATGGAAGAGAAAAAACATTAGTTTCGATCAAAAAATTGATGTTTATGCATATGGTGTCCTCGTTTTAGATTTATTCGGCATAGAAAAACCAGATGAATTATACGAACATCCCCCGGCCGCGATAACCAATATACCTGAATTAGGAAAGATACTTCCAAAGGACTTAGCCAGAACTTTCATTAGTTGCTTAAGCCATGACAAATATGCTCGACCGGCAATGTCTTCGGTTAGAGATCAAATAGCTAAATACCTATTAAAAGATAGACACCGTGCCCTCTTCGTCCTGAATGGAAAGAAATATGAAATAAATGCTAAAAATAAAAGTGTTACGATCACTTGGGGTACTAGTGGAAGTATGGAAATAGTATATGATGGTTTCGACTTTAAAGTAGGTAATTTTTCAGGAAGTGCGACAATTAATAACCAACAAGTGATAACAAATAAAGTATTTCCTAGCTGCAGTGTAATTACTCTTATAAATGAAAAATCTAGAAGCTTTGTCACCTTTGATATATCTAGACCGGAGGTAATATCATGATTGAAGTCGGAAGAATCATTGCAGAACGCTATAAGATTTTATCTTATGTTGGTAAAGGTGGGATGCAAGACGTATATAAAGTTTTAGATCTAAAGCTGGATTTAGATTTAGCTTTAAAGACTCCACTTCCTGGTTTGGAAAGCAAAAGATTTCTTAAAAGTGCCAAAATCGCTGCAAAAATAAACCATCACAATATAGCAAAAACCTTTGATTATGTTGAAGATAATGGCAATATATTTTTAGCGGAAGAATTTGTTGAAGGTGAAAACCTTGAGGAAAAATTGCGCCACTTTGATTTTTTAGACCCACATTATGGCGCTTGTATACTACATAACCTTGCTAAAGGAATAATGGCATCTCATAAAGCAGATGTTATTCATAGAGATTTAAAACCGAGTAATGTAATGGTGTCTGGCGGAGTACAAATTTCGAATCTAAAAATTACAGATTTTGGAATAGCTACGCTAACACAAGAACTTTTTGATGAAGCTGCTGCCAGTGGTGACCTAACAAGATCGACCTCTGGTACGATAAAAGGTGCTTTACCCTTCATGTCTCCTGAATTAATGTTTGGTAAAAAGGGTAAACCTATAGAAGCATCAACTGATATTTGGCCATTAGGTGCAATGATGTTTAAATTATTAACAGGAGACTATCCATTTGGCGTTTATTTAGATGCTGCTGTTAATGTTAAAACAAAAAATAGAATGGAATGGCCAACCTTTATGACTGCCAATCCACAATATCAAAGTTTATCACAAGATCTACAAAAAATTGTAGATAAGTGCTTAAGTTATGACTCGGACAAGAGGCCTACAGCTGAAACGCTTGTTAAGGCATGTGAAACCCTTTGTTATTTATCCGAAGAACGTCATGTCGGTCGCGTCAATAATCTTATTCAAGGAGGGATAAGTGGATTTATTGATGGGACACCTTCTAACTCCTTTTTTAGTATGGAAAGTGTATACGGTTCGAGGTACCCAAACACCTCAACAAGAAATACTGTTTGTTATTCCACTTTTGATGGACACCCATGGCCTAGAGCACACCCTGTAATTCTTTGGAAAGATTGAATGTTTACAGAACGACTTGCTCGCTGGTTAGCTCGTTCTTCGGCCAAAAGCGGCATTAACCGGCCAGAAGACCTCAACGCTGTCCTTAGCACGGATATAGGACTGGTTAGAGCTGAGAATCAGGATCTAATAGCCGCGATTAGAGTTAACACTCCGTCAAACGTTGGCAATCCTTTTTTTGCAATGGCGTTATTAGATGGCATGGGTGGAATGCA AGATGGAAAGCAATGCGCAACAATTGCTTTATCAACTTTATTCTATTCTTTGATTAAGTTTAGAAGTGATCCTCCCGAGTCTCGGTTATTAAAAGCGACTTTAGAAGCAAACTCCGTTGTATATGACTATGCAAAAGGACATGGCGGTTCAACATTTCCGCTGTAATTATTGAAAATGGGTCTGCTCCTGTAATTGTCAACGTTGGCGACAGTCGAATATAGCT TTTCTCTGGACTGTGGACTTACAGCAATTAGCAGTGATGACTTCTCTAGAAGCATTGGGTGGCAGAGGGCGCGGATTACTCCAGTTTATAGGAATGGGGGAATCTATAAAGCCTCATATCAATATCTTAGATAAAAATCATAAAAAATAATATTGACATCCGATGGAACTCATTTCATTTCTCATTCAGCATTCGAAGAGTTATTAAGTCATTCATCTGATTTTTCT ACATCAGCGCAGAGAATAGCTCAATATGTTCAATGGTGCGGTGCGAAAGATAACGCTTCATTTGGAATTAATTAATTGCAATGATATAGAAAACAGCCTCAACTCCCATAAAGATATTGGTGTAGAGTTATGGGACCCTCATGGGAATCTACATATCATGTGGATGAAAAAATTATCCTGCAGCGCAGAATTACTTCTCTCAAATATAGTGGATGATCAAGATAAA GAACCTTCACCTATTTATAGACGATGATGGTTTTGAAAATAAAAAAACACTAAACAATCCTTCAACAAAAAATCTAGAATTAGATTCTGAAACACCACAAAGAGAGCTATTCTCAAACGAATCCCCAGAAAAATCTCAAGATCCATCCATTACAAGCAAAGCAATCAAACAAAGAAAAACAAAGATAAAAAGAAAGCTATTGAAAAGATCAAAAAAGACCAATCTGTAATGATAAATAT CAAGGATGAGGAAA ACAAAAATGAAGATTAATCACGTCCTACCAGAAAGATATTCATTAAAGAGCACTGAACTCGGTGGTGGCATGGGGGACATTTTAATATGTAAGGATAATCATTTAGATAGAGATGTAATTGTAAAGTTGTTAAAGGATGGAGAAGAAGAGAGACGTTTACTAGATGAACAGAAAGCGCTACTCAAACTTCGTTTCTAAACATGTAGTACAACTTTATGATTTAATTGACATAACAGTCTCCGAAAAAACTAAAAAAAGGATTAGTTCTGGAGTATATTAACGGAGTGGATTTAAATTA TAACCCGTCAGAAAGTCACCCCCGAAAAACTAAAAGAAATTATGGCAGATAGCATGCGGGTTAAGTGACATCCACTCTGCTAAAGTAATTC ACAGAGATATAAAGCCCAATAATATTAGAGTAGACGAGAATAAAATTGTTAAAATATTAGATTTTGGTTTAGCAAGGACCTCAGGCACAGAAGCATTCACTCATTCTGTTATTGGAACCTTAGGATATGGCTCCTGAACTATGGAAGAGAAAAACATTAGTTTCGATCAAAAAATTGATGTTTATGCATATGGTGTCCTCGTTTTAGATTTATTCGGCATAGAAAAACCAGATGAATTATACGAACTCCCCCGGCCGCGATAACCAATATACCTGAATTAGGAAAGATA CTTCCAAAGGACTTAGCCAGAACTTTTCATTAGTTGCTTAAGCCATGACAAATATGCTCGACCGGCAATGTCTTCGGTTAGAGATCAAATAGCTAAATACCTATTAAAGATAGACACCGTGCCCTCTTCGTCCTGAATGGAAAGAAATATGAAATAAATGCTAAAAAATAAAAGTGTTACGATCACTTGGGGTACTAGTGGAAGTATGGAAATAGTATATGATG GTTTCGACTTTAAAGTAGGTAATTTTTTCAGGAAGTGCGACAATTAATAACCAACAAGTGATAACAAATAAAGTATTTCCTAGCTGCAGTGTAATTACTCTTATAAATGAAAAATCTAGAAGCTTTGTCACCTTTGATATATCTAGACCGGAGGTAATATCATGATTGAAGTCGGAAGAATCATTGCAGAACGCTATAAGATTTTATCTTATGTTGGTAAAGGTGGGATGCAAGACGTATATAAAGTTTTAGATCTAAAGCTGGATTTAGATTTAGCTTTAAAGACTCCACTTCCTGGTTTGGAAAGCAAAAGATTTCTTAAAAGTGCCAAAATCGCTGCAAAAATAAAACCATCACAATATAGCAAAAACCTTTGATTATGTTGAAGATAATGGCAATATATTTTTAGCGGAAGAATTTGTTGAAGGTGAAAACCTTGAGGAAAAATTGGCGCCACTTT GATTTTTTAGACCCACATTATGGCGCTTGTATACTACATAACCTTGCTAAAGGAATAATGGCATCTCATAAAGCAGATGTTATTCATAGAGATTTAAAACCGAGTAATGTAATGGTGTCTGGCGGAGTACAAAATTTCGAATCTAAAAATTACAGATTTTGGAATAGCTACGCTAACACAAGAACTTTTTGATGAAGCTGCTGCCAGTGGTGACCTAACAAGATCGACCTCTGGTACGATAAAAGGTGCTTTACCCTTCATGTCTCCTGAATTAATGTTTGGTAAAAAGGGTAAACCTATAGAAGCATCAACTGATATTTGGCCATTAGGTGCAATGATGTTTAAATTATTAACAGGAGACTATCCATTTGGCGTTTATTTAGATGCT GCTGTTAATGTTAAAAACAAAAATAGAATGGAATGGCCAACCTTTATGACTGCCAATCCACAATATCAAAGTTTTATCACAAGATCTACAAAAAATTGTAGATAAGTGCTTAAGTTATGACTCGGACAAGAGGCCTACAGCTGAAACGCTTGTTAAGGCATGTGAAACCCTTTGTTATTTATCCGAAGAACGTCATGTCGGTCGCGTCAATAATCTTATTCAAGGAGGGA TAAGTGGATTTATTGATGGGACACCTTCTAACTCCTTTTTTTAGTATGGAAAGTGTATACGGTTCGAGGTACCCAAAACACCTCAACAAGAAATACTGTTTGTTATTTCCACTTTTGATGGACACCCATGGCCTAGAGCACACCCTGTAATTCTTTGGAAAGATTGA

Figure BDA0003763628690000131
Figure BDA0003763628690000131

ATGCAAGATATATTAACAAAAAGGCTAAATAGACCTGTAAATGGGAACCGGTCATCCGTTGTACATGAAGTCGGAGCGACGTTAGCGACAACTGTCGGGCTTATCAGAACTGAAAATGAAGATCGGGCAATTTCTGCTCGTTTCTATAGTTCAAAAATGGAGCGCTACATATACTTTTATATTCTTAGTGATGGTATGGGAGGTATGGTTAATGGGGGGCTTGCCGCAACTCACACTGTCTCAATGTTTTTAAGCTCTATAATACCTCTTATCGAGTCAGGCATTGAAATAGATCAAGCGATACAACAGTCTGTGTTTTCTGCTCATCAGATCGTTTCCGAATCAACAAACGGTAAAGGTGGAGCAACTTTATCAGCTATAGTCAGCCATGAACCAGGTGAATTCTTTACCGTCAATGTTGGTGATAGTCGAATTTATCAATGCACAACAAGCAATTCTATTTTTCAAATCACTGAAGATGACGATGTAAAAAGCTTCCTCGAAAAACTCAACGGAATCGAACTAAACAGCCTAATAACGAAGAGAAATGGTCTAACAAAGTATATAGGCATGGAGGGAGAATTAGAGGTCACTGTTGAGTCATGCTCTGCACTCTGCGATTTGTTAGTTATTTCTGATGGTATAAGCCAAATTGGAGAAGCTAACTTAGTTGGCCTATATGAAAATAAGACAACCGATAGTGAATTCGTTCAACGTTGTATACATTTGTCCAATTGGCTTGGCGGTCATGATAACGCAACAGCAATCTATGCTTCTTTGGCAAACCTAACATATCACCCAGAAACTACCGAAGTCACCCATAACTGCCTTGAAGTTTGGGATTGCCATGGTTACATCATTATTCCCTTAGCACAACTACCTTCGAAAGGTAGACACCCAAAAGAAAAAACGAAAAAAGTACGAAAAAAAACAGCTGCGAAAAAAATAATAAAAAGTGATAAAGAAGACTCTCGCAACGATTATAACCTAGAGATAAATCAAAAATCATTATTCTCATCTGACGATGTCGGAGAGATTTCGCCTGATAATAACAGTGTATTTGATGAAGGTGCAGGACTTGACCTAGCCAAAATCGAAGATAATAAAAATAATCTAGATAAATAGAATTAAACGTTGGTGACAATTATGGCTAGTACAAGATATGAATACCTAAAACACATAGACGATGGCGGTTATGGTAGTGTCTCTCTTTATAGAGATATATTCCTTGATCGTGAAGTCGCAATAAAAACAATCCCCATTAGTAAGAAGAACAATACGATTGAGGAAGTAAACCTACTCAAATCAATTGCGTCTAAGCATGTTGTTGGATTGTATGACGTTATTCAAACCCAAACTAACATTGAAATATATCAAGAATACTTAGATGGGGAAGATCTAGCTAGCAAAGTAGGTCAGTGTCATGGCCCAGAATTTTTGAGCCTTGCCTATCAGCTAGCATCTGGACTACGTGATATACATTCATCAGGAATATGTCACCGAGATATAAAGTTGGATAATGCGAAATTTGACAAACAAGGTGTACTTAAAATTTTTGATTTTGGTGTATCTCGTATCGGTGATCCGCACCAAACCGTAAATGGTCATGGTACATTAGAATACCTAGCTCCTGAAGCCTTTGGATTATACACGCAAGACTCCGTTGTACTTTCATTTGCGGTCGATATCTATGCACTTGGAGTGACCTTACACAAACTTGCATTTTCGGGTATATGTAAATTCAATAAAACGCTTAATCCGCAACCAGAAAGCCCTCGATTTGCTGAGCTTGGCTTTTGTTCAAAGCTAACATCACTCTTAAATAAATGTGTTTCAGAAAATAAAACGGAGAGACCCTCAGCAAACAGTTTAGTTGCTGAATTACAAAGAGAGCTCCTACGAAATAAACATACTGGTTTGTTTGTTGCACCGAAAGGCTCCCATAATATTGACCAAGCTCATCCAAAAACAAGAATTAAAATTTCTGATGACTTGTCAATTATTATCAATTACAACGGATACGACTTTTATGTTACTAAAGTTGAAGGACATGTTTATATAAATAATGAAATTGTAGATGTGGGTAAGGTGCTTTATGGAGCATGCGTCCTGACATTTGTTCGAGATGCCAATAACCGTTTCTTTGTTTCGTTTTCTTCATCTCATCCGGAGATAGTATTATGAGTCATATTCACAAACCTAACGACATCATTGCAGATCGATACGTGATCGAAAATTATATCGACGAAGGTGGTATGCAACAAGTCTACTCAGCGATAGACAAAAACATTGGACGAAAAGTCGCTTTAAAGACACCAAAAAATGATTCGGCTAGCCTGAGATTTAAAAGTACCGCAATTTGTAGTGCTCGTGTTATTCACCCTAACGTGGCGAAAACTCTAGATTACTTTGGCTTTGATAAACGCGAATACTTAATTGAAGAACTTATTGACGGAAAAGATTTAAACACTGTATTCAGAAATAATTTCTCATATTTAGATCCATGTCTCGTTGCCTTCATAGGACATCATCTATCAAAAGCAGTAGCTGCATCTCATAGCGCAGACGTCGTCCAT AGGGATCTCAAACCAAGTAACATTATGATTGTAGGGGGCGAGAAGTTTAGAGATATTAAAGTCACTGACTTTGGTATTGCAAAACTTGTTGATGATGAAATCAACGAGGTTTTTTCTGATACCGAAAATGTTGAAAGCTCCATTGCTGGCTCAAAAACACTCGTTGGTGCTCTACCTTATATGGCCCCAGAAATTGTTTTAAACAAAACAAAAGCTGGAAAACATATTGATATTTGGTCAATAGGTGCAATTATGTATTTCCTACTAACAGGAAAAACACCTTTCACATCGCAATTTGCCCAAATCGTCATTAACTATCATACTCAGAAATCTATCGATCCAATCCTTCATATGGATACATCTCGCCATTTAAACCCGTTAGGCAATCAATTACTAGGCATTATCAAAAGTTGCTTGGATTACGACTATTCAAATCGTCCAAATTCTGAGCAATTAGTTCAAATGTTTTCTTCCCTTTGTTACCCTATTCAAGAAAGAAAATATGGACATATCAAGTATCGACGAGGCACACATGGTTGGGGCTTCATTAAAAACATAGGCCCTAACGATACATTTTATCATACTGAAGAAGTTTTTGGACTTCAGGCTTCCCATAGTGAGCGAGTGTGCTTCTCTGAGTACCCTGGATTACCTCAAGCAAGGGCATTTCCAATTATTCGCTGTAAATAA。ATGCAAGATATATTAACAAAAAGGCTAAATAGACCTGTAAATGGGAACCGGTCATCCGTTGTACATGAAGTCGGAGCGACGTTAGCGACAACTGTCGGGCTTATCAGAACTGAAAATGAAGATCGGGCAATTTCTGCTCGTTTCTATAGTTCAAAAAATGGAGCGCTACATAACTTTTATATTCTTAGTGATGGTATGGGAGGTATGGTTAATG GGGGGCTTGCCGCAACTCACACTGTCTCCAATGTTTTAAGCCTATAATACCCTCTTATCGAGTCAGGCATTGAAATAGATCAAGCGATACAACAGTCTGTGTTTTCTGCTCATCAGATCGTTTTCCGAATCAACAAACGGTAAAGGTGGAGCAACTTTATCAGCTATAGTCAGCCATGAACCAGGTGAATTCTTTACCGTCAATGTTGGTGATAGTCGAATTTATCAATGC ACAACAAGCAATTCTATTTTTCAAATCACTGAAGATGACGATGTAAAAGCTTCTCGAAAAACTCAACGGAATCGAACTAAACAGCCTAATAACGAAGAGAAATGGTCTAACAAGTATAGGCATGGAGGGAGAATTAGAGGTCACTGTTGAGTCATGCTCTGCACTCTGCGATTTGTTAGTCTATTCTGATGGTATAAGCCAATTGGAGAAGCTAACTTAGT TGGCCTATATGAAAATAAGACAACCGATAGTGAATTCGTTCAACGTTGTATACATTTGTCCAATTGGCTTGGCGGTCATGATAACGCAACAGCAATCTATGCTTCTTTGGCAAACCTAACATATCACCCAGAAACTACCGAAGTCACCCATAACTGCCTTGAAGTTTGGGATTGCCATGGTTACATTCATTATTCCCTTAGCACAACTACCTTCGAAAGGTAGACCC AAAAGAAAAAACGAAAAAGTACGAAAAAAAACAGCTGCGAAAAAAAATAATAAAAAGTGATAAAGAAGACTCTCGCAACGATTATAACCTAGAGATAAATCAAAAATCATTATTCTCATCTGACGATGTCGGAGAGATTTCGCCTGATAATAACAGTGTATTTGATGAAGGTGCAGGACTTGACCTAGCCAAAATCGAAGATAATAAAAATAATCTAGATAAATAGAATTAAACGT TGGTGACAATTATGGCTAGTACAAGATATGAATACCTAAAACACATAGACGATGGCGGTTATGGTAGTGTCCTCTTTTTATAGAGATATATTCCTTGATCGTGAAGTCGCAATAAAAACAATCCCCATTAGTAAGAAGAACAATACGATTGAGGAAGTAAACCTACTCAAATCAATTGCGTCTAAGCATGTTGTTGGATTGTATGACGTTATTCAAACCCAAACTAACATTGAAATATATCAAGAATACTTAGATGGGGAAGATCTAGCTAGCAAAGTAGGTCAGTGTCATGG CCCAGAATTTTTGAGCCTTGCCTATCAGCTAGCATCTGGACTACGTGATATACATTCATCAGGAATATGTCACCGAGATATAAAGTTGGATAATGCGAAATTTGACAAACAAGGTGTACTTAAAATTTTTGATTTTGGTGTATCTCGTATCGGTGATCCGCACCAAACCGTAAATGGTCATGGTACATTAGAATACCTAGCTCCTGAAGCCTTTGGATTATACACGCAAGACTCCGTTGTACTTTCATTTGCGGTCGATATCTATGCACTTGGAGTGACCTTACACAAACTTGCATTTTCGGGTATATGTAAATCAATAAAACGCTTAATCCGCAACCAGAAAGCCCTCGATTTGCTGAGC TTGGCTTTTGTTCAAAGCTAACATCACTCTTAAATAAATGTGTTTCAGAAAATAAAACGGAGAGACCCTCAGCAAACAGTTTAGTTGCTGAATTACAAAGAGAGCTCCTACGAAATAAACATACTGGTTTGTTTGTTGCACCGAAAGGCTCCCATAATATTGACCAAGCTCATCCAAAAACAAGAATTAAAATTTCTGATGACTTGTCAATTATTATCAATTACAACGGATAC GACTTTTTATGTTACTAAAGTTGAAGGACATGTTATATAAATAATGAAATTGTAGATGTGGGTAAGGTGCTTTATGGAGCATGCGTCCTGACATTTGTTCGAGATGCCAATAACCGTTTCTTTGTTTCGTTTTTCTTCATCTCATCCGGAGATAGTATTATGAGTCATATTCACAAACCTAACGACATCATTGCAGATCGATACGTGATCGAAAATTATATCGACGAAGGTGGTATGCAACAAGTCTACTCAGCGATAGACAAAAACATTGGACGAAAAGTCGCTTTAAAGACACCAAAAAATGATTCGGCTAGCCTGAGATTTAAAAGTACCGCAATTTGTAGTGCTCGTGTTATTCACCCTAACGTGGCGAAAACTTCTAGATTACTTTGGCTTTGATAAACGCGAATACTTAATTGAAGAACTTATTGACGGAAAAGATTTAAACACTGTATTCAGAAAATAA TTTCTCATATTTAGATCCATGTCTCGTTGCCTTCATAGGACATCATCTATCAAAAGCAGTAGCTGCATCTCATAGCGCAGACGTCGTCCAT AGGGATCTCAAACCAAGTAACATTATGATTGTAGGGGGCGAGAAGTTTAGAGATATTAAAGTCACTGACTTTGGTATTGCAAAACTTGTTGATGATGAAATCAACGAGGTTTTTTCTGATACCGAAAATGTTGAAAGCTCCATTGCTGGCTCAAAAACACTCGTTGGTGCTCTACCTTATATGGCCCCAGAAATTGTTTTAAACAAAACAAAAGCTGGAAAACATATTGATATTTGGTCAATAGGTGCAATTATGTATTTCCTACTAACAGGAAAAAACACCTTCACATCGCAATTT GCCCAAATCGTCATTAACTATCATACTCAGAAATCTATCGATCCAATCCTTCATATGGATACATCTCGCCATTTAAACCCGTTAGGCAATCAATTACTAGGCATTATCAAAAGTTGCTTGGATTACGACTATTCAAATCGTCCAAAATTCTGAGCAATTAGTCCCTTTGTTACCCCTATTCAAGAAAGAAAATATGGACATATCAAGTATCGACGAGGC ACACATGGTTGGGGCTTCATTAAAAACATAGGCCCTAACGATACATTTTATCATACTGAAGAAGTTTTTGGACTTCAGGCTTCCCATAGTGAGCGAGTGTGCTTCTCTGAGTACCCTGGATTACCTCAAAGCAAGGGCATTTCCAATTATTCGCTGTAAATAA.

Claims (9)

1.新型抗噬菌体元件,其特征在于,核苷酸序列如SEQ ID NO.1、SEQ ID NO.2、SEQ IDNO.3、SEQ ID NO.4、SEQ ID NO.5或SEQ ID NO.6所示。1. A novel anti-phage element, characterized in that the nucleotide sequence is such as SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4, SEQ ID NO.5 or SEQ ID NO.6 shown. 2.一种含有权利要求1所述的新型抗噬菌体元件的底盘细胞。2. A chassis cell containing the novel anti-phage element of claim 1. 3.根据权利要求2所述的底盘细胞,其特征在于,所述的底盘细胞是大肠杆菌、致病菌铜绿假单胞菌、沙门氏菌或弧菌。3. The chassis cell according to claim 2, characterized in that, the chassis cell is Escherichia coli, pathogenic bacteria Pseudomonas aeruginosa, Salmonella or Vibrio. 4.权利要求1所述的新型抗噬菌体元件在提高底盘细胞抗噬菌体侵染中的应用。4. The application of the novel anti-phage element according to claim 1 in improving the anti-phage infection of chassis cells. 5.根据权利要求4所述的应用,其特征在于,所述的底盘细胞是大肠杆菌、致病菌铜绿假单胞菌、沙门氏菌或弧菌。5. The application according to claim 4, characterized in that the chassis cells are Escherichia coli, pathogenic bacteria Pseudomonas aeruginosa, Salmonella or Vibrio. 6.根据权利要求4所述的应用,其特征在于,所述的噬菌体是噬菌体PAP8、PAO-L5、QDWS、PAP-L5、大肠杆菌噬菌体T1、T4、T5、T7、EEP、λ或M13。6. The application according to claim 4, wherein the phage is phage PAP8, PAO-L5, QDWS, PAP-L5, coliphage T1, T4, T5, T7, EEP, λ or M13. 7.一种提高底盘细胞抗噬菌体侵染的方法,其特征在于,是将权利要求1所述的新型抗噬菌体元件转入底盘细胞中,增强宿主对噬菌体的抗性。7. A method for improving the anti-phage infection of chassis cells, characterized in that the novel anti-phage elements according to claim 1 are transferred into chassis cells to enhance the host's resistance to phages. 8.根据权利要求7所述的方法,其特征在于,所述的底盘细胞是大肠杆菌、致病菌铜绿假单胞菌、沙门氏菌或弧菌。8. The method according to claim 7, characterized in that, the chassis cells are Escherichia coli, pathogenic bacteria Pseudomonas aeruginosa, Salmonella or Vibrio. 9.根据权利要求7所述的方法,其特征在于,所述的噬菌体是噬菌体PAP8、PAO-L5、QDWS、PAP-L5、大肠杆菌噬菌体T1、T4、T5、T7、EEP、λ或M13。9. The method according to claim 7, wherein the phage is phage PAP8, PAO-L5, QDWS, PAP-L5, coliphage T1, T4, T5, T7, EEP, λ or M13.
CN202210879453.0A 2022-07-25 2022-07-25 A novel anti-phage element and its application Active CN116334108B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210879453.0A CN116334108B (en) 2022-07-25 2022-07-25 A novel anti-phage element and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210879453.0A CN116334108B (en) 2022-07-25 2022-07-25 A novel anti-phage element and its application

Publications (2)

Publication Number Publication Date
CN116334108A true CN116334108A (en) 2023-06-27
CN116334108B CN116334108B (en) 2024-03-26

Family

ID=86882757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210879453.0A Active CN116334108B (en) 2022-07-25 2022-07-25 A novel anti-phage element and its application

Country Status (1)

Country Link
CN (1) CN116334108B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899450A (en) * 2010-04-27 2010-12-01 中国科学院水生生物研究所 Potent cyanophage PaV-LD genome, preparation method and application
CN108410840A (en) * 2018-04-03 2018-08-17 大连理工大学 A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application
CN111849848A (en) * 2020-07-23 2020-10-30 江南大学 Construction and application of a phage-resistant Escherichia coli chassis cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899450A (en) * 2010-04-27 2010-12-01 中国科学院水生生物研究所 Potent cyanophage PaV-LD genome, preparation method and application
CN108410840A (en) * 2018-04-03 2018-08-17 大连理工大学 A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application
CN111849848A (en) * 2020-07-23 2020-10-30 江南大学 Construction and application of a phage-resistant Escherichia coli chassis cell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIBERA LATINO等: "Fine structure analysis of lipopolysaccharides in bacteriophage-resistant Pseudomonas aeruginosa PAO1 mutants", 《MICROBIOLOGY (READING) . 》, vol. 163, no. 6, pages 848 - 855 *
YANGMEI LI等: "Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa", 《MOL MICROBIOL .》, vol. 111, no. 2, pages 495 - 513 *
贡嘉澳等: "细菌抗噬菌体防御系统研究进展", 《生命科学仪器》, vol. 20, no. 02, pages 17 - 26 *

Also Published As

Publication number Publication date
CN116334108B (en) 2024-03-26

Similar Documents

Publication Publication Date Title
Kauffman et al. Resolving the structure of phage–bacteria interactions in the context of natural diversity
Forsberg et al. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome
Roux et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes
Keen A century of phage research: bacteriophages and the shaping of modern biology
Tétart et al. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages
Filée et al. The role played by viruses in the evolution of their hosts: a view based on informational protein phylogenies
Kropinski et al. The host-range, genomics and proteomics of Escherichia coli O157: H7 bacteriophage rV5
Gudbergsdóttir et al. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs
Summer et al. Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex
Nazir et al. Emerging aspects of jumbo bacteriophages
Senčilo et al. Cold‐active bacteriophages from the B altic S ea ice have diverse genomes and virus–host interactions
Jia et al. Molecular characterization of T4‐type bacteriophages in a rice field
Park et al. Evolution of the Stx2-encoding prophage in persistent bovine Escherichia coli O157: H7 strains
Westwater et al. Development of a P1 phagemid system for the delivery of DNA into Gram-negative bacteria
Born et al. A major-capsid-protein-based multiplex PCR assay for rapid identification of selected virulent bacteriophage types
Wang et al. Genome and ecology of a novel alteromonas podovirus, ZP6, representing a new viral genus, mareflavirus
Garrett et al. Metagenomic analyses of novel viruses and plasmids from a cultured environmental sample of hyperthermophilic neutrophiles
Yoshida-Takashima et al. Genome sequence of a novel deep-sea vent epsilonproteobacterial phage provides new insight into the co-evolution of Epsilonproteobacteria and their phages
Zhao et al. Searching for a “hidden” prophage in a marine bacterium
Demina et al. Virus-host interactions and genetic diversity of Antarctic sea ice bacteriophages
Doore et al. A cornucopia of Shigella phages from the Cornhusker State
Zhang et al. Unexplored diversity and ecological functions of transposable phages
Jamindar et al. Evaluation of two approaches for assessing the genetic similarity of virioplankton populations as defined by genome size
Merabishvili et al. Digitized fluorescent RFLP analysis (fRFLP) as a universal method for comparing genomes of culturable dsDNA viruses: application to bacteriophages
Gagic et al. Improving the genetic representation of rare taxa within complex microbial communities using DNA normalization methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant