CN114774391A - Bacteriophage lysin for resisting escherichia coli and application thereof - Google Patents
Bacteriophage lysin for resisting escherichia coli and application thereof Download PDFInfo
- Publication number
- CN114774391A CN114774391A CN202210232896.0A CN202210232896A CN114774391A CN 114774391 A CN114774391 A CN 114774391A CN 202210232896 A CN202210232896 A CN 202210232896A CN 114774391 A CN114774391 A CN 114774391A
- Authority
- CN
- China
- Prior art keywords
- escherichia coli
- pet
- expression vector
- phage
- recombinant expression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01092—Peptidoglycan beta-N-acetylmuramidase (3.2.1.92)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Communicable Diseases (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于生物技术领域,特别涉及一种抗大肠杆菌的噬菌体内溶素及其应用。The invention belongs to the field of biotechnology, in particular to a phage endolysin against Escherichia coli and its application.
背景技术Background technique
畜禽生长过程中感染细菌已是屡见不鲜的事情。大肠杆菌作为一种消化道常在菌,容易造成动物的高发病率和高死亡率,增加动物的治疗成本,同时严重影响养殖行业的经济效益。饲料、饮水以及传播媒介等都可能成为大肠杆菌的感染来源,并且大肠杆菌在动物的羽毛、粪便、舍内空气等中广泛存在。由于大肠杆菌的血清型具有多样性,并且各个血清型之间的交叉免疫效果不高,采用疫苗无法防止和减少大肠杆菌的感染和携带。因此针对大肠杆菌病,常常使用抗生素来进行治疗并且都能有效地控制病情,然而长期大量地使用抗生素却导致如今大肠杆菌非常容易产生耐药性。抗生素对大肠杆菌无法起作用的情况并不罕见,甚至威胁食品卫生安全。It is not uncommon for livestock and poultry to be infected with bacteria during the growth process. Escherichia coli, as a common bacteria in the digestive tract, can easily cause high morbidity and mortality in animals, increase the cost of animal treatment, and seriously affect the economic benefits of the breeding industry. Feed, drinking water, and transmission media may become sources of E. coli infection, and E. coli is widely present in animal feathers, feces, and house air. Due to the diversity of serotypes of Escherichia coli, and the low cross-immunity effect between serotypes, the use of vaccines cannot prevent and reduce the infection and carriage of Escherichia coli. Therefore, antibiotics are often used to treat colibacillosis and can effectively control the disease. However, the long-term use of antibiotics in large quantities has led to the emergence of drug resistance in Escherichia coli. It is not uncommon for antibiotics to fail to work against E. coli and even threaten food hygiene.
为避免滥用抗生素带来的不良影响,科学家们也在不断尝试开发新型的动物专用抗菌药物及其替代品,其中噬菌体疗法备受关注。噬菌体是一类以细菌、真菌等微生物为宿主的病毒,并且广泛分布于自然环境和人体。与抗生素疗法截然不同的是噬菌体疗法可以特异性地裂解宿主细菌,对特定的细菌进行防控,对其他正常菌群不造成影响。噬菌体独特的作用机制在避免细菌耐药性上具有极大优势。此外,与研发新的抗生素相比,从自然界中分离获得噬菌体在时间和经济成本上也占有优势。在临床实践上,我们已经能够通过噬菌体来清除病患或病畜体内的病原菌和改善相应的病症。In order to avoid the adverse effects caused by the abuse of antibiotics, scientists are also constantly trying to develop new animal-specific antimicrobial drugs and their substitutes, among which bacteriophage therapy has attracted much attention. Bacteriophages are viruses that host microorganisms such as bacteria and fungi, and are widely distributed in the natural environment and the human body. Different from antibiotic therapy, phage therapy can specifically lyse host bacteria, prevent and control specific bacteria, and have no effect on other normal flora. The unique mechanism of action of bacteriophages has great advantages in avoiding bacterial resistance. In addition, isolating phages from nature has advantages in terms of time and economic cost compared to developing new antibiotics. In clinical practice, we have been able to eliminate pathogenic bacteria in patients or sick animals and improve the corresponding diseases through phages.
内溶素是由噬菌体编码的一种高度进化的肽聚糖水解酶,本质为一种蛋白分子,弥补了噬菌体本质为病毒的不足,较噬菌体直接治疗更易被临床所接受,是从噬菌体中提取的一类新型抗菌药物。内溶素在噬菌体复制过程中表达,它可以破坏细菌细胞壁肽聚糖的关键化学键,由于肽聚糖是细菌细胞壁的主要结构成分,细菌细胞壁肽聚糖层的破坏将导致细菌的溶解和细胞的死亡,使得子代噬菌体得以释放,以此来发挥抗菌活性。Endolysin is a highly evolved peptidoglycan hydrolase encoded by bacteriophage. It is a protein molecule in essence, which makes up for the deficiency that bacteriophage is a virus in nature. It is more clinically accepted than direct treatment of bacteriophage. a new class of antibacterial drugs. Endolysin is expressed during bacteriophage replication, and it can disrupt key chemical bonds in bacterial cell wall peptidoglycan. Since peptidoglycan is the main structural component of bacterial cell walls, disruption of the bacterial cell wall peptidoglycan layer will lead to bacterial lysis and cellular lysis. Death allows the release of progeny phage to exert antibacterial activity.
内溶素成为抑制病原性菌株感染的新兴手段,其优势在于具有抗生素不具备的优点。噬菌体内溶素不易产生耐药性,来源广泛,在体内体外对革兰氏阳性菌具有良好的抗菌作用,具有良好的生物安全性和较高的种属特异性。将内溶素作为抗菌剂使用时,革兰氏阴性菌的外膜结构会阻碍裂解酶与细菌细胞壁进行结合,导致内溶素难以对革兰氏阴性菌进行有效杀灭。因此需要使用分子生物学的方法对天然内溶素进行设计改造,增强内溶素的裂解活性和宿主谱,使其成为优良的抗菌试剂。Endolysin has become an emerging means of inhibiting the infection of pathogenic strains, and its advantages lie in the advantages that antibiotics do not have. Phage endolysin is not easy to develop drug resistance, has a wide range of sources, has good antibacterial effect on Gram-positive bacteria in vivo and in vitro, has good biological safety and high species specificity. When endolysin is used as an antibacterial agent, the outer membrane structure of Gram-negative bacteria will hinder the binding of lyase to the bacterial cell wall, making it difficult for endolysin to effectively kill Gram-negative bacteria. Therefore, it is necessary to use molecular biology methods to design and transform natural endolysin to enhance the lytic activity and host spectrum of endolysin, making it an excellent antibacterial agent.
发明内容SUMMARY OF THE INVENTION
本发明的首要目的在于克服现有技术的缺点与不足,提供一种抗大肠杆菌的噬菌体内溶素。The primary purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide an anti-Escherichia coli phage endolysin.
本发明的另一目的在于提供一种抗大肠杆菌的噬菌体内溶素的制备方法。Another object of the present invention is to provide a method for preparing an anti-Escherichia coli phage endolysin.
本发明的再一目的在于提供所述的抗大肠杆菌的噬菌体内溶素的应用。Another object of the present invention is to provide the application of the described anti-Escherichia coli phage endolysin.
本发明的目的通过下述技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种抗大肠杆菌的噬菌体内溶素,其氨基酸序列如SEQ ID NO.1所示。An anti-Escherichia coli phage endolysin, the amino acid sequence of which is shown in SEQ ID NO.1.
编码所述抗大肠杆菌的噬菌体内溶素的基因,其核苷酸序列如SEQ ID NO.2所示。The nucleotide sequence of the gene encoding the anti-Escherichia coli phage endolysin is shown in SEQ ID NO.2.
一种重组表达载体,含有编码上述抗大肠杆菌的噬菌体内溶素的基因,即通过将编码上述抗大肠杆菌的噬菌体内溶素的基因克隆进入表达载体获得。A recombinant expression vector containing the gene encoding the above-mentioned anti-Escherichia coli phage endolysin is obtained by cloning the above-mentioned gene encoding the above-mentioned anti-Escherichia coli phage endolysin into the expression vector.
所述的表达载体为PET系列载体;优选为pET-9a、pET-28a(+)、pET-22b(+)、pET-26b(+)或pET-31b(+)载体;进一步优选为pET28a(+)载体。The expression vector is a PET series vector; preferably pET-9a, pET-28a(+), pET-22b(+), pET-26b(+) or pET-31b(+) vector; more preferably pET28a ( +) carrier.
所述的将编码上述抗大肠杆菌的噬菌体内溶素的基因克隆进入表达载体优选通过酶切位点HindⅢ和SalI插入pET28a(+)中。The said gene encoding the above-mentioned anti-Escherichia coli phage endolysin is cloned into the expression vector, preferably inserted into pET28a(+) through the restriction sites HindIII and SalI.
一种重组表达菌株,含有上述重组表达载体,即通过将上述重组表达载体转入宿主菌株获得。A recombinant expression strain, which contains the above recombinant expression vector, is obtained by transferring the above recombinant expression vector into a host strain.
所述的宿主菌株为细菌、酵母或真菌;优选为细菌;进一步优选为大肠杆菌(Escherichia coli);最优选为大肠杆菌BL21(DE3)。The host strain is bacteria, yeast or fungi; preferably bacteria; more preferably Escherichia coli; most preferably Escherichia coli BL21 (DE3).
一种抗大肠杆菌的噬菌体内溶素(蛋白)的制备方法,包括如下步骤:A preparation method of an anti-Escherichia coli phage endolysin (protein), comprising the steps:
(1)将编码上述抗大肠杆菌的噬菌体内溶素的基因克隆进入表达载体,得到重组表达载体;(1) clone the gene encoding the above-mentioned anti-Escherichia coli phage endolysin into an expression vector to obtain a recombinant expression vector;
(2)将重组表达载体转入宿主菌株,得到重组表达菌株;(2) transferring the recombinant expression vector into a host strain to obtain a recombinant expression strain;
(3)将重组表达菌株先进行培养,再诱导表达,离心收集菌液,分离纯化,得到抗大肠杆菌的噬菌体内溶素。(3) firstly culture the recombinant expression strain, then induce expression, collect bacterial liquid by centrifugation, separate and purify, and obtain phage endolysin against Escherichia coli.
步骤(1)中所述的表达载体为pET系列载体;优选为pET-3a、pET-9a、pET-28a(+)、pET-22b(+)、pET-26b(+)或pET-31b(+)载体;进一步优选为pET28a(+)载体。The expression vector described in step (1) is a pET series vector; preferably pET-3a, pET-9a, pET-28a(+), pET-22b(+), pET-26b(+) or pET-31b ( +) vector; further preferred is the pET28a(+) vector.
步骤(2)中所述的宿主菌株为细菌、酵母或真菌;优选为细菌;进一步优选为大肠杆菌(Escherichia coli);最优选为大肠杆菌BL21(DE3)。The host strain described in step (2) is bacteria, yeast or fungi; preferably bacteria; more preferably Escherichia coli; most preferably Escherichia coli BL21 (DE3).
步骤(3)中所述的培养的条件为:37℃、200rpm培养至菌液OD600为0.6~0.8(优选为OD600=0.8)。The culturing conditions described in step (3) are: culturing at 37° C. and 200 rpm until the OD600 of the bacterial liquid is 0.6-0.8 (preferably OD600=0.8).
步骤(3)中所述的诱导表达的诱导剂优选为IPTG(异丙基-β-D-硫代半乳糖苷)。The inducing agent for inducing expression described in step (3) is preferably IPTG (isopropyl-β-D-thiogalactoside).
所述的IPTG的用量为按其在诱导体系的终浓度为0.1mmol/L添加计算。The dosage of described IPTG is calculated according to its final concentration in the induction system being 0.1 mmol/L.
步骤(3)中所述的诱导表达的条件优选为:37℃诱导4h以上。The conditions for inducing expression described in step (3) are preferably: induction at 37° C. for more than 4 hours.
步骤(3)中所述的离心的条件优选为:8000rpm离心10min。The conditions of centrifugation described in step (3) are preferably: centrifugation at 8000rpm for 10min.
步骤(3)中所述的分离纯化优选为采用镍柱亲和层析法进行分离纯化。The separation and purification described in step (3) is preferably carried out by nickel column affinity chromatography.
所述的抗大肠杆菌的噬菌体内溶素在制备抑菌剂(抗菌剂)中的应用。The application of the anti-Escherichia coli phage endolysin in the preparation of a bacteriostatic agent (antibacterial agent).
所述的抑菌剂中的菌为革兰氏阴性菌;优选为大肠杆菌;进一步优选为致病性大肠杆菌。The bacteria in the bacteriostatic agent are Gram-negative bacteria; preferably Escherichia coli; more preferably pathogenic Escherichia coli.
本发明相对于现有技术具有如下的优点及效果:Compared with the prior art, the present invention has the following advantages and effects:
(1)鉴于大肠杆菌血清型的多样性及各个血清型之间的交叉免疫性差,疫苗难于发挥作用,另有抗生素的滥用导致细菌的耐药株的出现,可通过噬菌体疗法裂解宿主细菌,本发明通过基因工程的方法,将目的基因即编码抗大肠杆菌的噬菌体内溶素蛋白的基因构建到表达载体(优选pET-28a(+))上,对质粒进行信号肽的删除及其他修饰处理,确保转化和蛋白表达的顺利进行,然后将重组表达载体转入宿主菌株诱导表达获得噬菌体内溶素蛋白,该噬菌体内溶素蛋白对大肠杆菌具有一定杀菌作用。(1) In view of the diversity of E. coli serotypes and the poor cross-immunity between serotypes, the vaccine is difficult to play, and the abuse of antibiotics leads to the emergence of drug-resistant strains of bacteria. The host bacteria can be lysed by phage therapy. The invention adopts the method of genetic engineering, constructs the target gene, that is, the gene encoding the anti-Escherichia coli phage endolysin protein, on the expression vector (preferably pET-28a(+)), and carries out the deletion of the signal peptide and other modification treatments on the plasmid, Ensure the smooth progress of transformation and protein expression, and then transfer the recombinant expression vector into a host strain to induce expression to obtain a bacteriophage endolysin protein, which has a certain bactericidal effect on Escherichia coli.
(2)本发明所构建的带有目的基因的质粒,通过原核表达获得大量目的蛋白,利于将该噬菌体内溶素应用于生产和实践当中,有效地控制大肠杆菌病,保障公共卫生的安全。(2) The plasmid with the target gene constructed by the present invention can obtain a large amount of target protein through prokaryotic expression, which is beneficial to the application of the phage endolysin in production and practice, effectively controlling colibacillosis, and ensuring the safety of public health.
(3)本发明提供的可溶性抗大肠杆菌的噬菌体内溶素蛋白的生产方法操作简单、蛋白纯度较高,具有良好的稳定性和生物学活性,对大肠杆菌的监测具有重大意义。(3) The production method of the soluble anti-Escherichia coli phage endolysin protein provided by the present invention has simple operation, high protein purity, good stability and biological activity, and is of great significance to the monitoring of Escherichia coli.
(4)为全面、准确地掌握噬菌体内溶素对于大肠杆菌的杀菌程度,本发明在pH=6的环境下对该噬菌体内溶素的杀菌效果进行监控,检测其杀菌性能,结果显示该噬菌体内溶素蛋白对大肠杆菌具有一定的抗菌活性。(4) In order to comprehensively and accurately grasp the bactericidal degree of the bacteriophage endolysin on Escherichia coli, the present invention monitors the bactericidal effect of the bacteriophage endolysin under the environment of pH=6, detects its bactericidal performance, and the results show that the bacteriophage Endolysin protein has certain antibacterial activity against Escherichia coli.
附图说明Description of drawings
图1是抗大肠杆菌的噬菌体内溶素蛋白重组表达载体的图。FIG. 1 is a diagram of a recombinant expression vector for anti-Escherichia coli endolysin protein.
图2是将实施例2中保存的表达抗大肠杆菌的噬菌体内溶素的质粒转化至受体大肠杆菌BL21(DE3)内的PCR验证结果图(图中,泳道1为Yeasen 2000Marker;泳道2为目的基因扩增片段;泳道3为阴对照)。Fig. 2 is the PCR verification result of transforming the plasmid expressing anti-Escherichia coli phage endolysin stored in Example 2 into recipient Escherichia coli BL21 (DE3) (in the figure,
图3是SDS-PAGE电泳检测蛋白纯化结果分析结果图(图中,泳道1为SMOBIO PM2510Marker;泳道2为诱导剂IPTG 0.1mmol/L、37℃诱导4h的蛋白纯化结果)。Figure 3 is the analysis result of protein purification detected by SDS-PAGE electrophoresis (in the figure,
图4是在pH=6的条件下噬菌体内溶素蛋白活性的检测结果图(图中,纵坐标为第4孔液体滴板的活菌数,第一个柱状图表示滴加PBS的空白对照组(PBS),第二个柱状图表示滴加抗大肠杆菌的噬菌体内溶素蛋白的实验组(CJlysin))。Fig. 4 is a graph showing the detection result of phage endolysin protein activity under the condition of pH=6 (in the figure, the ordinate is the number of viable bacteria in the 4th well liquid drop plate, and the first bar graph represents the blank control of dripping PBS group (PBS), the second bar graph represents the experimental group (CJlysin) in which the anti-E. coli phage endolysin protein was added dropwise.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。下列实施例中未注明具体实验条件的试验方法,通常按照常规实验条件或按照制造厂所建议的实验条件。除非特别说明,本发明所用试剂和原材料均可通过市售获得。The present invention will be described in further detail below with reference to the examples, but the embodiments of the present invention are not limited thereto. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field. The test methods that do not specify specific experimental conditions in the following examples are usually in accordance with conventional experimental conditions or in accordance with experimental conditions suggested by the manufacturer. Unless otherwise specified, the reagents and raw materials used in the present invention can be obtained commercially.
实施例1抗大肠杆菌噬菌体内溶素CJlysin in pET-28a(+)的构建Example 1 Construction of anti-colibacillin endolysin CJlysin in pET-28a(+)
根据抗大肠杆菌噬菌体内溶素的基因序列(NCBI登录号:ERJ25909.1),通过基因合成对融合基因(基因序列如SEQ ID NO.2所示,其编码蛋白如SEQ ID NO.1所示)两端分别加上HindⅢ和SalI酶切位点,与进行HindⅢ和SalI双酶切的pET-28a(+)载体相连,命名为CJlysin in pET-28a(+),得到的连接片段核苷酸序列由上海通用生物公司合成,经测序正确后,获得大小为6041bp的融合基因。According to the gene sequence of anti-Escherichia coli endolysin (NCBI accession number: ERJ25909.1), the fusion gene (the gene sequence is shown in SEQ ID NO.2, and the encoded protein is shown in SEQ ID NO.1) is synthesized by gene synthesis ) were added with HindIII and SalI restriction sites, respectively, and were connected to the pET-28a(+) vector that was double-digested by HindIII and SalI, named CJlysin in pET-28a(+), and the obtained ligation fragment nucleotides The sequence was synthesized by Shanghai General Biological Company, and after correct sequencing, a fusion gene with a size of 6041 bp was obtained.
噬菌体内溶素氨基酸序列(SEQ ID NO.1):Phage endolysin amino acid sequence (SEQ ID NO. 1):
MNNFINSFNESKSITRVDKGMWVDGDKGVGVKADGDIRILRIRAFMCAIKYGEGTSGNNGYEINVGGKLFTKDYGKDFSDHPRYYVKSLDSSAAGAYQIKSSTWDMILKKYKKTYDITDFSPANQDKACLVLIKHIRNALDLIVDEKIDEAVRSRTDNDKKRLHYEWASMPDSPYGQRTITMEKFMEYYMHHLELEEIGISNLAISNKDIKKFLNGSHHHHHH*;MNNFINSFNESKSITRVDKGMWVDGDKGVGVKADGDIRILRIRAFMCAIKYGEGTSGNNGYEINVGGKLFTKDYGKDFSDHPRYYVKSLDSSAAGAYQIKSSTWDMILKKYKKTYDITDFSPANQDKACLVLIKHIRNALDLIVDEKIDEAVRSRTDNDKKRLHYEWASMPDSPYGQRTITMEKFMEYYMHHLELEEIGISNLAISNKDIKKFLNGSHHHHH*;
噬菌体内溶素基因序列(SEQ ID NO.2):Phage endolysin gene sequence (SEQ ID NO. 2):
ATGAACAACTTTATTAACTCTTTTAACGAATCCAAATCTATCACACGGGTGGATAAAGGCATGTGGGTCGATGGTGACAAAGGTGTTGGGGTGAAGGCCGATGGCGACATCCGTATTCTGCGTATTCGGGCGTTCATGTGCGCAATCAAATATGGGGAGGGCACTAGCGGCAACAACGGTTACGAAATCAACGTGGGCGGGAAATTATTTACCAAAGACTATGGTAAGGATTTTTCTGATCACCCACGGTATTACGTCAAAAGTCTCGACTCCTCAGCAGCTGGTGCATACCAGATTAAAAGTTCCACATGGGACATGATTCTGAAGAAGTATAAGAAAACTTACGATATTACCGATTTCTCACCAGCAAACCAGGATAAGGCTTGCCTTGTGCTGATTAAACACATTCGTAATGCACTTGACCTGATCGTGGACGAGAAGATTGATGAAGCCGTCCGGTCTCGTACCGATAATGATAAGAAACGCCTGCACTACGAATGGGCGTCAATGCCAGACTCTCCATATGGGCAACGTACTATTACTATGGAGAAGTTTATGGAATACTACATGCATCATTTGGAGCTCGAAGAGATTGGTATCTCGAACCTGGCCATCTCCAATAAAGACATCAAAAAATTCCTCAATGGTTCTCATCATCATCACCATCATTAA。ATGAACAACTTTATTAACTCTTTTAACGAATCCAAATCTATCACACGGGTGGATAAAGGCATGTGGGTCGATGGTGACAAAGGTGTTGGGGTGAAGGCCGATGGCGACATCCGTATTCTGCGTATTCGGGCGTTCATGTGCGCAATCAAATATGGGGAGGGCACTAGCGGCAACAACGGTTACGAAATCAACGTGGGCGGGAAATTATTTACCAAAGACTATGGTAAGGATTTTTCTGATCACCCACGGTATTACGTCAAAAGTCTCGACTCCTCAGCAGCTGGTGCATACCAGATTAAAAGTTCCACATGGGACATGATTCTGAAGAAGTATAAGAAAACTTACGATATTACCGATTTCTCACCAGCAAACCAGGATAAGGCTTGCCTTGTGCTGATTAAACACATTCGTAATGCACTTGACCTGATCGTGGACGAGAAGATTGATGAAGCCGTCCGGTCTCGTACCGATAATGATAAGAAACGCCTGCACTACGAATGGGCGTCAATGCCAGACTCTCCATATGGGCAACGTACTATTACTATGGAGAAGTTTATGGAATACTACATGCATCATTTGGAGCTCGAAGAGATTGGTATCTCGAACCTGGCCATCTCCAATAAAGACATCAAAAAATTCCTCAATGGTTCTCATCATCATCACCATCATTAA。
实施例2质粒抽提,双酶切确认质粒并送测序Example 2 Plasmid extraction, double digestion to confirm the plasmid and send for sequencing
将实施例1得到的抗大肠杆菌噬菌体内溶素CJlysin in pET-28a(+)的合成质粒(图1)转化至受体菌DH5α,菌液涂含卡那霉素的LB(含50mg/L的卡那霉素(Kan))板进行复苏活化,37℃培养16h后,挑取单个菌落重新转接涂板;将转接后的菌落,挑取一部分菌落转接至100mL的液体LB培养基中,37℃、200rpm的摇床上摇菌16h,先将部分菌液暂时分装放4℃保存;再取一部分菌液使用50mL离心管进行收集,8000rpm离心10min,弃去上清,进行质粒抽提,并对质粒做HindⅢ和SalI双酶切,跑核酸电泳确认酶切片段大小,并将大小为650bp左右的目的条带的克隆质粒进一步测序,将测序正确的阳性克隆扩大培养,抽取质粒保存至-20℃冰箱,将菌液用含有15%~20%(v/v)甘油的LB溶液放置-80℃进行保种。The synthetic plasmid (Figure 1) obtained in Example 1 against Escherichia coli endolysin CJlysin in pET-28a (+) was transformed into the recipient bacteria DH5α, and the bacterial solution was coated with LB (containing 50 mg/L) containing kanamycin. After culturing at 37°C for 16h, pick a single colony to transfer to the plate again; pick a part of the transferred colony and transfer it to 100mL of liquid LB medium In the medium, shake the bacteria on a shaking table at 37 °C and 200 rpm for 16 h, first temporarily aliquot part of the bacterial liquid and store it at 4 °C; then take a part of the bacterial liquid for collection in a 50 mL centrifuge tube, centrifuge at 8000 rpm for 10 min, discard the supernatant, and carry out plasmid extraction. Extraction and double digestion of the plasmid with HindIII and SalI, run nucleic acid electrophoresis to confirm the size of the digestion fragment, and further sequence the cloned plasmid of the target band with a size of about 650bp, expand the positive clone with correct sequencing, and extract the plasmid for preservation To -20°C refrigerator, place the bacterial liquid in LB solution containing 15% to 20% (v/v) glycerol at -80°C for seed preservation.
实施例3抗大肠杆菌噬菌体内溶素蛋白的诱导表达Example 3 Induction and expression of anti-coliphage endolysin protein
(1)将上述实施例2中保存的表达抗大肠杆菌的噬菌体内溶素的质粒转化至受体大肠杆菌BL21(DE3)上,冰上放置30min后,42℃水浴锅中热击90s后加入1ml LB肉汤培养基,在37℃,220rpm的摇床上复苏活化之后,6000rpm离心1min,弃去90%的上清后将菌液涂含卡那霉素的LB(含30mg/L的卡那霉素(Kan))板进行复苏活化,37℃培养16h后,挑取单个菌落利用T7引物(正向引物t7-f和反向引物t7-r)进行菌落PCR确认,如图2所示。将大小为650bp左右的目的条带的克隆菌落重新转接涂板,并保存;其中,T7引物序列如下所示:(1) The plasmid expressing the anti-Escherichia coli phage endolysin stored in the above Example 2 was transformed into the recipient Escherichia coli BL21 (DE3), placed on ice for 30min, and then added after heat shock in a 42°C water bath for 90s 1ml of LB broth medium was revived and activated at 37°C on a shaking table at 220rpm, centrifuged at 6000rpm for 1min, discarded 90% of the supernatant, and the bacterial solution was coated with LB containing kanamycin (containing 30mg/L of kanamycin). T7 primers (forward primer t7-f and reverse primer t7-r) were used for colony PCR confirmation, as shown in Figure 2. The cloned colonies of the target band with a size of about 650bp were re-plated and saved; the T7 primer sequences were as follows:
正向引物(t7-f):5’-TAATACGACTCACTATAGG-3’;Forward primer (t7-f): 5'-TAATACGACTCACTATAGG-3';
反向引物(t7-r):5’-TGCTAGTTATTGCTCAGCGG-3’。Reverse primer (t7-r): 5'-TGCTAGTTATTGCTCAGCGGG-3'.
PCR反应体系和条件如下所示:The PCR reaction system and conditions are as follows:
扩增体系:PCR Master Mix酶25μL,正向引物(10pmol/μL)1μL,反向引物(10pmol/μL)1μL,基因模板2μL,ddH2O补足至50μL。Amplification system: PCR
扩增反应条件:98℃3min;98℃15s、58℃15s、72℃60s,40个循环;72℃5min。Amplification reaction conditions: 98°C for 3 min; 98°C for 15s, 58°C for 15s, 72°C for 60s, 40 cycles; 72°C for 5 min.
PCR反应完成之后,使用1%琼脂糖凝胶电泳。凝胶电泳显示大小为650bp左右的目的条带。After the PCR reaction was completed, 1% agarose gel was used for electrophoresis. Gel electrophoresis showed the target band with a size of about 650bp.
(2)将转接后的菌落,挑取一部分菌落转接至100mL的液体LB培养基中,37℃、200rpm的摇床上摇菌;待菌液OD600值为0.6时,用IPTG(异丙基-β-D-硫代半乳糖苷)进行诱导,IPTG的终浓度为0.1mmol/L;诱导4h后将菌液使用50mL离心管进行收集,8000rpm离心10min,弃去上清;(2) with the colony after the transfer, pick a part of the colony and transfer it to the liquid LB medium of 100 mL, shake the bacteria on a shaking table at 37° C. and 200 rpm; when the OD600 value of the bacterial liquid is 0.6, use IPTG (isopropyl -β-D-thiogalactoside) was induced, and the final concentration of IPTG was 0.1 mmol/L; after 4 hours of induction, the bacterial liquid was collected in a 50 mL centrifuge tube, centrifuged at 8000 rpm for 10 min, and the supernatant was discarded;
(3)用无咪唑的蛋白裂解液Lysis buffer(NaH2PO4·H2O(MW 137.99g/mol)6.9g,即0.05mol/L,NaCl(MW 58.44g/mol)17.54g即0.3mol/L,加入约900mL去离子水,搅拌溶解后,加入NaOH调节溶液pH值至8.0,加入去离子水定容至1000mL),取约30mL将保存的菌液重悬,使用超声破碎仪进行破碎,超声程序为破碎3s,间隔5s,超声破碎30min;(3) Lysis buffer (NaH 2 PO 4 ·H 2 O (MW 137.99g/mol) 6.9g, i.e. 0.05mol/L, NaCl (MW 58.44g/mol) 17.54g, i.e. 0.3mol, without imidazole /L, add about 900mL of deionized water, after stirring to dissolve, add NaOH to adjust the pH value of the solution to 8.0, add deionized water to make up to 1000mL), take about 30mL of the stored bacterial solution to resuspend, and use an ultrasonic crusher for crushing , the ultrasonic program is broken for 3s, the interval is 5s, and the ultrasonic break is 30min;
(4)将超声破碎后的产物8000rpm离心15min,收集上清,取少量的上清加入4×SDS上样缓冲液,混匀后,至沸水中煮10min,若加热后的样品有粘性产物,将样品进行瞬时离心后,取上清上样于购自金斯瑞的SDS-PAGE胶孔,同时加入等量的蛋白SMOBIO PM2510Maker,以电泳电压调节至100V跑胶,跑胶100min。将凝胶块从玻璃板中取出,轻放于摇床上含有考马斯亮蓝溶液的染色槽30min;然后将染色槽的考马斯亮蓝溶液倒出,加入清水冲洗干净后,凝胶块放于摇床中的染色槽中,用清水对凝胶块进行脱色30min即可见清洗条带,抗大肠杆菌的噬菌体内溶素蛋白可溶性表达表达成功。(4) Centrifuge the sonicated product at 8000rpm for 15min, collect the supernatant, take a small amount of supernatant and add 4×SDS sample buffer, after mixing, boil in boiling water for 10min, if the heated sample has a viscous product, After the samples were centrifuged briefly, the supernatant was taken and loaded onto the wells of SDS-PAGE gels purchased from GenScript. At the same time, an equal amount of protein SMOBIO PM2510Maker was added, and the electrophoresis voltage was adjusted to 100V to run the gel for 100 min. Take the gel block out of the glass plate, and put it on the staining tank containing Coomassie brilliant blue solution on the shaker for 30 minutes; then pour out the Coomassie brilliant blue solution in the staining tank, add water to rinse it, and place the gel block on the shaker. In the staining tank in , decolorize the gel block with water for 30 minutes, and then the washed band can be seen, and the soluble expression of the anti-Escherichia coli phage endolysin protein was successfully expressed.
实施例4抗大肠杆菌的噬菌体内溶素蛋白的纯化Example 4 Purification of phage endolysin protein against E. coli
蛋白纯化:将表达的抗大肠杆菌的噬菌体内溶素蛋白采用BIOSCIENCES公司中镍柱亲和层析蛋白纯化原核表达的方法进行纯化目的蛋白,纯化步骤如下:Protein purification: The expressed anti-Escherichia coli phage endolysin protein is purified by the method of purifying prokaryotic expression protein by nickel column affinity chromatography in BIOSCIENCES company. The purification steps are as follows:
(1)平衡:取1ml镍填料加入纯化蛋白专用柱子中,加入10ml提前配好的Lysisbuffer(Lysis buffer缓冲液的配方为:NaH2PO4·H2O(MW 137.99g/mol)6.9g,NaCl(MW58.44g/mol)17.54g,0.68g咪唑(MW 68.08g/mol)加入约900mL去离子水,搅拌溶解后,加入NaOH调节溶液pH值至8.0,加入去离子水定容至1000mL)进行平衡填料,重复3~5次。(1) Equilibrium: add 1ml of nickel filler to the column dedicated to purification of protein, add 10ml of Lysisbuffer prepared in advance (the formula of Lysis buffer buffer is: NaH 2 PO 4 ·H 2 O (MW 137.99g/mol) 6.9g, NaCl (MW58.44g/mol) 17.54g, 0.68g imidazole (MW 68.08g/mol) add about 900mL deionized water, after stirring and dissolving, add NaOH to adjust the pH value of the solution to 8.0, add deionized water to make up to 1000mL) Carry out balanced packing and
(2)上样:在平衡过的柱子加入已超声破碎的裂解菌液,分批次加入,直至样品完全过柱。(2) Sample loading: Add the sonicated lysate to the equilibrated column, and add it in batches until the sample completely passes through the column.
(3)洗涤:往柱子中加入已配好的Wash buffer(6.9g NaH2PO4·H2O(MW 137.99g/mol),NaCl(MW 58.44g/mol)17.54g,1.36g咪唑(MW 68.08g/mol)加入约900mL去离子水,搅拌溶解后,加入NaOH调节溶液pH值至8.0,加入去离子水定容至1000mL)清洗柱子,清洗两次,每次5ml。(3) Washing: Add the prepared Wash buffer (6.9g NaH 2 PO 4 ·H 2 O (MW 137.99g/mol), NaCl (MW 58.44g/mol) 17.54g, 1.36g imidazole (MW 58.44g/mol) to the column 68.08g/mol), add about 900mL of deionized water, after stirring and dissolving, add NaOH to adjust the pH value of the solution to 8.0, add deionized water to make the volume to 1000mL) to wash the column, wash twice, 5ml each time.
(4)洗脱:在洗涤结束后,加入Elution buffer(Elution buffer缓冲液:NaH2PO4·H2O(MW 137.99g/mol)6.9g,NaCl(MW 58.44g/mol)17.54g,17.00g咪唑(MW 68.08g/mol)加入约900mL去离子水,搅拌溶解后,加入NaOH调节溶液pH值至8.0,加入去离子水定容至1000mL)将蛋白洗脱下来,每次400μl,清洗6次。(4) Elution: After washing, add Elution buffer (Elution buffer: NaH 2 PO 4 ·H 2 O (MW 137.99g/mol) 6.9g, NaCl (MW 58.44g/mol) 17.54g, 17.00 g imidazole (MW 68.08g/mol), add about 900mL deionized water, stir to dissolve, add NaOH to adjust the pH value of the solution to 8.0, add deionized water to make up to 1000mL) to elute the protein, 400μl each time, wash 6 Second-rate.
(5)收集:每次洗脱均用不同的灭菌1.5ml的EP管进行标记、保存。(5) Collection: Different sterilized 1.5ml EP tubes were used for each elution for labeling and preservation.
(6)样品处理:将洗脱下来的每管分别吸取10μl的样品进行SDS-PAGE鉴定(图3)。(6) Sample processing: 10 μl of the eluted samples were drawn from each tube for SDS-PAGE identification ( FIG. 3 ).
(7)保存:根据SDS-PAGE结果,将目的蛋白纯度较高的样品,加入20%(v/v)的甘油进行保存。(7) Preservation: According to the results of SDS-PAGE, add 20% (v/v) glycerol to the sample with higher purity of the target protein for preservation.
(8)BCA蛋白定量:将蛋白加入20%(v/v)的甘油进行保存,使用BCA定量检测试剂盒检测其蛋白浓度(2.6695mg/ml)。将测过浓度的蛋白进行分装,置于-20℃保存。(8) BCA protein quantification: add the protein to 20% (v/v) glycerol for preservation, and use the BCA quantitative detection kit to detect its protein concentration (2.6695 mg/ml). The protein of the tested concentration was aliquoted and stored at -20°C.
实施例5抗大肠杆菌的噬菌体内溶素蛋白活性的检测Example 5 Detection of phage endolysin protein activity against Escherichia coli
在pH=6的条件下,对噬菌体内溶素蛋白的活性进行检测,具体步骤如下:Under the condition of pH=6, the activity of bacteriophage endolysin protein is detected, and the specific steps are as follows:
(1)将大肠杆菌株BL21(DE3)转接到LB固体培养基上,37℃培养过夜。(1) The Escherichia coli strain BL21(DE3) was transferred to LB solid medium, and cultured at 37°C overnight.
(2)挑取步骤(1)中部分菌落到LB液体培养基,在37℃200rpm摇床上培养到OD600=1。(2) Pick part of the colonies in step (1) into LB liquid medium, and cultivate to OD600=1 on a shaker at 37°C and 200 rpm.
(3)取步骤(2)中的菌液10μl,用无菌PBS缓冲液(pH=6),在96孔板上倍比稀释104倍。即1-4孔加入90μl无菌PBS缓冲液(pH=6),取10μl步骤(2)中的菌液加入第1孔,反复吹打5次,再取10μl第1孔液体加入第2孔,反复吹打5次,依次这样直至加到第4孔。(3) Take 10 μl of the bacterial solution in step (2), use sterile PBS buffer (pH=6), and dilute it by 10 4 times on a 96-well plate. That is, add 90 μl sterile PBS buffer (pH=6) to wells 1-4, add 10 μl of the bacterial solution in step (2) to the first well, repeat
(4)取95μl步骤(3)中的第4孔液体加到空白孔中,再加5μl实施例4中纯化并过滤除菌后得到的蛋白(空白组加5μl pH=6的无菌PBS缓冲液),吹打混匀5次,盖上盖子,放于37℃培养箱孵育16h。(4) Take 95 μl of the liquid from the fourth hole in step (3) and add it to the blank well, and add 5 μl of the protein purified and sterilized by filtration in Example 4 (for the blank group, add 5 μl of sterile PBS buffer with pH=6). liquid), mix by pipetting for 5 times, cover the lid, and incubate in a 37°C incubator for 16h.
(5)孵育结束后,分别将空白组和实验组的液体全部取出,滴于LB培养基上,通过转动培养基,使液体均匀布满培养基,待液体晾干后,放于37℃培养箱倒置培养过夜,第二日通过计数菌落数,判断蛋白是否具有抗菌活性,三次重复,结果如图4所示。(5) After the incubation, all the liquids in the blank group and the experimental group were taken out respectively, dropped on the LB medium, and the medium was evenly covered with the liquid by rotating the medium. After the liquid was dried, put it at 37°C for cultivation The box was inverted overnight, and the number of colonies was counted on the second day to determine whether the protein had antibacterial activity. The results were repeated three times. The results are shown in Figure 4.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.
序列表 sequence listing
<110> 华南农业大学<110> South China Agricultural University
<120> 一种抗大肠杆菌的噬菌体内溶素及其应用<120> A kind of anti-Escherichia coli phage endolysin and its application
<160> 4<160> 4
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 223<211> 223
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> 噬菌体内溶素<223> Phage endolysin
<400> 1<400> 1
Met Asn Asn Phe Ile Asn Ser Phe Asn Glu Ser Lys Ser Ile Thr ArgMet Asn Asn Phe Ile Asn Ser Phe Asn Glu Ser Lys Ser Ile Thr Arg
1 5 10 151 5 10 15
Val Asp Lys Gly Met Trp Val Asp Gly Asp Lys Gly Val Gly Val LysVal Asp Lys Gly Met Trp Val Asp Gly Asp Lys Gly Val Gly Val Lys
20 25 30 20 25 30
Ala Asp Gly Asp Ile Arg Ile Leu Arg Ile Arg Ala Phe Met Cys AlaAla Asp Gly Asp Ile Arg Ile Leu Arg Ile Arg Ala Phe Met Cys Ala
35 40 45 35 40 45
Ile Lys Tyr Gly Glu Gly Thr Ser Gly Asn Asn Gly Tyr Glu Ile AsnIle Lys Tyr Gly Glu Gly Thr Ser Gly Asn Asn Gly Tyr Glu Ile Asn
50 55 60 50 55 60
Val Gly Gly Lys Leu Phe Thr Lys Asp Tyr Gly Lys Asp Phe Ser AspVal Gly Gly Lys Leu Phe Thr Lys Asp Tyr Gly Lys Asp Phe Ser Asp
65 70 75 8065 70 75 80
His Pro Arg Tyr Tyr Val Lys Ser Leu Asp Ser Ser Ala Ala Gly AlaHis Pro Arg Tyr Tyr Val Lys Ser Leu Asp Ser Ser Ala Ala Gly Ala
85 90 95 85 90 95
Tyr Gln Ile Lys Ser Ser Thr Trp Asp Met Ile Leu Lys Lys Tyr LysTyr Gln Ile Lys Ser Ser Thr Trp Asp Met Ile Leu Lys Lys Tyr Lys
100 105 110 100 105 110
Lys Thr Tyr Asp Ile Thr Asp Phe Ser Pro Ala Asn Gln Asp Lys AlaLys Thr Tyr Asp Ile Thr Asp Phe Ser Pro Ala Asn Gln Asp Lys Ala
115 120 125 115 120 125
Cys Leu Val Leu Ile Lys His Ile Arg Asn Ala Leu Asp Leu Ile ValCys Leu Val Leu Ile Lys His Ile Arg Asn Ala Leu Asp Leu Ile Val
130 135 140 130 135 140
Asp Glu Lys Ile Asp Glu Ala Val Arg Ser Arg Thr Asp Asn Asp LysAsp Glu Lys Ile Asp Glu Ala Val Arg Ser Arg Thr Asp Asn Asp Lys
145 150 155 160145 150 155 160
Lys Arg Leu His Tyr Glu Trp Ala Ser Met Pro Asp Ser Pro Tyr GlyLys Arg Leu His Tyr Glu Trp Ala Ser Met Pro Asp Ser Pro Tyr Gly
165 170 175 165 170 175
Gln Arg Thr Ile Thr Met Glu Lys Phe Met Glu Tyr Tyr Met His HisGln Arg Thr Ile Thr Met Glu Lys Phe Met Glu Tyr Tyr Met His His
180 185 190 180 185 190
Leu Glu Leu Glu Glu Ile Gly Ile Ser Asn Leu Ala Ile Ser Asn LysLeu Glu Leu Glu Glu Ile Gly Ile Ser Asn Leu Ala Ile Ser Asn Lys
195 200 205 195 200 205
Asp Ile Lys Lys Phe Leu Asn Gly Ser His His His His His HisAsp Ile Lys Lys Phe Leu Asn Gly Ser His His His His His His
210 215 220 210 215 220
<210> 2<210> 2
<211> 672<211> 672
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> 噬菌体内溶素基因序列<223> Phage endolysin gene sequence
<400> 2<400> 2
atgaacaact ttattaactc ttttaacgaa tccaaatcta tcacacgggt ggataaaggc 60atgaacaact ttattaactc ttttaacgaa tccaaatcta tcacacgggt ggataaaggc 60
atgtgggtcg atggtgacaa aggtgttggg gtgaaggccg atggcgacat ccgtattctg 120atgtgggtcg atggtgacaa aggtgttggg gtgaaggccg atggcgacat ccgtattctg 120
cgtattcggg cgttcatgtg cgcaatcaaa tatggggagg gcactagcgg caacaacggt 180cgtattcggg cgttcatgtg cgcaatcaaa tatggggagg gcactagcgg caacaacggt 180
tacgaaatca acgtgggcgg gaaattattt accaaagact atggtaagga tttttctgat 240tacgaaatca acgtgggcgg gaaattattt accaaagact atggtaagga tttttctgat 240
cacccacggt attacgtcaa aagtctcgac tcctcagcag ctggtgcata ccagattaaa 300cacccacggt attacgtcaa aagtctcgac tcctcagcag ctggtgcata ccagattaaa 300
agttccacat gggacatgat tctgaagaag tataagaaaa cttacgatat taccgatttc 360agttccacat gggacatgat tctgaagaag tataagaaaa cttacgatat taccgatttc 360
tcaccagcaa accaggataa ggcttgcctt gtgctgatta aacacattcg taatgcactt 420tcaccagcaa accaggataa ggcttgcctt gtgctgatta aacacattcg taatgcactt 420
gacctgatcg tggacgagaa gattgatgaa gccgtccggt ctcgtaccga taatgataag 480gacctgatcg tggacgagaa gattgatgaa gccgtccggt ctcgtaccga taatgataag 480
aaacgcctgc actacgaatg ggcgtcaatg ccagactctc catatgggca acgtactatt 540aaacgcctgc actacgaatg ggcgtcaatg ccagactctc catatgggca acgtactatt 540
actatggaga agtttatgga atactacatg catcatttgg agctcgaaga gattggtatc 600actatggaga agtttatgga atactacatg catcatttgg agctcgaaga gattggtatc 600
tcgaacctgg ccatctccaa taaagacatc aaaaaattcc tcaatggttc tcatcatcat 660tcgaacctgg ccatctccaa taaagacatc aaaaaattcc tcaatggttc tcatcatcat 660
caccatcatt aa 672caccatcatt aa 672
<210> 3<210> 3
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> 正向引物(t7-f)<223> Forward primer (t7-f)
<400> 3<400> 3
taatacgact cactatagg 19taatacgact cactatagg 19
<210> 4<210> 4
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> 反向引物(t7-r)<223> reverse primer (t7-r)
<400> 4<400> 4
tgctagttat tgctcagcgg 20tgctagttat tgctcagcgg 20
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210232896.0A CN114774391B (en) | 2022-03-09 | 2022-03-09 | Bacteriophage lysin for resisting escherichia coli and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210232896.0A CN114774391B (en) | 2022-03-09 | 2022-03-09 | Bacteriophage lysin for resisting escherichia coli and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114774391A true CN114774391A (en) | 2022-07-22 |
CN114774391B CN114774391B (en) | 2023-03-14 |
Family
ID=82423949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210232896.0A Active CN114774391B (en) | 2022-03-09 | 2022-03-09 | Bacteriophage lysin for resisting escherichia coli and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114774391B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104245937A (en) * | 2012-04-17 | 2014-12-24 | 弗·哈夫曼-拉罗切有限公司 | Method for the expression of polypeptides using modified nucleic acids |
CN108410840A (en) * | 2018-04-03 | 2018-08-17 | 大连理工大学 | A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application |
CN112301021A (en) * | 2020-10-30 | 2021-02-02 | 西南大学 | Enlysin and perforin composition for resisting escherichia coli phage expression and preparation method and application thereof |
WO2021180892A1 (en) * | 2020-03-11 | 2021-09-16 | Telum Therapeutics S.L. | New recombinant lysin and its use in the treatment of gram-negative bacterial infections |
-
2022
- 2022-03-09 CN CN202210232896.0A patent/CN114774391B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104245937A (en) * | 2012-04-17 | 2014-12-24 | 弗·哈夫曼-拉罗切有限公司 | Method for the expression of polypeptides using modified nucleic acids |
CN108410840A (en) * | 2018-04-03 | 2018-08-17 | 大连理工大学 | A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application |
WO2021180892A1 (en) * | 2020-03-11 | 2021-09-16 | Telum Therapeutics S.L. | New recombinant lysin and its use in the treatment of gram-negative bacterial infections |
CN112301021A (en) * | 2020-10-30 | 2021-02-02 | 西南大学 | Enlysin and perforin composition for resisting escherichia coli phage expression and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
DESHPANDE,N.P.等: "Phage lysin [Campylobacter concisus ATCC 51561]", 《GENBANK ACCESSION NO: ERJ25909.1》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114774391B (en) | 2023-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112143747B (en) | A kind of bacteriophage lyase and its gene, gene recombinant expression vector and application | |
CN107109372A (en) | New C.perfringens bacteriophage Clo PEP 1 and its purposes for suppressing C.perfringens propagation | |
CN110951715B (en) | Anti-staphylococcus broad-spectrum phage encoding lyase as well as preparation method and application thereof | |
US11236315B2 (en) | Thermophile peptidoglycan hydrolase fusion proteins and uses thereof | |
CN111304181A (en) | A genetically engineered Vibrio parahaemolyticus phage lyase and its preparation method and application | |
CN110592057B (en) | Chimeric lyase ILTphg and polynucleotides encoding same | |
CN111235119B (en) | Preparation and application of fusion antibacterial protein | |
CN108126190A (en) | The preparation and application of mycobacteriophage lyases Lysin-Guo1 | |
CN114891754B (en) | A fish-pathogenic Aeromonas phage φA008 and its application | |
CN110117587B (en) | A kind of staphylococcus lyase and its preservation method and application | |
CN112480227B (en) | Protein for improving pathogenic bacterium resistance of sturgeon and preparation method and application thereof | |
CN114774391B (en) | Bacteriophage lysin for resisting escherichia coli and application thereof | |
CN116410969B (en) | Phage, phage lyase and application thereof | |
CN102061303A (en) | Fusion expression product of antimicrobial peptide genes of two marine animals and preparation method of fusion expression product | |
CN108752431A (en) | Heterozygous antibacterial peptide Mel-MytB and its application | |
CN113430220A (en) | Synthesis method, construction method and application of genetic engineering bacteria for expressing soluble feline omega interferon | |
CN108823193B (en) | A high-efficiency Streptococcus pneumoniae chimeric lyase and its mutants and applications | |
CN102433341B (en) | A kind of prokaryotic expression product and preparation method of antibacterial peptide of grouper | |
EP4262843A1 (en) | Antimicrobial protein, antimicrobial recombinant protein with lytic properties, expression vector, method of their preparation and use | |
CN114107271B (en) | Heat-resistant and nutrient-resistant salmonella broad spectrum lyase with in-vitro cleavage activity, and preparation and application thereof | |
CN116640755B (en) | Streptococcus prophage lyase lys1519 and application thereof | |
CN113549636A (en) | Codon-optimized zebra fish g-type lysozyme-1 gene and recombinant expression protein thereof | |
CN111154792A (en) | Preparation and application of cryptosporidium protein kinase 660C-terminal protein | |
CN115725539B (en) | FtsZ protein preparation method, product and application | |
CN112662650B (en) | Bacteriophage lysozyme, gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |