[go: up one dir, main page]

CN110563815A - Pseudomonas aeruginosa bacteriophage K8 putative protein GP075, and mutant strain, mutant protein and application thereof - Google Patents

Pseudomonas aeruginosa bacteriophage K8 putative protein GP075, and mutant strain, mutant protein and application thereof Download PDF

Info

Publication number
CN110563815A
CN110563815A CN201910720978.8A CN201910720978A CN110563815A CN 110563815 A CN110563815 A CN 110563815A CN 201910720978 A CN201910720978 A CN 201910720978A CN 110563815 A CN110563815 A CN 110563815A
Authority
CN
China
Prior art keywords
gly
leu
val
phage
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910720978.8A
Other languages
Chinese (zh)
Other versions
CN110563815B (en
Inventor
杨洪江
孙利
张志强
李东航
尤甲甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN201910720978.8A priority Critical patent/CN110563815B/en
Publication of CN110563815A publication Critical patent/CN110563815A/en
Application granted granted Critical
Publication of CN110563815B publication Critical patent/CN110563815B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/00022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to a pseudomonas aeruginosa bacteriophage K8 hypothetical protein GP075, the nucleotide sequence of which is SEQ No.1, and the amino acid sequence of which is SEQ No. 10. The protein GP075 is supposed to be mutated, the mutated protein has the function of structural protein, the phage mutant strain is additionally provided with additional receptor recognition protein on the basis of original recognition of lipopolysaccharide, can recognize lipopolysaccharide O-antigen defective host cells or host cells only containing core oligosaccharide structures (core oligosaccharides), and has wider host range and stronger capability of cracking and adsorbing the host cells, so that the phage mutant strain is expected to be applied to phage preparations and can prevent and treat various infections caused by pseudomonas aeruginosa.

Description

一种铜绿假单胞菌噬菌体K8假定蛋白GP075及其突变株、突变 蛋白和应用A hypothetical protein GP075 of Pseudomonas aeruginosa phage K8 and its mutant strain and mutation protein and application

技术领域technical field

本发明属于生物工程技术领域,尤其是一种铜绿假单胞菌噬菌体K8假定蛋白GP075及其突变株、突变蛋白和应用。The invention belongs to the technical field of bioengineering, in particular to a hypothetical protein GP075 of Pseudomonas aeruginosa phage K8 and its mutant strain, mutant protein and application.

背景技术Background technique

铜绿假单胞菌是一种条件致病菌,容易感染免疫功能低下、身体虚弱以及囊性纤维病人,导致囊性纤维病人较高的发病率和死亡率。噬菌体作为细菌的天然克星,可特异性杀死细菌,研究噬菌体与宿主之间相互作用,有助于开发噬菌体制剂,用于治疗细菌感染。近几年对铜绿假单胞菌及其噬菌体的研究与日俱增,铜绿假单胞菌的各类噬菌体感染机制越来越清晰,大多数分离的铜绿假单胞菌噬菌体识别受体为脂多糖O-抗原,研究最多是LPS合成相关的基因,主要有wbpL、wbpR、wbpO、algC、wbpV、galU、wbpT、wzy、wapH、migA、ssg和wbpS等。与此同时,大多数噬菌体利用尾部识别细胞受体,在合适的条件下,尾部和受体的相互作用诱导尾部发生结构性重排,最终传导到头-尾连接处,引发其打开,最终使噬菌体DNA释放,完成噬菌体感染过程。在现有的研究基础上铜绿假单胞菌噬菌体受体结合蛋白为尾丝蛋白,对于未知功能的假定蛋白作为受体结合蛋白的研究却很少。Pseudomonas aeruginosa is an opportunistic pathogen that easily infects immunocompromised, debilitated and cystic fibrosis patients, resulting in higher morbidity and mortality in cystic fibrosis patients. As the natural killer of bacteria, phage can specifically kill bacteria, and the study of the interaction between phage and host will help to develop phage preparations for the treatment of bacterial infections. In recent years, the research on Pseudomonas aeruginosa and its phages has been increasing day by day, and the infection mechanism of various phages of Pseudomonas aeruginosa has become more and more clear. Most of the isolated Pseudomonas aeruginosa phage recognition receptors are lipopolysaccharide O- Antigens, the most studied are genes related to LPS synthesis, mainly including wbpL, wbpR, wbpO, algC, wbpV, galU, wbpT, wzy, wapH, migA, ssg and wbpS. At the same time, most phages use their tails to recognize cell receptors, and under the right conditions, the interaction of the tails and the receptors induces a structural rearrangement of the tails, which eventually transduces to the head-tail junction, triggering its opening, and finally making the phage The DNA is released, completing the phage infection process. On the basis of existing research, the phage receptor binding protein of Pseudomonas aeruginosa is tail filament protein, but there are few studies on hypothetical proteins with unknown functions as receptor binding proteins.

近年来,随着抗菌素的滥用,抗菌素耐受型细菌的数量不断增加,耐受型细菌引起的各类感染疾病问题亟需解决。例如,铜绿假单胞菌是引起院内感染重要的条件致病菌,众所周知,噬菌体能对宿主菌进行感染,而且具有较强的宿主特异性,不影响其它非宿主的正常细胞,所以,研究噬菌体疗法,作为抗菌素的替代品,显得尤为重要。目前研究最多的鸡尾酒疗法,即混合噬菌体疗法(指将多种噬菌体混合使用,达到杀灭多种细菌的一种治疗方法),早在2014年,欧盟启动Phagoburn计划,针对临床上常见的铜绿假单胞菌、埃希氏菌、变形杆菌、克雷白氏杆菌、葡萄球菌引起的各种感染,“鸡尾酒疗法”起到了良好的效果,并对鸡尾酒疗法的安全性进行了评价。另一方面,在应用噬菌体制剂治疗细菌感染的同时,亦可考虑噬菌体制剂与抗生素联合用药达到治疗效果。In recent years, with the abuse of antibiotics, the number of antibiotic-resistant bacteria has been increasing, and the problems of various infectious diseases caused by resistant bacteria need to be solved urgently. For example, Pseudomonas aeruginosa is an important conditional pathogen that causes nosocomial infections. As we all know, phages can infect host bacteria, and have strong host specificity, and do not affect other non-host normal cells. Therefore, the study of phages Therapy, as an alternative to antibiotics, is particularly important. Currently the most researched cocktail therapy, that is, mixed phage therapy (referring to a treatment method that uses a variety of phages in combination to kill a variety of bacteria), as early as 2014, the European Union launched the Phagoburn project to target clinically common aeruginosa. "Cocktail therapy" has had a good effect on various infections caused by Monomonas, Escherichia, Proteus, Klebsiella, and Staphylococcus, and the safety of cocktail therapy has been evaluated. On the other hand, while using phage preparations to treat bacterial infections, the combination of phage preparations and antibiotics can also be considered to achieve therapeutic effects.

在噬菌体体内和体外的杀菌实验中,针对不同的宿主菌,同一噬菌体杀菌效率不同,这和噬菌体感染宿主菌的过程受到宿主菌基因表达水平的影响有关,噬菌体裂解宿主依赖于宿主菌的机制,从而增加了噬菌体裂解宿主菌的复杂程度。了解更多与噬菌体感染相关的宿主基因,这将有利于噬菌体的治疗效率,并且在未来提供多种临床感染的治疗方案。In the bactericidal experiments of phages in vivo and in vitro, the same phage has different bactericidal efficiency for different host bacteria, which is related to the process of phage infection of host bacteria affected by the gene expression level of host bacteria, and the mechanism of phage lysis host depends on host bacteria, Thereby increasing the complexity of phage lysing host bacteria. Knowing more about the host genes associated with phage infection will benefit the therapeutic efficiency of phage and provide therapeutic options for various clinical infections in the future.

通过检索,尚未发现与本发明专利申请相关的专利公开文献。Through searching, no patent publications related to the patent application of the present invention have been found.

发明内容Contents of the invention

本发明目的在于克服现有技术的不足之处,提供一种铜绿假单胞菌噬菌体K8假定蛋白GP075及其突变株、突变蛋白和应用,该假定蛋白GP075发生突变,突变后的蛋白具有结构蛋白的功能,该类噬菌体突变株在原识别脂多糖的基础上,增加了额外的受体识别蛋白,可识别脂多糖O-抗原缺陷型宿主细胞或者只含有核心寡糖结构(core oligosaccharides)的宿主细胞,同时具有更宽的宿主范围、更强的裂解及吸附宿主细胞的能力,有望应用于噬菌体制剂,防治铜绿假单胞菌引起的各种感染。The purpose of the present invention is to overcome the deficiencies of the prior art, to provide a pseudomonas aeruginosa phage K8 hypothetical protein GP075 and its mutant strain, mutant protein and application, the hypothetical protein GP075 is mutated, and the mutated protein has structural protein The function of this type of phage mutant strains is based on the original recognition of lipopolysaccharide, adding an additional receptor recognition protein, which can recognize lipopolysaccharide O-antigen-deficient host cells or host cells that only contain core oligosaccharides (core oligosaccharides) , and has a wider host range, stronger ability to lyse and adsorb host cells, and is expected to be applied to phage preparations to prevent and treat various infections caused by Pseudomonas aeruginosa.

本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:

一种铜绿假单胞菌噬菌体K8假定蛋白GP075,其核苷酸序列为SEQ No.1,其氨基酸序列为SEQ No.10。A hypothetical protein GP075 of Pseudomonas aeruginosa phage K8, the nucleotide sequence of which is SEQ No.1, and the amino acid sequence of which is SEQ No.10.

一株铜绿假单胞菌噬菌体K8突变株K8-D7,所述突变株K8-D7能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075的氨基酸105、106之间插入1个与106至112完全重复的氨基酸序列;所述突变株K8-D7的核苷酸序列为SEQ No.2,其氨基酸序列为SEQ No.11。A Pseudomonas aeruginosa phage K8 mutant strain K8-D7, said mutant strain K8-D7 can infect lipopolysaccharide O-antigen-deficient host cells, its sequence is amino acid 105, 106 in the hypothetical protein GP075 as described above An amino acid sequence that completely repeats 106 to 112 is inserted between them; the nucleotide sequence of the mutant K8-D7 is SEQ No.2, and its amino acid sequence is SEQ No.11.

一种含有如上所述的假定蛋白GP075的突变蛋白GP075-14,其序列是在所述GP075氨基酸105、106之间插入2个与106至112完全重复的氨基酸序列,所述突变蛋白GP075-14的核苷酸序列为SEQ No.3,其氨基酸序列为SEQ No.12。A mutant protein GP075-14 containing the hypothetical protein GP075 as described above, its sequence is to insert two completely repeated amino acid sequences from 106 to 112 between amino acids 105 and 106 of the GP075, and the mutant protein GP075-14 The nucleotide sequence is SEQ No.3, and the amino acid sequence is SEQ No.12.

一种含有如权利要求1所述的假定蛋白GP075的突变蛋白GP075-21,其序列是GP075氨基酸105、106之间插入3个与106至102完全重复的氨基酸序列,所述突变蛋白GP075-21的核苷酸序列为SEQ No.4,其氨基酸序列为SEQ No.13。A mutant protein GP075-21 containing the hypothetical protein GP075 as claimed in claim 1, its sequence is GP075 amino acid 105, 106 inserting 3 completely repeated amino acid sequences from 106 to 102, the mutant protein GP075-21 The nucleotide sequence is SEQ No.4, and the amino acid sequence is SEQ No.13.

一株铜绿假单胞菌噬菌体K8突变株K8-E126K,所述突变株K8-E126K能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075发生突变E126K,所述突变株K8-E126K的核苷酸序列为SEQ No.5,其氨基酸序列为SEQ No.14。A Pseudomonas aeruginosa phage K8 mutant strain K8-E126K, said mutant strain K8-E126K can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is the mutation E126K in the hypothetical protein GP075 as described above, so The nucleotide sequence of the mutant K8-E126K is SEQ No.5, and its amino acid sequence is SEQ No.14.

一株铜绿假单胞菌噬菌体K8突变株K8-S142L,所述突变株K8-S142L能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075发生突变S142L,所述突变株K8-S142L的核苷酸序列为SEQ No.6,其氨基酸序列为SEQ No.15。A Pseudomonas aeruginosa phage K8 mutant strain K8-S142L, said mutant strain K8-S142L can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is the mutation S142L in the hypothetical protein GP075 as described above, so The nucleotide sequence of the mutant K8-S142L is SEQ No.6, and its amino acid sequence is SEQ No.15.

一株铜绿假单胞菌噬菌体K8突变株K8-L189R,所述突变株K8-L189R能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075发生突变L189R,所述突变株K8-L189R的核苷酸序列为SEQ No.7,其氨基酸序列如为SEQ No.16。A Pseudomonas aeruginosa phage K8 mutant strain K8-L189R, said mutant strain K8-L189R is capable of infecting lipopolysaccharide O-antigen-deficient host cells, and its sequence is a mutation L189R in the hypothetical protein GP075 as described above, so The nucleotide sequence of the mutant K8-L189R is SEQ No.7, and its amino acid sequence is, for example, SEQ No.16.

一株铜绿假单胞菌噬菌体K8突变株K8-P197L,所述突变株K8-P197L能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075发生突变P197L,所述突变株K8-P197L的核苷酸序列为SEQ No.8,其氨基酸序列为SEQ No.17。A Pseudomonas aeruginosa bacteriophage K8 mutant strain K8-P197L, said mutant strain K8-P197L can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is mutated P197L in the above-mentioned hypothetical protein GP075, so The nucleotide sequence of the mutant K8-P197L is SEQ No.8, and its amino acid sequence is SEQ No.17.

一株铜绿假单胞菌噬菌体K8突变株K8-T239A,所述突变株K8-T239A能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075发生突变T239A,所述突变株K8-T239A的核苷酸序列为SEQ No.9,其氨基酸序列为SEQ No.18。A Pseudomonas aeruginosa phage K8 mutant strain K8-T239A, said mutant strain K8-T239A can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is the mutation T239A in the above-mentioned putative protein GP075, so The nucleotide sequence of the mutant K8-T239A is SEQ No.9, and its amino acid sequence is SEQ No.18.

一株铜绿假单胞菌噬菌体K8突变株K8-X,所述突变株K8-X能够感染脂多糖O-抗原缺陷型宿主细胞,GP075未发生突变。A Pseudomonas aeruginosa phage K8 mutant strain K8-X, the mutant strain K8-X can infect lipopolysaccharide O-antigen-deficient host cells, and GP075 has no mutation.

如上所述的铜绿假单胞菌噬菌体K8突变株K8-X在铜绿假单胞菌O-抗原缺陷型菌株的生长抑制方面中、或在铜绿假单胞菌自发突变的抑制方面中的应用。Use of the Pseudomonas aeruginosa bacteriophage K8 mutant strain K8-X as described above in the growth inhibition of Pseudomonas aeruginosa O-antigen-deficient strains, or in the inhibition of spontaneous mutations in Pseudomonas aeruginosa.

本发明取得的优点和积极效果为:Advantage and positive effect that the present invention obtains are:

1、本发明研究过程中发现,噬菌体K8突变群体中包含多种GP075突变型噬菌体,分离得到的噬菌体K8突变株主要包括K8-D7,K8-E126K,K8-S142L,K8-L189R,K8-P197L,K8-T239A,另外在研究GP075突变多样性过程中,还发现了比例较高的两种突变蛋白GP075-14,GP075-21。以上噬菌体中假定蛋白GP075发生突变,突变后的蛋白具有结构蛋白的功能,该类噬菌体突变株在原识别脂多糖的基础上,增加了额外的受体识别蛋白,可识别脂多糖O-抗原缺陷型宿主细胞或者只含有核心寡糖结构(core oligosaccharides)的宿主细胞,同时具有更宽的宿主范围、更强的裂解及吸附宿主细胞的能力,有望应用于噬菌体制剂,防治铜绿假单胞菌引起的各种感染。1. During the research of the present invention, it was found that the phage K8 mutant population contained a variety of GP075 mutant phages, and the isolated phage K8 mutant strains mainly included K8-D7, K8-E126K, K8-S142L, K8-L189R, K8-P197L , K8-T239A, and in the process of studying the diversity of GP075 mutations, two mutant proteins, GP075-14 and GP075-21, were found with a relatively high proportion. The putative protein GP075 in the above phages has a mutation, and the mutated protein has the function of a structural protein. On the basis of the original recognition of lipopolysaccharide, this type of phage mutant strain has added an additional receptor recognition protein, which can recognize lipopolysaccharide O-antigen-deficient Host cells or host cells containing only core oligosaccharides have a wider host range, stronger ability to lyse and adsorb host cells, and are expected to be used in phage preparations to prevent and treat Pseudomonas aeruginosa. Various infections.

2、本发明中分离得到的K8突变株能够识别宿主细胞上新的受体核心寡糖,同时保留原对原始受体O-抗原的识别,具有双重受体的识别能力,大大提高了对铜绿假单胞菌的杀菌能力,具有对铜绿假单胞菌自发突变的抑制能力,可以应用在噬菌体制剂的开发及应用领域,解决耐受型铜绿假单胞菌引起的感染问题。2. The K8 mutant strain isolated in the present invention can recognize the new receptor core oligosaccharide on the host cell, while retaining the original recognition of the original receptor O-antigen, has dual receptor recognition ability, and greatly improves the recognition of aeruginosa. The bactericidal ability of Pseudomonas has the ability to inhibit the spontaneous mutation of Pseudomonas aeruginosa, and can be used in the development and application of phage preparations to solve the infection problem caused by resistant Pseudomonas aeruginosa.

3、本发明中挖掘出噬菌体K8假定蛋白GP075突变体的新功能,经本研究该类蛋白突变体的功能被重新定义,在噬菌体感染宿主细胞过程中发挥重要作用。含有该类GP075突变体的噬菌体,强杀菌活性,可作为铜绿假单胞菌的一种噬菌体制剂,指导临床上铜绿假单胞菌感染用药,达到治疗铜绿假单胞菌感染的效果。3. In the present invention, the new function of the phage K8 hypothetical protein GP075 mutant is excavated, and the function of this kind of protein mutant is redefined through this study, and it plays an important role in the process of phage infection of host cells. The bacteriophage containing the GP075 mutant has strong bactericidal activity, and can be used as a phage preparation for Pseudomonas aeruginosa to guide clinical medication for Pseudomonas aeruginosa infection and achieve the effect of treating Pseudomonas aeruginosa infection.

4、本发明中出发噬菌体K8遗传背景清晰,在此基础上力求寻找新的具有识别O-抗原缺陷型的突变噬菌体,使后续研究更具科学性。使用O-抗原缺陷型宿主细胞为指示菌分离得到噬菌体K8突变株,研究更加具有目的性。4. In the present invention, the genetic background of bacteriophage K8 is clear, and on this basis, strive to find a new mutant phage with O-antigen-deficient recognition, so that the follow-up research will be more scientific. Using O-antigen-deficient host cells as indicator bacteria to isolate phage K8 mutant strains, the research is more purposeful.

5、本发明提供一类假定蛋白GP075突变体功能与噬菌体感染相关,该类突变体是噬菌体识别宿主细胞核心寡糖的重要结构蛋白;本发明提供多株广谱的铜绿假单胞菌噬菌体,感染脂多糖O-抗原缺陷型或者只含有核心寡糖的宿主细胞。5. The present invention provides a class of hypothetical protein GP075 mutants whose functions are related to phage infection. This type of mutants is an important structural protein for phages to recognize the core oligosaccharides of host cells; the present invention provides multiple strains of broad-spectrum Pseudomonas aeruginosa phages, Infect host cells deficient in LPS O-antigen or containing only core oligosaccharides.

6、本发明的意义在于:近年来,铜绿假单胞菌已经成为医院感染疾病的主要致病菌株,但在使用抗生素治疗的过程中,铜绿假单胞菌逐渐对抗生素产生抗性,并进化出多重耐药性。为了更好地治疗铜绿假单胞菌引起的感染,科学家积极发展新型抗生素的同时,不断寻找抗生素替代品。噬菌体作为细菌的克星,能识别并杀死细菌对细菌造成的感染具有良好的治疗作用。在噬菌体K8及其噬菌体突变株全基因组中所有已知功能的蛋白中未发现毒力因子,这就为以后的噬菌体疗法奠定了良好的基础,未来噬菌体制剂使用过程中提供安全保障。6. The significance of the present invention is that in recent years, Pseudomonas aeruginosa has become the main pathogenic strain of hospital-acquired diseases, but in the process of using antibiotics for treatment, Pseudomonas aeruginosa gradually develops resistance to antibiotics and evolves multidrug resistance. In order to better treat the infection caused by Pseudomonas aeruginosa, while actively developing new antibiotics, scientists are constantly looking for alternatives to antibiotics. As the killer of bacteria, phages can recognize and kill bacteria and have a good therapeutic effect on infections caused by bacteria. No virulence factors were found in all the proteins with known functions in the entire genome of phage K8 and its phage mutant strains, which laid a good foundation for future phage therapy and provided safety guarantees during the use of phage preparations in the future.

7、本发明以铜绿假单胞菌噬菌体K8为出发噬菌体,前期研究证实野生型铜绿假单胞菌噬菌体K8识别受体为脂多糖O-抗原,在宿主细胞O-抗原缺失的情况下,噬菌体K8无法感染该宿主细胞,且在现有阶段对GP075的功能没有任何研究。分离得到多株K8自发突变株,其最大的共同特点是能够感染脂多糖O-抗原缺陷型宿主细胞,并对噬菌体K8-T239A全基因组测序,分析发现该噬菌体中只有蛋白GP075的第239位由苏氨酸T突变为丙氨酸A,同时对其它噬菌体的GP075进行测序发现,该基因发生不同的突变。本发明中以此为出发点,研究GP075的新功能及对铜绿假单胞菌生长抑制的应用。7. The present invention uses Pseudomonas aeruginosa phage K8 as the starting phage. Previous studies have confirmed that the recognition receptor of wild-type Pseudomonas aeruginosa phage K8 is lipopolysaccharide O-antigen. In the absence of host cell O-antigen, phage K8 cannot infect this host cell, and there is no research on the function of GP075 at the present stage. A number of spontaneous mutant strains of K8 were isolated, the most common feature of which is the ability to infect lipopolysaccharide O-antigen-deficient host cells, and the whole genome of phage K8-T239A was sequenced, and it was found that only the 239th position of protein GP075 in this phage was composed of Threonine T was mutated to alanine A, and the GP075 of other phages was sequenced and found that the gene had different mutations. In the present invention, this is used as a starting point to study the new function of GP075 and its application in inhibiting the growth of Pseudomonas aeruginosa.

附图说明Description of drawings

图1为本发明中噬菌体K8突变株与宿主细胞相互作用的基本性质分析图;其中,A为噬菌体K8及突变株K8-T239A宿主范围图,B为PAK及突变株吸附率图,C为宿主菌LPS结构图;Fig. 1 is the basic property analysis diagram of the interaction between phage K8 mutant strain and host cell in the present invention; Wherein, A is the host range diagram of bacteriophage K8 and mutant strain K8-T239A, B is the adsorption rate diagram of PAK and mutant strain, and C is the host Bacterial LPS structure diagram;

图2为本发明中噬菌体K8突变株突变基因鉴定图;Fig. 2 is the mutated gene identification figure of bacteriophage K8 mutant strain among the present invention;

图3为本发明中LC-MS检测K8噬菌体突变株的颗粒功能蛋白分析图;Fig. 3 is the granule functional protein analysis diagram of LC-MS detection K8 phage mutant strain among the present invention;

图4为本发明中噬菌体K8突变株的抑菌杀菌能力应用图;其中,A为噬菌体K8及突变株K8-T239A抑制PAK生长曲线图,B为噬菌体K8及突变株K8-T239A抑制SK75生长曲线图,C为PAK耐受噬菌体K8及突变株K8-T239A筛选图,D为SK75耐受噬菌体K8-T239A筛选图,E为宿主菌株耐受噬菌体K8及突变株K8-T239A自发突变率图。Fig. 4 is the antibacterial and bactericidal ability application figure of bacteriophage K8 mutant strain in the present invention; Wherein, A is phage K8 and mutant strain K8-T239A inhibition PAK growth curve figure, B is phage K8 and mutant strain K8-T239A inhibition SK75 growth curve Figure C is the screening map of PAK-resistant phage K8 and mutant strain K8-T239A, D is the screening map of SK75-resistant phage K8-T239A, and E is the spontaneous mutation rate map of host strains resistant to phage K8 and mutant strain K8-T239A.

具体实施方式Detailed ways

下面详细叙述本发明的实施例,需要说明的是,本实施例是叙述性的,不是限定性的,不能以此限定本发明的保护范围。The embodiments of the present invention will be described in detail below. It should be noted that the embodiments are illustrative, not restrictive, and cannot limit the protection scope of the present invention.

本发明中所使用的原料,如无特殊说明,均为常规的市售产品;本发明中所使用的方法,如无特殊说明,均为本领域的常规方法。The raw materials used in the present invention, unless otherwise specified, are conventional commercially available products; the methods used in the present invention, unless otherwise specified, are conventional methods in the art.

一种铜绿假单胞菌噬菌体K8假定蛋白GP075,野生型GP075蛋白,其核苷酸序列为SEQ No.1,其氨基酸序列为SEQ No.10。A hypothetical protein GP075 of Pseudomonas aeruginosa phage K8, wild-type GP075 protein, its nucleotide sequence is SEQ No.1, and its amino acid sequence is SEQ No.10.

一株铜绿假单胞菌噬菌体K8突变株K8-D7,所述突变株K8-D7能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075的氨基酸105、106之间插入1个与106至112完全重复的氨基酸序列;所述突变株K8-D7的核苷酸序列为SEQ No.2,其氨基酸序列为SEQ No.11。A Pseudomonas aeruginosa phage K8 mutant strain K8-D7, said mutant strain K8-D7 can infect lipopolysaccharide O-antigen-deficient host cells, its sequence is amino acid 105, 106 in the hypothetical protein GP075 as described above An amino acid sequence that completely repeats 106 to 112 is inserted between them; the nucleotide sequence of the mutant K8-D7 is SEQ No.2, and its amino acid sequence is SEQ No.11.

一种含有如上所述的假定蛋白GP075的突变蛋白GP075-14,其序列是在所述GP075氨基酸105、106之间插入2个与106至112完全重复的氨基酸序列,所述突变蛋白GP075-14的核苷酸序列为SEQ No.3,其氨基酸序列为SEQ No.12。A mutant protein GP075-14 containing the hypothetical protein GP075 as described above, its sequence is to insert two completely repeated amino acid sequences from 106 to 112 between amino acids 105 and 106 of the GP075, and the mutant protein GP075-14 The nucleotide sequence is SEQ No.3, and the amino acid sequence is SEQ No.12.

一种含有如权利要求1所述的假定蛋白GP075的突变蛋白GP075-21,其序列是GP075氨基酸105、106之间插入3个与106至102完全重复的氨基酸序列,所述突变蛋白GP075-21的核苷酸序列为SEQ No.4,其氨基酸序列为SEQ No.13。A mutant protein GP075-21 containing the hypothetical protein GP075 as claimed in claim 1, its sequence is GP075 amino acid 105, 106 inserting 3 completely repeated amino acid sequences from 106 to 102, the mutant protein GP075-21 The nucleotide sequence is SEQ No.4, and the amino acid sequence is SEQ No.13.

一株铜绿假单胞菌噬菌体K8突变株K8-E126K,所述突变株K8-E126K能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075发生突变E126K,所述突变株K8-E126K的核苷酸序列为SEQ No.5,其氨基酸序列为SEQ No.14。A Pseudomonas aeruginosa phage K8 mutant strain K8-E126K, said mutant strain K8-E126K can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is the mutation E126K in the hypothetical protein GP075 as described above, so The nucleotide sequence of the mutant K8-E126K is SEQ No.5, and its amino acid sequence is SEQ No.14.

一株铜绿假单胞菌噬菌体K8突变株K8-S142L,所述突变株K8-S142L能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075发生突变S142L,所述突变株K8-S142L的核苷酸序列为SEQ No.6,其氨基酸序列为SEQ No.15。A Pseudomonas aeruginosa phage K8 mutant strain K8-S142L, said mutant strain K8-S142L can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is the mutation S142L in the hypothetical protein GP075 as described above, so The nucleotide sequence of the mutant K8-S142L is SEQ No.6, and its amino acid sequence is SEQ No.15.

一株铜绿假单胞菌噬菌体K8突变株K8-L189R,所述突变株K8-L189R能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075发生突变L189R,所述突变株K8-L189R的核苷酸序列为SEQ No.7,其氨基酸序列如为SEQ No.16。A Pseudomonas aeruginosa phage K8 mutant strain K8-L189R, said mutant strain K8-L189R is capable of infecting lipopolysaccharide O-antigen-deficient host cells, and its sequence is a mutation L189R in the hypothetical protein GP075 as described above, so The nucleotide sequence of the mutant K8-L189R is SEQ No.7, and its amino acid sequence is, for example, SEQ No.16.

一株铜绿假单胞菌噬菌体K8突变株K8-P197L,所述突变株K8-P197L能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075发生突变P197L,所述突变株K8-P197L的核苷酸序列为SEQ No.8,其氨基酸序列为SEQ No.17。A Pseudomonas aeruginosa bacteriophage K8 mutant strain K8-P197L, said mutant strain K8-P197L can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is mutated P197L in the above-mentioned hypothetical protein GP075, so The nucleotide sequence of the mutant K8-P197L is SEQ No.8, and its amino acid sequence is SEQ No.17.

一株铜绿假单胞菌噬菌体K8突变株K8-T239A,所述突变株K8-T239A能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如上所述的假定蛋白GP075发生突变T239A,所述突变株K8-T239A的核苷酸序列为SEQ No.9,其氨基酸序列为SEQ No.18。A Pseudomonas aeruginosa phage K8 mutant strain K8-T239A, said mutant strain K8-T239A can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is the mutation T239A in the above-mentioned putative protein GP075, so The nucleotide sequence of the mutant K8-T239A is SEQ No.9, and its amino acid sequence is SEQ No.18.

一株铜绿假单胞菌噬菌体K8突变株K8-X,所述突变株K8-X能够感染脂多糖O-抗原缺陷型宿主细胞,GP075未发生突变。A Pseudomonas aeruginosa phage K8 mutant strain K8-X, the mutant strain K8-X can infect lipopolysaccharide O-antigen-deficient host cells, and GP075 has no mutation.

如上所述的铜绿假单胞菌噬菌体K8突变株K8-X在铜绿假单胞菌O-抗原缺陷型菌株的生长抑制方面中、或在铜绿假单胞菌自发突变的抑制方面中的应用。Use of the Pseudomonas aeruginosa bacteriophage K8 mutant strain K8-X as described above in the growth inhibition of Pseudomonas aeruginosa O-antigen-deficient strains, or in the inhibition of spontaneous mutations in Pseudomonas aeruginosa.

本发明主要分离了多株铜绿假单胞菌噬菌体K8突变株,测定该类噬菌体宿主范围,通过全基因组测序及GP075体外扩增子测序,鉴定突变噬菌体的具体突变位点,并对该类噬菌体的实际应用价值即抑菌杀菌能力进行评估。The present invention mainly isolates a plurality of Pseudomonas aeruginosa bacteriophage K8 mutant strains, determines the host range of this type of bacteriophage, and identifies the specific mutation site of the mutant phage through whole genome sequencing and GP075 in vitro amplicon sequencing, and the specific mutation site of the type of bacteriophage The practical application value is to evaluate the antibacterial and bactericidal ability.

本发明铜绿假单胞菌噬菌体K8突变株的具体分离鉴定步骤可以如下:The specific isolation and identification steps of Pseudomonas aeruginosa phage K8 mutant strain of the present invention can be as follows:

(1)构建铜绿假单胞菌噬菌体K8自发突变文库;(1) Construction of a spontaneous mutation library of Pseudomonas aeruginosa phage K8;

(2)采用脂多糖O-抗原缺陷型宿主细胞分离得到噬菌体K8突变株;(2) using lipopolysaccharide O-antigen-deficient host cells to isolate and obtain a phage K8 mutant;

(3)噬菌体基因组提取,GP075基因体外扩增;(3) Phage genome extraction, GP075 gene amplification in vitro;

(4)噬菌体全基因组测序及GP075扩增子测序鉴定;(4) Phage whole genome sequencing and GP075 amplicon sequencing identification;

(5)噬菌体K8突变株作用于O-抗原缺陷型宿主细胞;(5) The bacteriophage K8 mutant acts on O-antigen-deficient host cells;

(6)噬菌体K8突变株对宿主细胞自发突变的抑制作用。(6) Inhibitory effect of phage K8 mutant strain on spontaneous mutation of host cells.

具体地,本发明相关材料步骤如下:Specifically, the relevant material steps of the present invention are as follows:

一、实验材料1. Experimental materials

实验所用菌株及噬菌体,具体见表1所示。The strains and phages used in the experiment are shown in Table 1.

表1 本发明所用菌株及噬菌体Table 1 Bacterial strains and phages used in the present invention

二、噬菌体K8突变株的分离2. Isolation of bacteriophage K8 mutant strain

噬菌体K8的突变株亚群,分别以受体缺陷型铜绿假单胞菌SK2(wbpV)、SK15(wbpO)、SK45(wbpR)为指示菌200μL(OD600=0.6)与100μLK8噬菌体(109)亚群,利用双层平板法,分离能感染O-抗原缺陷型菌株的突变噬菌体。双层平板于37℃,静置培养4h,待有清晰的噬菌斑出现,此时出现的噬菌斑即为发生突变噬菌体形成的,挑取单个噬菌斑,于新鲜LB培养液中,纯化三次,得到大小均一、透明程度相同的突变噬菌体,此时噬菌体即为K8突变株。Subgroups of mutant strains of bacteriophage K8, using receptor-deficient Pseudomonas aeruginosa SK2 (wbpV), SK15 (wbpO), SK45 (wbpR) as indicator bacteria 200 μL (OD 600 =0.6) and 100 μL K8 phage (10 9 ) Subpopulations, mutant phage capable of infecting O-antigen-deficient strains were isolated using the double-layer plate method. Incubate the double-layer plate at 37°C for 4 hours until clear plaques appear. The plaques that appear at this time are formed by mutated phages. Pick a single plaque and place it in fresh LB culture medium. After purification for three times, mutant phages with uniform size and the same degree of transparency were obtained. At this time, the phage was the K8 mutant strain.

三、噬菌体突变株宿主范围分析3. Host range analysis of phage mutant strains

吸取200μL对数期指示菌(OD600=0.6)与3mL融化的软琼脂(0.5%,质量浓度m/v)混匀,迅速倒入已凝固的LB固体(琼脂的含量为1.5%,质量浓度m/v)培养基上层,室温静置15min左右,待软琼脂晾干后,1μL稀释100倍噬菌体裂解液(108pfu/mL),垂直点于双层平板的软琼脂层上,37℃,静置培养4h,观察有无透明噬菌圈形成。Take 200 μL logarithmic phase indicator bacteria (OD 600 =0.6) and mix with 3mL melted soft agar (0.5%, mass concentration m/v), and quickly pour into solidified LB solid (the content of agar is 1.5%, mass concentration m/v) The upper layer of the culture medium, let stand at room temperature for about 15 minutes, after the soft agar is dry, 1 μL of 100-fold diluted phage lysate (10 8 pfu/mL), vertically spot on the soft agar layer of the double-layer plate, 37°C , Static culture for 4h, observe whether there is a transparent phage circle formation.

四、噬菌体K8突变株全基因组测序4. Whole genome sequencing of bacteriophage K8 mutant strain

提取噬菌体K8-T239A基因组DNA,用核酸分析仪分析噬菌体DNA纯度和浓度,符合三项指标即DNA样品浓度不低于10ng/uL,总量不低于5ug;OD260/OD280应在1.8至2.0之间;OD260/OD230大于1.8。将符合指标的样品送去测序公司。Extract the genomic DNA of bacteriophage K8-T239A, analyze the purity and concentration of phage DNA with a nucleic acid analyzer, and meet the three indicators, that is, the concentration of DNA samples is not less than 10ng/uL, and the total amount is not less than 5ug; OD260/OD280 should be between 1.8 and 2.0 Between; OD260/OD230 greater than 1.8. Send the samples that meet the indicators to the sequencing company.

噬菌体全基因DNA测序使用测序平台Illumina Hiseq 2500。对测序结果进行图像识别(Base calling),初步质量分析,使用二代测序数据质量过滤软件Trimmomatic(v0.30)去除低质量及接头序列等,对预处理后的读取映射(reads mapping)用软件Velvet_v1.2.10进行组装拼接。使用在线软件NCBI(https://www.ncbi.nlm.nih.gov/)并选择BLAST中的Align two sequences与噬菌体K8全基因组序列进行比对,寻找噬菌体突变株发生的的突变。Phage whole-genome DNA sequencing was performed using the sequencing platform Illumina Hiseq 2500. Perform image recognition (Base calling) and preliminary quality analysis on the sequencing results, use the next-generation sequencing data quality filtering software Trimmomatic (v0.30) to remove low-quality and linker sequences, etc., and use the preprocessed read mapping (reads mapping) The software Velvet_v1.2.10 was used for assembly and splicing. Use the online software NCBI ( https://www.ncbi.nlm.nih.gov/ ) and select Align two sequences in BLAST to compare with the whole genome sequence of phage K8 to find the mutations in the phage mutant strain.

五、基因gp075扩增子测序5. Gene gp075 amplicon sequencing

分别以提取的噬菌体突变株为模板,使用引物GP075-F:5’-ATATCACCGTAACTACGGT-3’,GP075-R:5’-GTTGACTGTAATCAGCCATT-3’,体外扩增基因gp075片段,进行sanger测序,将测序结果中的碱基序列,先用软件Chromas version2.4观察测序结果的可靠性(无套峰等现象),测序可靠的序列使用软件Primer Premier 5.exe中TranslationsProtein,将碱基序列翻译成氨基酸序列,使用在线软件NCBI(https:// www.ncbi.nlm.nih.gov/)Protein BLAST中的Align two sequences分别与蛋白GP075氨基酸序列进行比对,用于分析单个突变噬菌体中假定蛋白GP075的变化。Using the extracted phage mutants as templates, primers GP075-F: 5'-ATATCACCGTAACTACGGT-3', GP075-R: 5'-GTTGACTGTAATCAGCCATT-3' were used to amplify the gene gp075 fragment in vitro, and sanger sequencing was performed, and the sequencing results were For the base sequence in the sequence, first use the software Chromas version2.4 to observe the reliability of the sequencing results (no overlapping peaks, etc.), and use the TranslationsProtein in the software Primer Premier 5.exe to sequence the reliable sequence to translate the base sequence into an amino acid sequence. Align two sequences in the online software NCBI ( https://www.ncbi.nlm.nih.gov/ ) Protein BLAST were compared with the amino acid sequence of the protein GP075 to analyze the changes of the putative protein GP075 in a single mutant phage.

六、吸附率6. Adsorption rate

过夜培养的宿主菌,按3%转接量接种于5mL液体LB培养基中,培养至对数期(OD600=0.6),吸取650μL宿主菌与650μL(MOI=0.001)噬菌体,混合均匀,静置吸附1min,立即吸取100μL,此时记为噬菌体总感染中心数,后13000rpm,离心30s,弃上清,加入1200μL液体LB混合均匀,再次吸取100μL,此时记为第1次洗涤后噬菌体感染中心数,按照上述洗涤方法,每一分钟洗涤一次,共洗涤6次,每次三个平行,利用双层平板法,测定每次洗涤后剩余吸附噬菌体的感染中心数。噬菌体吸附率的计算公式如下所示:The host bacteria cultivated overnight were inoculated into 5 mL liquid LB medium according to the transfer amount of 3%, cultivated to logarithmic phase (OD 600 =0.6), 650 μL host bacteria and 650 μL (MOI=0.001) phage were drawn, mixed evenly, and statically Put it in the adsorption for 1 min, immediately draw 100 μL, and record it as the total number of phage infection centers at this time, then centrifuge at 13,000 rpm for 30 s, discard the supernatant, add 1200 μL liquid LB to mix well, absorb 100 μL again, and record it as the phage infection after the first washing For the number of centers, according to the above-mentioned washing method, wash once every minute, wash 6 times in total, and use the double-layer plate method to measure the number of infected centers remaining after each washing by using the double-layer plate method. The formula for calculating the phage adsorption rate is as follows:

A—噬菌体的吸附率(%);A—the adsorption rate of phage (%);

S—离心后上清液中噬菌体的滴度(pfu/mL);S—the titer (pfu/mL) of phage in the supernatant after centrifugation;

C—没有加入细菌的对照组中噬菌体的滴度(pfu/mL);C—the titer (pfu/mL) of phage in the control group that does not add bacterium;

七、菌株LPS(Lipopolysaccharides)的提取7. Extraction of strain LPS (Lipopolysaccharides)

参照实验方法(Merino S,Gonzalez V,Tomás J M.The Polymerization ofAeromonas hydrophila AH-3O-Antigen LPS:ConcertedAction ofWecP and Wzy[J].PlosOne,2015,10(7):e0131905.)操作如下:Refer to the experimental method (Merino S, Gonzalez V, Tomás J M. The Polymerization of Aeromonas hydrophila AH-3O-Antigen LPS: Concerted Action of WecP and Wzy [J]. PlosOne, 2015, 10(7): e0131905.) The operation is as follows:

(1)菌株的培养:分别挑取纯化后单菌落,无菌环境下,接种于5mL LB液体培养基中,37℃,220rpm,过夜培养,次日3%转接量转接至100mL LB液体培养基中,培养至对数期(OD600=0.6),4℃,7000rpm,离心10min,弃上清,收集菌体,用5mL蒸馏水,重悬菌体,混合均匀后,待用。(1) Cultivation of strains: pick and purify a single colony, inoculate in 5mL LB liquid medium in a sterile environment, 37°C, 220rpm, culture overnight, transfer 3% transfer amount to 100mL LB liquid the next day In culture medium, culture to logarithmic phase (OD600=0.6), 4°C, 7000rpm, centrifuge for 10min, discard supernatant, collect bacterial cells, resuspend bacterial cells with 5mL distilled water, mix well, and set aside.

(2)热酚水法:向上述重悬菌液中加入等体积的水饱和酚,68℃、120rpm,水浴摇床,作用30min,后冰浴30min,4℃,7000rpm,离心10min,收集水相,重复上述操作两次。(2) Hot phenol water method: add an equal volume of water-saturated phenol to the above-mentioned resuspended bacteria liquid, 68°C, 120rpm, water bath shaker, act for 30min, then ice bath for 30min, 4°C, 7000rpm, centrifuge for 10min, collect water Phase, repeat the above operation twice.

(3)透析:将上述收集的水相吸取至透析袋中,搅拌蒸馏水进行透析,每4h换一次蒸馏水,透析20h,至完全将水饱和酚透析除去。(3) Dialysis: absorb the above-mentioned collected water phase into a dialysis bag, stir the distilled water for dialysis, change the distilled water every 4 hours, and dialyze for 20 hours until the water-saturated phenol is completely removed by dialysis.

(4)浓缩水相:用30%的PEG8000对透析袋中的水相进行浓缩,30-60min左右,至浓缩液体积约为1mL。(4) Concentrate the aqueous phase: Concentrate the aqueous phase in the dialysis bag with 30% PEG8000 for about 30-60 minutes until the volume of the concentrated solution is about 1 mL.

(5)乙醇沉降:将浓缩液吸出,加入2倍体积的无水乙醇,1/10体积的醋酸钠溶液,于-20℃,过夜沉降。(5) Ethanol precipitation: suck out the concentrated solution, add 2 times the volume of absolute ethanol and 1/10 volume of sodium acetate solution, and settle overnight at -20°C.

(6)LPS的洗涤:沉降后12000rpm,离心10min,弃上清,即得到LPS。后用75%乙醇洗涤两次,弃上清,尽量将多余液体吸干,室温放置30min,待LPS样品晾干后,加入适量无菌水,-20℃保存。(6) Washing of LPS: After settling, centrifuge at 12000 rpm for 10 min, discard the supernatant, and obtain LPS. Finally, wash twice with 75% ethanol, discard the supernatant, blot the excess liquid as much as possible, and place it at room temperature for 30 minutes. After the LPS sample is dried, add an appropriate amount of sterile water and store at -20°C.

八、LC-MS检测噬菌体蛋白颗粒Eight, LC-MS detection of phage protein particles

参照实验方法描述(Yang H,Liang L,Lin S,&Jia S(2010)Isolation andcharacterization of a virulent bacteriophage AB1 of Acinetobacterbaumannii.BMC microbiology 10:131.),使用SDS-PAGE对噬菌体颗粒蛋白进行分离,得到分离后的噬菌体颗粒蛋白胶,用特异性的酶解方法将蛋白质切成小的片段,然后用质谱检测各产物肽的相对分子质量,将所得的蛋白酶解肽段质量数在相应的数据库中检索,寻找与之匹配的蛋白片段。Referring to the description of the experimental method (Yang H, Liang L, Lin S, & Jia S (2010) Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacterbaumannii. BMC microbiology 10:131.), use SDS-PAGE to separate the phage particle protein and obtain the isolated After the final phage particle protein glue, the protein is cut into small fragments by specific enzymatic hydrolysis method, and then the relative molecular mass of each product peptide is detected by mass spectrometry, and the mass number of the obtained proteolysis peptide is retrieved in the corresponding database. Find matching protein fragments.

分离后的SDS-PAGE按照如下质谱检测方法(Hellman J.Polyacrylamidelamination enables mass spectrometry compatible staining and in-gel digestionof proteins separated by agarose IEF[J].Proteomics,2007,7(19):3441-4.),进行结构蛋白检测,每个蛋白组样品进行胶内酶切,约按胰蛋白酶:蛋白=1:40进行酶解;The separated SDS-PAGE was detected according to the following mass spectrometry method (Hellman J. Polyacrylamide enables mass spectrometry compatible staining and in-gel digestion of proteins separated by agarose IEF [J]. Proteomics, 2007, 7(19): 3441-4.), For structural protein detection, each protein group sample was subjected to in-gel digestion, and the enzymatic digestion was performed approximately according to trypsin: protein = 1:40;

每个1D胶泳道分成4个部分,分别进行酶切。Each 1D gel lane was divided into 4 parts, which were digested separately.

LC-MS检测分析LC-MS detection analysis

(1)液相条件:A相:water(0.1%甲酸),B相:Acetonitrile(0.1%甲酸),流速300nL/min;梯度:0-5min,2%B;5-80min,2%-25%B;85-100min,25%-35%B;100-105min,35%-95%;105-120min,95%B;C18柱。(1) Liquid phase conditions: Phase A: water (0.1% formic acid), phase B: Acetonitrile (0.1% formic acid), flow rate 300nL/min; gradient: 0-5min, 2% B; 5-80min, 2% -25 %B; 85-100min, 25%-35%B; 100-105min, 35%-95%; 105-120min, 95%B; C18 column.

(2)质谱条件:电压2.2kv,MS扫描范围350-1550m/z,检测器orbitrap;MS2采用HCD进行碎裂,利用ion trap进行检测。(2) Mass spectrometry conditions: voltage 2.2kv, MS scanning range 350-1550m/z, detector orbitrap; MS2 is fragmented by HCD and detected by ion trap.

LC-MS数据分析LC-MS data analysis

(3)采用mascot v2.5软件(Matrixscience,Boston,USA)搜索提供的数据库进行蛋白鉴定,利用MaxQuant软件进行比较分析。(3) Mascot v2.5 software (Matrixscience, Boston, USA) was used to search the provided database for protein identification, and MaxQuant software was used for comparative analysis.

(4)所使用的液质联用高分辨质谱仪(LC-MS)信息:Obitrap Fusion(Thermofisher,San Jose,USA)。(4) Information of the used high-resolution mass spectrometer (LC-MS): Obitrap Fusion (Thermofisher, San Jose, USA).

数据筛选原则:Data filtering principles:

(1)pep_expect值≤0.01的较为可信(1) pep_expect value ≤ 0.01 is more credible

(2)所鉴定的蛋白要求有2个以上独立的特征片段(2) The identified protein requires more than two independent characteristic fragments

(3)其他数据作为参考。(3) Other data are for reference.

九、噬菌体抑菌实验应用9. Application of phage antibacterial experiment

噬菌体抑菌曲线实验方法:过夜培养的宿主菌,按3%转接量接种于96孔细菌培养皿中,加入稀释后的噬菌体(MOI=0.001),对照组不加噬菌体(MOI=0),每组平行三次。37℃,160rpm培养,每隔0.5h利用多功能酶标仪测定OD600,至5.5h,测定噬菌体存在与否情况下,宿主菌的生长速率。Phage inhibition curve test method: the host bacteria cultivated overnight were inoculated in 96-well bacterial culture dishes according to 3% transfer amount, and the diluted phage (MOI=0.001) was added, and the control group did not add phage (MOI=0). Each group was repeated three times. Cultivate at 37°C and 160 rpm, measure OD 600 every 0.5 h with a multi-functional microplate reader, and measure the growth rate of the host bacteria in the presence or absence of phage until 5.5 h.

1.铜绿假单胞菌耐受噬菌体自发突变测定1. Pseudomonas aeruginosa resistant phage spontaneous mutation assay

采用返浊法测定噬菌体作用下,野生型铜绿假单胞菌株耐受噬菌体的自发突变频率(张克斌,陈志瑾,金晓琳,等.铜绿假单胞菌噬菌体的分离鉴定及耐噬菌体突变频率测定关[J].微生物学通报,2002,29(1):40-45.)。将过夜培养的宿主菌PAK、RO2-15进行梯度稀释,至10-10。于10-6、10-7、10-8稀释管中各取样100μL,用菌落计数法测出细菌数/mL。同时,向每个稀释度管中加入噬菌体原液(1010pfu/mL)10μL,混匀,37℃振荡培养,4~6h后可见各管逐渐开始变清,表明细菌已裂解,继续培养至20h,可发现自高浓度菌液管开始逐渐返浊,直到第二天不再有新的返浊管出现为止。此时判读结果:能返浊的最低浓度管中所含细菌数的倒数,即为耐受突变的频率。每组实验做10个平行。The spontaneous mutation frequency of wild-type Pseudomonas aeruginosa strains resistant to phages was determined by the turbidity method (Zhang Kebin, Chen Zhijin, Jin Xiaolin, et al. Isolation and identification of Pseudomonas aeruginosa phages and determination of phage-resistant mutation frequencies[J] ]. Microbiology Bulletin, 2002, 29(1): 40-45.). The overnight cultured host bacteria PAK and RO2-15 were serially diluted to 10 −10 . Take 100 μL of samples from each of the 10 -6 , 10 -7 , and 10 -8 dilution tubes, and use the colony counting method to measure the number of bacteria/mL. At the same time, add 10 μL of phage stock solution (10 10 pfu/mL) to each dilution tube, mix well, and shake culture at 37°C. After 4-6 hours, it can be seen that each tube gradually becomes clear, indicating that the bacteria have been lysed, and continue to culture for 20 hours. , it can be found that the high-concentration bacterial solution tubes gradually return to turbidity until no new turbidity returns appear on the next day. Interpret the result at this time: the reciprocal of the number of bacteria contained in the lowest concentration tube that can return to turbidity is the frequency of tolerance mutations. 10 parallel experiments were performed for each group of experiments.

2.结果与讨论2. Results and Discussion

本发明中以O-抗原缺陷型宿主细胞分离得到多株噬菌体K8突变株,本发明以K8-T239A为典型代表,进行一下研究。In the present invention, multiple strains of bacteriophage K8 mutants are isolated from O-antigen-deficient host cells. In the present invention, K8-T239A is used as a typical representative for the following research.

(1)噬菌体K8突变株分离及基本性质测定(1) Isolation and determination of basic properties of phage K8 mutant strain

本发明中以O-抗原缺陷型宿主细胞分离得到多株噬菌体K8突变株,本发明以K8-T239A为典型代表,进行一下研究。铜绿假单胞菌PAK转座子Tn5G插入突变株SK98(ssg),SK75(wzy),SK2(wbpV),M21(galU),SK15(wbpO),P2-25(wapH),SK45(wbpR),spottingassay均耐受K8,其中SK75,SK2,SK15,SK45对噬菌体K8-T239A敏感形成噬菌斑透明圈,SK98,M21,P2-25对噬菌体K8-T239A耐受(图1A)。PAK及7株插入突变株与噬菌体K8、K8-T239A吸附能力结果中发现PAK,SK75,SK2,SK15,SK45对K8与K8-T239A的吸附能力存在显著差异,即K8-T239A的吸附能力比K8强,但所有突变株吸附能力均比PAK低(图1B)。In the present invention, multiple strains of bacteriophage K8 mutants are isolated from O-antigen-deficient host cells. In the present invention, K8-T239A is used as a typical representative for the following research. Pseudomonas aeruginosa PAK transposon Tn5G insertion mutants SK98(ssg), SK75(wzy), SK2(wbpV), M21(galU), SK15(wbpO), P2-25(wapH), SK45(wbpR), The spotting assays were all resistant to K8, among which SK75, SK2, SK15, and SK45 were sensitive to phage K8-T239A to form a plaque transparent circle, and SK98, M21, and P2-25 were resistant to phage K8-T239A (Figure 1A). According to the results of the adsorption capacity of PAK and 7 insertion mutants with phage K8 and K8-T239A, it was found that PAK, SK75, SK2, SK15, and SK45 had significant differences in the adsorption capacity of K8 and K8-T239A, that is, the adsorption capacity of K8-T239A was higher than that of K8 Strong, but all mutants had lower adsorption capacity than PAK (Fig. 1B).

菌株突变基因的表型分析发现,野生型PAK同时具有LPS OSA和Coreoligosaccharide,缺失基因分别为wzy,wbpV,wbpO,wbpR的突变菌株SK75,SK2,SK15,SK45,推测其基因型表现为LPS OSA缺失,由SK98,M21,P2-25插入缺失基因分别为ssg,galU,wapH推测,这三株细菌的LPS完全缺失(图1C)。Tricine-SDS-PAGE分析PAK和7株插入突变株的脂多糖成分,发现在对噬菌体K8-T239A敏感的菌株PAK,SK75,SK2,SK15,SK45中均存在LPSCore oligosaccharide,耐受噬菌体K8-T239A的SK98,M21,P2-25菌株脂多糖成分完全缺失(图1C)。Tricine-SDS-PAGE结果与之前基因型推测完全吻合,结合spotting assay结果,不难推测K8-T239A识别新受体为LPS Core oligosaccharide,但同时又保留对原受体LPSOSA的识别。The phenotype analysis of the mutant genes of the strains found that the wild-type PAK had both LPS OSA and Coreoligosaccharide, and the mutant strains SK75, SK2, SK15, and SK45 whose deletion genes were wzy, wbpV, wbpO, and wbpR were presumed to be LPS OSA deletions , SK98, M21, P2-25 indel genes were ssg, galU, wapH presumed that the LPS of these three bacterial strains were completely deleted (Fig. 1C). Tricine-SDS-PAGE analyzed the lipopolysaccharide components of PAK and 7 insertion mutant strains, and found that LPSCore oligosaccharides existed in the strains sensitive to phage K8-T239A, PAK, SK75, SK2, SK15, and SK45, and resistant to phage K8-T239A SK98, M21, and P2-25 strains completely lacked lipopolysaccharide components (Fig. 1C). The results of Tricine-SDS-PAGE were completely consistent with the previous genotype speculation. Combined with the results of spotting assay, it is not difficult to speculate that K8-T239A recognizes the new receptor as LPS Core oligosaccharide, but at the same time retains the recognition of the original receptor LPSOSA.

(2)噬菌体全基因组测序及扩增子测序分析(2) Phage Whole Genome Sequencing and Amplicon Sequencing Analysis

全基因组测序发现,噬菌体K8-T239A与K8相比,整个基因组序列上只有一处发生点突变,进一步分析发现该点突变出现在基因gp075碱基水平第715位由A→G(腺嘌呤突变为鸟嘌呤),氨基酸水平239位T→A(苏氨酸突变为丙氨酸),该蛋白注释为假定蛋白;同时对分离得到的其它噬菌体突变株的基因gp075进行扩增子测序,有25株GP075发生SVN(点突变,Single nucleotide site variation),突变发生在基因gp075上四个不同位置,氨基酸水平分析,E126K第126位由E谷氨酸突变为K赖氨酸(如序列14),S142L第142位由S丝氨酸突变为L亮氨酸(如序列15),L189R第189位由L亮氨酸突变为R精氨酸(如序列16),P197L第197位由P脯氨酸突变为L亮氨酸(如序列17);有11株GP075没有发生突变,推测突变发生在其它假定蛋白或结构蛋白;另外有一处插入重复序列CGGTGCTCCATGGTACTCGGT,位于基因gp075第314和315位之间,该21bp重复序列和基因gp075原始序列315至335的序列完全相同,更有趣的是该重复序列的开始和结束以及与之相邻的4个碱基序列均为CGGT(如核酸序列2),正是由于原始序列的这一特性,才使得插入位点位于314和315之间,但编码的氨基酸却没有发生任何移码突变,与GP075的第106至112有7个氨基酸的重复序列即GAPWY S V(如序列11),(图2)。Whole-genome sequencing found that compared with K8, phage K8-T239A had only one point mutation in the entire genome sequence. Further analysis found that the point mutation appeared at the 715th position of the gene gp075 base level from A→G (adenine was mutated to Guanine), amino acid level 239 T→A (threonine is mutated to alanine), this protein is annotated as a hypothetical protein; at the same time, amplicon sequencing was carried out on the gene gp075 of other isolated phage mutants, and 25 strains SVN (point mutation, Single nucleotide site variation) occurred in GP075. The mutation occurred at four different positions on the gene gp075. According to the amino acid level analysis, the 126th position of E126K was mutated from E glutamic acid to K lysine (such as sequence 14), S142L The 142nd position is mutated from S serine to L leucine (such as sequence 15), the 189th position of L189R is mutated from L leucine to R arginine (such as sequence 16), and the 197th position of P197L is mutated from P proline to L leucine (such as sequence 17); 11 strains of GP075 have no mutations, and it is speculated that the mutations occurred in other hypothetical proteins or structural proteins; in addition, there is an insertion repeat sequence CGGTGCTCCATGGTACTCGGT, located between the 314th and 315th positions of the gene gp075, the 21bp The repeat sequence is exactly the same as the original sequence 315 to 335 of the gene gp075. What is more interesting is that the beginning and end of the repeat sequence and the adjacent 4 base sequences are all CGGT (such as nucleic acid sequence 2). This feature of the original sequence makes the insertion site between 314 and 315, but the encoded amino acid does not have any frameshift mutation, and there is a repeat sequence of 7 amino acids with the 106th to 112th of GP075, that is, GAPWY S V (such as Sequence 11), (Fig. 2).

(3)LC-MS检测噬菌体突变株颗粒蛋白(3) LC-MS detection of granule proteins of phage mutant strains

SDS-PAGE分离噬菌体K8、K8-T239A颗粒中结构蛋白,LC-MS进一步鉴定凝胶上分离的结构蛋白。鉴定结果分析,K8-T239A中存在13种蛋白质,噬菌体K8颗粒中仅存在12种蛋白质,比较后发现噬菌体K8颗粒比噬菌体K8-T239A少了假定蛋白GP075,两者其它12种鉴定蛋白均一致,包括8个功能蛋白,分别是GP035、GP057、GP062、GP063、GP068、GP074、GP076、GP078,对应的蛋白功能分别为DNA连接酶(DNA ligase),主要衣壳蛋白(majorcapsidprotein),假定结构蛋白(putative structural protein),假定结构蛋白(putative structural protein),假定卷尺蛋白(putative tape measure protein),假定基板蛋白(putative baseplate relatedprotein),假定尾丝蛋白(putative tailfiberprotein),假定尾丝蛋白(putative tail fiberprotein);4个假定蛋白分别由GP053,GP056,GP071,GP110编码(图3)。该结果表明GP075蛋白突变体具有了新的功能,可以作为没有被注释功能的结构蛋白发挥作用。The structural proteins in phage K8 and K8-T239A particles were separated by SDS-PAGE, and the structural proteins separated on the gel were further identified by LC-MS. Analysis of identification results showed that there were 13 proteins in K8-T239A, and only 12 proteins in phage K8 particles. After comparison, it was found that phage K8 particles had less hypothetical protein GP075 than phage K8-T239A, and the other 12 identified proteins were consistent. Including 8 functional proteins, respectively GP035, GP057, GP062, GP063, GP068, GP074, GP076, GP078, the corresponding protein functions are DNA ligase (DNA ligase), major capsid protein (majorcapsid protein), hypothetical structural protein ( putative structural protein, putative structural protein, putative tape measure protein, putative baseplate related protein, putative tail fiber protein, putative tail fiber protein ); the four hypothetical proteins are encoded by GP053, GP056, GP071, and GP110, respectively (Fig. 3). This result indicates that the GP075 protein mutant has a new function and can function as a structural protein that has no annotated function.

(4)噬菌体抑菌应用(4) Antibacterial application of bacteriophage

噬菌体的基本性质之一是感染宿主细胞,使宿主细胞裂解,噬菌体与宿主细胞共培养,可抑制宿主细胞的生长。野生型铜绿假单胞菌PAK生长曲线中,未加噬菌体对照组,培养至5.5h,OD600达0.7,分别与噬菌体K8、K8-T239A共培养,至2.0h后PAK几乎停止生长过,噬菌体K8、K8-T239A对PAK的生长有很强的抑制作用(图4A)。相同数量的K8、K8-T239A与不同稀释度(10倍梯度稀释)的PAK共培养,观察各稀释度菌液的浑浊情况,PAK最小浑浊浓度即可计算PAK耐受噬菌体自发突变率,结果显示,PAK与K8共培养,在PAK菌浓为7.0×105cfu/ml时仅有一管出现澄清,但在菌浓7.0×104cfu/ml时,共培养液全部澄清,说明PAK最小浑浊浓度均值为7.0×105cfu/ml,计算PAK耐受K8自发突变频率均值为2.91×10-6;K8-T239A与PAK共培养,最小浑浊浓度为7.0×108cfu/ml,计算PAK耐受K8-T239A的自发突变频率均值为2.83×10-9,PAK耐受K8-T239A的自发突变频率远比K8的要低,而且存在显著差异(图4B,4E)。One of the basic properties of phages is to infect host cells and lyse host cells. The co-cultivation of phages and host cells can inhibit the growth of host cells. In the growth curve of wild-type Pseudomonas aeruginosa PAK, no phage control group was added, cultured to 5.5h, OD600 reached 0.7, co-cultured with phage K8, K8-T239A respectively, PAK almost stopped growing after 2.0h, phage K8 , K8-T239A had a strong inhibitory effect on the growth of PAK (Fig. 4A). The same amount of K8, K8-T239A was co-cultured with PAK at different dilutions (10-fold gradient dilution), and the turbidity of the bacterial solution at each dilution was observed. The minimum turbidity concentration of PAK can be used to calculate the spontaneous mutation rate of PAK-resistant phages. The results show that , PAK and K8 were co-cultured, only one tube was clear when the PAK concentration was 7.0×10 5 cfu/ml, but when the bacterial concentration was 7.0×10 4 cfu/ml, the co-culture solution was all clear, indicating the minimum turbidity concentration of PAK The mean value is 7.0×10 5 cfu/ml, and the mean frequency of PAK-resistant K8 spontaneous mutation is 2.91×10 -6 ; K8-T239A is co-cultured with PAK, the minimum turbidity concentration is 7.0×10 8 cfu/ml, and the calculated PAK tolerance The average spontaneous mutation frequency of K8-T239A was 2.83×10 -9 , and the spontaneous mutation frequency of PAK-resistant K8-T239A was much lower than that of K8, and there was a significant difference (Fig. 4B, 4E).

SK75生长曲线,未加噬菌体的SK75生长状况作为对照,培养至5.5h,OD600达0.7,加入噬菌体K8后,SK75的生长状况并没有收到抑制,OD600达到0.69;加入噬菌体K8-TT239A与SK75共同培养,至3.0h后,SK75的生长受到抑制,而后几乎停止生长,如此可见K8-T239A对SK75的生长有抑制作用(图4C)。SK75与K8-T239A共培养,SK75菌浓为1.04×102cfu/ml时仍然有两管浑浊,菌浓为1.04×10cfu/ml时共培养液全部澄清,说明SK75最小浑浊浓度主要集中在1.04×103cfu/ml,计算SK75耐受K8-T239A自发突变频率均值为9.93×10-4(图4D,图4E)。噬菌体K8、K8-T239A有效抑制PAK的生长,共培养时,PAK耐受K8-T239A的自发突变率远比K8低1000倍;同时K8-T239A抑制SK75生长,K8-T239A作用下能够在一定程度上抑制SK75的自发突变,比PAK耐受K8-T239A的突变频率高106,以上结果进一步证实了K8-T239A能够识别双重受体,很好的应用价值。SK75 growth curve, the growth status of SK75 without adding phage was used as a control. After culturing for 5.5 hours, OD600 reached 0.7. After adding phage K8, the growth status of SK75 was not inhibited, and OD600 reached 0.69; adding phage K8-TT239A and SK75 together After culturing for 3.0 hours, the growth of SK75 was inhibited, and then almost stopped growing, so it can be seen that K8-T239A has an inhibitory effect on the growth of SK75 (Figure 4C). SK75 was co-cultured with K8-T239A. When the bacterial concentration of SK75 was 1.04×10 2 cfu/ml, there were still two tubes of turbidity. When the bacterial concentration was 1.04×10cfu/ml, the co-culture solution was completely clear, indicating that the minimum turbidity concentration of SK75 was mainly concentrated at 1.04 ×10 3 cfu/ml, the calculated average frequency of SK75 resistant K8-T239A spontaneous mutation was 9.93×10 -4 (Fig. 4D, Fig. 4E). Phage K8 and K8-T239A effectively inhibited the growth of PAK. When co-cultured, the spontaneous mutation rate of PAK resistant to K8-T239A was 1000 times lower than that of K8; at the same time, K8-T239A inhibited the growth of SK75, and K8-T239A could inhibit the growth of SK75 to a certain extent. The frequency of spontaneous mutations suppressing SK75 is 10 6 higher than that of PAK resistant K8-T239A. The above results further confirm that K8-T239A can recognize dual receptors and has good application value.

尽管为说明目的公开了本发明的实施例,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例和附图所公开的内容。Although the embodiments of the present invention are disclosed for the purpose of illustration, those skilled in the art will understand that various alternatives, changes and modifications are possible without departing from the spirit and scope of the present invention and the appended claims, therefore However, the scope of the present invention is not limited to the contents disclosed in the embodiments and drawings.

序列表sequence listing

序列1 铜绿假单胞菌噬菌体K8基因gp075核酸序列Sequence 1 Nucleic acid sequence of Pseudomonas aeruginosa bacteriophage K8 gene gp075

ATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAAATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAA

序列2 铜绿假单胞菌噬菌体K8-D7基因gp075核酸序列Sequence 2 Nucleic acid sequence of Pseudomonas aeruginosa bacteriophage K8-D7 gene gp075

ATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAAATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAA

序列3 蛋白GP075-14核酸序列Sequence 3 Nucleic acid sequence of protein GP075-14

ATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAAATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAA

序列4 蛋白GP075-21核酸序列Sequence 4 Nucleic acid sequence of protein GP075-21

ATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAAATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAA

序列5 铜绿假单胞菌噬菌体K8-E126K基因gp075核酸序列Sequence 5 Nucleic acid sequence of Pseudomonas aeruginosa bacteriophage K8-E126K gene gp075

ATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAAAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAAATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAAAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAA

序列6 铜绿假单胞菌噬菌体K8-S142L基因gp075核酸序列Sequence 6 Pseudomonas aeruginosa phage K8-S142L gene gp075 nucleic acid sequence

ATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTTAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAAATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTTAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAA

序列7 铜绿假单胞菌噬菌体K8-L142R基因gp075核酸序列Sequence 7 Pseudomonas aeruginosa phage K8-L142R gene gp075 nucleic acid sequence

ATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCGAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAAATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCGAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAA

序列8 铜绿假单胞菌噬菌体K8-P142L基因gp075核酸序列Sequence 8 Pseudomonas aeruginosa phage K8-P142L gene gp075 nucleic acid sequence

ATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCTTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAAATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCTTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGACCAACCTAGTGACATAA

序列9 铜绿假单胞菌噬菌体K8-T239A基因gp075核酸序列Sequence 9 Nucleic acid sequence of Pseudomonas aeruginosa phage K8-T239A gene gp075

ATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGGCCAACCTAGTGACATAAATGGCTGTCAACCAATTTGACAGAGAAGATTATCTGGAGGTGGCCCGGGAACGGGTCACTGAACAGTTTAAAGAGAAGCCGATCTTTGATCGCTTCCTGCAAGTGCTATTGTCTGGTAAGTTTGATATCCAGAATGCACTGGAAGACCTCCAGACTCTCCGGTCTCTGGACACAGCCACCGGGAAGCAACTGGACATTATCGGAGACATTGTAGGGCGACCACGCGGTCTAGTGTACCAAGATATTTTCAACTATTTTGGATTCGCTGGAACGGAGCGTGCAGGTTCTTTCGGAAGCCTGTCGGACCCTACGGTCGGTGCTCCATGGTACTCGGTCGGTGCTCCAACTGGTAACGCCAGAGAGCCGAGCGACGAAGAGTATCGGATGATCCTGAAAGCAAAGATCATCAAGAACAGAACAAACTCAACCCCAGAGCAAGTTATCGAAGCTTATAAATTTGTATTCGGGGTTCCTGAAGTATTCCTAGAGGAGTACGCTCCCGCTGCTGTCCGTATCGGCATCGGTAAGATTCTAACGAACGTAGAGCGTAGTCTTCTATTCGACCTAGGTGGTGCAGGTGCATTGCTTCCTAAGACTATCGGGGTTAACTACACATACACTGAGTTCCAAGCTGGCCGGGTATTTGCTACAGAAGGCTTCCCCGGAGGACAAGGCGTTGGAGACCTAAATGATCCCACTGTTGGTGGAATTCTGGCCAACCTAGTGACATAA

序列10 GP075氨基酸序列SEQUENCE 10 GP075 Amino Acid Sequence

MAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVTMAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVT

序列11 GP075-7氨基酸序列Sequence 11 GP075-7 amino acid sequence

MAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVTMAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVT

序列12 GP075-14氨基酸序列Sequence 12 GP075-14 amino acid sequence

MAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPWYSVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVTMAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPWYSVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVT

序列13 GP075-21氨基酸序列Sequence 13 GP075-21 amino acid sequence

MAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPWYSVGAPWYSVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVTMAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPWYSVGAPWYSVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVT

序列14 GP075-E126K氨基酸序列Sequence 14 GP075-E126K amino acid sequence

MAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEKYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVTMAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEKYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVT

序列15 GP075-S142L氨基酸序列Sequence 15 GP075-S142L amino acid sequence

MAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNLTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVTMAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNLTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVT

序列16 GP075-L189R氨基酸序列Sequence 16 GP075-L189R amino acid sequence

MAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDRGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVTMAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDRGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVT

序列17 GP075-P197L氨基酸序列Sequence 17 GP075-P197L amino acid sequence

MAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLLKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVTMAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLLKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILTNLVT

序列18 GP075-T239A氨基酸序列Sequence 18 GP075-T239A amino acid sequence

MAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILANLVT。MAVNQFDREDYLEVARERVTEQFKEKPIFDRFLQVLLSGKFDIQNALEDLQTLRSLDTATGKQLDIIGDIVGRPRGLVYQDIFNYFGFAGTERAGSFGSLSDPTVGAPWYSVGAPTGNAREPSDEEYRMILKAKIIKNRTNSTPEQVIEAYKFVFGVPEVFLEEYAPAAVRIGIGKILTNVERSLLFDLGGAGALLPKTIGVNYTYTEFQAGRVFATEGFPGGQGVGDLNDPTVGGILANLVT。

序列表sequence listing

<110> 天津科技大学<110> Tianjin University of Science and Technology

<120> 一种铜绿假单胞菌噬菌体K8假定蛋白GP075及其突变株、突变蛋白和应用<120> A hypothetical protein GP075 of Pseudomonas aeruginosa phage K8 and its mutant strain, mutant protein and application

<160> 18<160> 18

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 732<211> 732

<212> DNA<212>DNA

<213> 假定蛋白GP075的核苷酸序列(Unknown)<213> Nucleotide sequence of hypothetical protein GP075 (Unknown)

<400> 1<400> 1

atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60

gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120

tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180

gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240

gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300

tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360

gagccgagcg acgaagagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420gagccgagcg acgaagagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420

aactcaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480aactcaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480

ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540

gtagagcgta gtcttctatt cgacctaggt ggtgcaggtg cattgcttcc taagactatc 600gtagagcgta gtcttctatt cgacctaggt ggtgcaggtg cattgcttcc taagactatc 600

ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660

cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctgaccaac 720cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctgaccaac 720

ctagtgacat aa 732ctagtgacat aa 732

<210> 2<210> 2

<211> 753<211> 753

<212> DNA<212>DNA

<213> K8-D7的核苷酸序列(Unknown)<213> Nucleotide sequence of K8-D7 (Unknown)

<400> 2<400> 2

atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60

gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120

tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180

gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240

gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300

tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccatggta ctcggtcggt 360tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccatggta ctcggtcggt 360

gctccaactg gtaacgccag agagccgagc gacgaagagt atcggatgat cctgaaagca 420gctccaactg gtaacgccag agagccgagc gacgaagagt atcggatgat cctgaaagca 420

aagatcatca agaacagaac aaactcaacc ccagagcaag ttatcgaagc ttataaattt 480aagatcatca agaacagaac aaactcaacc ccagagcaag ttatcgaagc ttataaattt 480

gtattcgggg ttcctgaagt attcctagag gagtacgctc ccgctgctgt ccgtatcggc 540gtattcgggg ttcctgaagt attcctagag gagtacgctc ccgctgctgt ccgtatcggc 540

atcggtaaga ttctaacgaa cgtagagcgt agtcttctat tcgacctagg tggtgcaggt 600atcggtaaga ttctaacgaa cgtagagcgt agtcttctat tcgacctagg tggtgcaggt 600

gcattgcttc ctaagactat cggggttaac tacacataca ctgagttcca agctggccgg 660gcattgcttc ctaagactat cggggttaac tacacataca ctgagttcca agctggccgg 660

gtatttgcta cagaaggctt ccccggagga caaggcgttg gagacctaaa tgatcccact 720gtatttgcta cagaaggctt ccccggagga caaggcgttg gagacctaaa tgatcccact 720

gttggtggaa ttctgaccaa cctagtgaca taa 753gttggtggaa ttctgaccaa cctagtgaca taa 753

<210> 3<210> 3

<211> 774<211> 774

<212> DNA<212>DNA

<213> GP075-14的核苷酸序列(Unknown)<213> Nucleotide sequence of GP075-14 (Unknown)

<400> 3<400> 3

atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60

gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120

tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180

gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240

gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300

tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccatggta ctcggtcggt 360tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccatggta ctcggtcggt 360

gctccatggt actcggtcgg tgctccaact ggtaacgcca gagagccgag cgacgaagag 420gctccatggt actcggtcgg tgctccaact ggtaacgcca gagagccgag cgacgaagag 420

tatcggatga tcctgaaagc aaagatcatc aagaacagaa caaactcaac cccagagcaa 480tatcggatga tcctgaaagc aaagatcatc aagaacagaa caaactcaac cccagagcaa 480

gttatcgaag cttataaatt tgtattcggg gttcctgaag tattcctaga ggagtacgct 540gttatcgaag cttataaatt tgtattcggg gttcctgaag tattcctaga ggagtacgct 540

cccgctgctg tccgtatcgg catcggtaag attctaacga acgtagagcg tagtcttcta 600cccgctgctg tccgtatcgg catcggtaag attctaacga acgtagagcg tagtcttcta 600

ttcgacctag gtggtgcagg tgcattgctt cctaagacta tcggggttaa ctacacatac 660ttcgacctag gtggtgcagg tgcattgctt cctaagacta tcggggttaa ctacacatac 660

actgagttcc aagctggccg ggtatttgct acagaaggct tccccggagg acaaggcgtt 720actgagttcc aagctggccg ggtatttgct acagaaggct tccccggagg acaaggcgtt 720

ggagacctaa atgatcccac tgttggtgga attctgacca acctagtgac ataa 774ggagacctaa atgatcccac tgttggtgga attctgacca acctagtgac ataa 774

<210> 4<210> 4

<211> 795<211> 795

<212> DNA<212>DNA

<213> GP075-21的核苷酸序列(Unknown)<213> Nucleotide sequence of GP075-21 (Unknown)

<400> 4<400> 4

atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60

gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120

tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180

gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240

gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300

tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccatggta ctcggtcggt 360tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccatggta ctcggtcggt 360

gctccatggt actcggtcgg tgctccatgg tactcggtcg gtgctccaac tggtaacgcc 420gctccatggt actcggtcgg tgctccatgg tactcggtcg gtgctccaac tggtaacgcc 420

agagagccga gcgacgaaga gtatcggatg atcctgaaag caaagatcat caagaacaga 480agagagccga gcgacgaaga gtatcggatg atcctgaaag caaagatcat caagaacaga 480

acaaactcaa ccccagagca agttatcgaa gcttataaat ttgtattcgg ggttcctgaa 540acaaactcaa ccccagagca agttatcgaa gcttataaat ttgtattcgg ggttcctgaa 540

gtattcctag aggagtacgc tcccgctgct gtccgtatcg gcatcggtaa gattctaacg 600gtattcctag aggagtacgc tcccgctgct gtccgtatcg gcatcggtaa gattctaacg 600

aacgtagagc gtagtcttct attcgaccta ggtggtgcag gtgcattgct tcctaagact 660aacgtagagc gtagtcttct attcgaccta ggtggtgcag gtgcattgct tcctaagact 660

atcggggtta actacacata cactgagttc caagctggcc gggtatttgc tacagaaggc 720atcggggtta actacacata cactgagttc caagctggcc gggtatttgc tacagaaggc 720

ttccccggag gacaaggcgt tggagaccta aatgatccca ctgttggtgg aattctgacc 780ttccccggag gacaaggcgt tggagaccta aatgatccca ctgttggtgg aattctgacc 780

aacctagtga cataa 795aacctagtga cataa 795

<210> 5<210> 5

<211> 732<211> 732

<212> DNA<212>DNA

<213> K8-E126K的核苷酸序列(Unknown)<213> Nucleotide sequence of K8-E126K (Unknown)

<400> 5<400> 5

atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60

gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120

tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180

gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240

gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300

tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360

gagccgagcg acgaaaagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420gagccgagcg acgaaaagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420

aactcaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480aactcaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480

ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540

gtagagcgta gtcttctatt cgacctaggt ggtgcaggtg cattgcttcc taagactatc 600gtagagcgta gtcttctatt cgacctaggt ggtgcaggtg cattgcttcc taagactatc 600

ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660

cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctgaccaac 720cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctgaccaac 720

ctagtgacat aa 732ctagtgacat aa 732

<210> 6<210> 6

<211> 732<211> 732

<212> DNA<212>DNA

<213> K8-S142L的核苷酸序列(Unknown)<213> Nucleotide sequence of K8-S142L (Unknown)

<400> 6<400> 6

atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60

gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120

tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180

gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240

gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300

tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360

gagccgagcg acgaagagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420gagccgagcg acgaagagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420

aacttaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480aacttaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480

ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540

gtagagcgta gtcttctatt cgacctaggt ggtgcaggtg cattgcttcc taagactatc 600gtagagcgta gtcttctatt cgacctaggt ggtgcaggtg cattgcttcc taagactatc 600

ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660

cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctgaccaac 720cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctgaccaac 720

ctagtgacat aa 732ctagtgacat aa 732

<210> 7<210> 7

<211> 732<211> 732

<212> DNA<212>DNA

<213> K8-L189R的核苷酸序列(Unknown)<213> Nucleotide sequence of K8-L189R (Unknown)

<400> 7<400> 7

atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60

gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120

tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180

gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240

gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300

tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360

gagccgagcg acgaagagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420gagccgagcg acgaagagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420

aactcaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480aactcaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480

ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540

gtagagcgta gtcttctatt cgaccgaggt ggtgcaggtg cattgcttcc taagactatc 600gtagagcgta gtcttctatt cgaccgaggt ggtgcaggtg cattgcttcc taagactatc 600

ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660

cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctgaccaac 720cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctgaccaac 720

ctagtgacat aa 732ctagtgacat aa 732

<210> 8<210> 8

<211> 732<211> 732

<212> DNA<212>DNA

<213> K8-P197L的核苷酸序列(Unknown)<213> Nucleotide sequence of K8-P197L (Unknown)

<400> 8<400> 8

atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60

gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120

tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180

gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240

gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300

tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360

gagccgagcg acgaagagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420gagccgagcg acgaagagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420

aactcaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480aactcaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480

ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540

gtagagcgta gtcttctatt cgacctaggt ggtgcaggtg cattgcttct taagactatc 600gtagagcgta gtcttctatt cgacctaggt ggtgcaggtg cattgcttct taagactatc 600

ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660

cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctgaccaac 720cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctgaccaac 720

ctagtgacat aa 732ctagtgacat aa 732

<210> 9<210> 9

<211> 732<211> 732

<212> DNA<212>DNA

<213> K8-T239A的核苷酸序列(Unknown)<213> Nucleotide sequence of K8-T239A (Unknown)

<400> 9<400> 9

atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60atggctgtca accaatttga cagagaagat tatctggagg tggcccggga acgggtcact 60

gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120gaacagttta aagagaagcc gatctttgat cgcttcctgc aagtgctatt gtctggtaag 120

tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180tttgatatcc agaatgcact ggaagacctc cagactctcc ggtctctgga cacagccacc 180

gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240gggaagcaac tggacattat cggagacatt gtagggcgac cacgcggtct agtgtaccaa 240

gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300gatattttca actattttgg attcgctgga acggagcgtg caggttcttt cggaagcctg 300

tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360tcggacccta cggtcggtgc tccatggtac tcggtcggtg ctccaactgg taacgccaga 360

gagccgagcg acgaagagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420gagccgagcg acgaagagta tcggatgatc ctgaaagcaa agatcatcaa gaacagaaca 420

aactcaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480aactcaaccc cagagcaagt tatcgaagct tataaatttg tattcggggt tcctgaagta 480

ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540ttcctagagg agtacgctcc cgctgctgtc cgtatcggca tcggtaagat tctaacgaac 540

gtagagcgta gtcttctatt cgacctaggt ggtgcaggtg cattgcttcc taagactatc 600gtagagcgta gtcttctatt cgacctaggt ggtgcaggtg cattgcttcc taagactatc 600

ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660ggggttaact acacatacac tgagttccaa gctggccggg tatttgctac agaaggcttc 660

cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctggccaac 720cccggaggac aaggcgttgg agacctaaat gatcccactg ttggtggaat tctggccaac 720

ctagtgacat aa 732ctagtgacat aa 732

<210> 10<210> 10

<211> 243<211> 243

<212> PRT<212> PRT

<213> GP075的氨基酸序列(Unknown)<213> Amino acid sequence of GP075 (Unknown)

<400> 10<400> 10

Met Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala ArgMet Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala Arg

1 5 10 151 5 10 15

Glu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg PheGlu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg Phe

20 25 30 20 25 30

Leu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu GluLeu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu Glu

35 40 45 35 40 45

Asp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln LeuAsp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln Leu

50 55 60 50 55 60

Asp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr GlnAsp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr Gln

65 70 75 8065 70 75 80

Asp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly SerAsp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly Ser

85 90 95 85 90 95

Phe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser ValPhe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser Val

100 105 110 100 105 110

Gly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr ArgGly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr Arg

115 120 125 115 120 125

Met Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr ProMet Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr Pro

130 135 140 130 135 140

Glu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu ValGlu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu Val

145 150 155 160145 150 155 160

Phe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly LysPhe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly Lys

165 170 175 165 170 175

Ile Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly AlaIle Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly Ala

180 185 190 180 185 190

Gly Ala Leu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr GluGly Ala Leu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr Glu

195 200 205 195 200 205

Phe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly GlnPhe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly Gln

210 215 220 210 215 220

Gly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr AsnGly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr Asn

225 230 235 240225 230 235 240

Leu Val ThrLeu Val Thr

<210> 11<210> 11

<211> 250<211> 250

<212> PRT<212> PRT

<213> K8-D7的氨基酸序列(Unknown)<213> Amino acid sequence of K8-D7 (Unknown)

<400> 11<400> 11

Met Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala ArgMet Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala Arg

1 5 10 151 5 10 15

Glu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg PheGlu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg Phe

20 25 30 20 25 30

Leu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu GluLeu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu Glu

35 40 45 35 40 45

Asp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln LeuAsp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln Leu

50 55 60 50 55 60

Asp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr GlnAsp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr Gln

65 70 75 8065 70 75 80

Asp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly SerAsp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly Ser

85 90 95 85 90 95

Phe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser ValPhe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser Val

100 105 110 100 105 110

Gly Ala Pro Trp Tyr Ser Val Gly Ala Pro Thr Gly Asn Ala Arg GluGly Ala Pro Trp Tyr Ser Val Gly Ala Pro Thr Gly Asn Ala Arg Glu

115 120 125 115 120 125

Pro Ser Asp Glu Glu Tyr Arg Met Ile Leu Lys Ala Lys Ile Ile LysPro Ser Asp Glu Glu Tyr Arg Met Ile Leu Lys Ala Lys Ile Ile Lys

130 135 140 130 135 140

Asn Arg Thr Asn Ser Thr Pro Glu Gln Val Ile Glu Ala Tyr Lys PheAsn Arg Thr Asn Ser Thr Pro Glu Gln Val Ile Glu Ala Tyr Lys Phe

145 150 155 160145 150 155 160

Val Phe Gly Val Pro Glu Val Phe Leu Glu Glu Tyr Ala Pro Ala AlaVal Phe Gly Val Pro Glu Val Phe Leu Glu Glu Tyr Ala Pro Ala Ala

165 170 175 165 170 175

Val Arg Ile Gly Ile Gly Lys Ile Leu Thr Asn Val Glu Arg Ser LeuVal Arg Ile Gly Ile Gly Lys Ile Leu Thr Asn Val Glu Arg Ser Leu

180 185 190 180 185 190

Leu Phe Asp Leu Gly Gly Ala Gly Ala Leu Leu Pro Lys Thr Ile GlyLeu Phe Asp Leu Gly Gly Ala Gly Ala Leu Leu Pro Lys Thr Ile Gly

195 200 205 195 200 205

Val Asn Tyr Thr Tyr Thr Glu Phe Gln Ala Gly Arg Val Phe Ala ThrVal Asn Tyr Thr Tyr Thr Glu Phe Gln Ala Gly Arg Val Phe Ala Thr

210 215 220 210 215 220

Glu Gly Phe Pro Gly Gly Gln Gly Val Gly Asp Leu Asn Asp Pro ThrGlu Gly Phe Pro Gly Gly Gln Gly Val Gly Asp Leu Asn Asp Pro Thr

225 230 235 240225 230 235 240

Val Gly Gly Ile Leu Thr Asn Leu Val ThrVal Gly Gly Ile Leu Thr Asn Leu Val Thr

245 250 245 250

<210> 12<210> 12

<211> 257<211> 257

<212> PRT<212> PRT

<213> GP075-14的氨基酸序列(Unknown)<213> Amino acid sequence of GP075-14 (Unknown)

<400> 12<400> 12

Met Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala ArgMet Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala Arg

1 5 10 151 5 10 15

Glu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg PheGlu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg Phe

20 25 30 20 25 30

Leu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu GluLeu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu Glu

35 40 45 35 40 45

Asp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln LeuAsp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln Leu

50 55 60 50 55 60

Asp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr GlnAsp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr Gln

65 70 75 8065 70 75 80

Asp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly SerAsp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly Ser

85 90 95 85 90 95

Phe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser ValPhe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser Val

100 105 110 100 105 110

Gly Ala Pro Trp Tyr Ser Val Gly Ala Pro Trp Tyr Ser Val Gly AlaGly Ala Pro Trp Tyr Ser Val Gly Ala Pro Trp Tyr Ser Val Gly Ala

115 120 125 115 120 125

Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr Arg Met IlePro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr Arg Met Ile

130 135 140 130 135 140

Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr Pro Glu GlnLeu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr Pro Glu Gln

145 150 155 160145 150 155 160

Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu Val Phe LeuVal Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu Val Phe Leu

165 170 175 165 170 175

Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly Lys Ile LeuGlu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly Lys Ile Leu

180 185 190 180 185 190

Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly Ala Gly AlaThr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly Ala Gly Ala

195 200 205 195 200 205

Leu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr Glu Phe GlnLeu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr Glu Phe Gln

210 215 220 210 215 220

Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly Gln Gly ValAla Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly Gln Gly Val

225 230 235 240225 230 235 240

Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr Asn Leu ValGly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr Asn Leu Val

245 250 255 245 250 255

ThrThr

<210> 13<210> 13

<211> 264<211> 264

<212> PRT<212> PRT

<213> GP075-21的氨基酸序列(Unknown)<213> Amino acid sequence of GP075-21 (Unknown)

<400> 13<400> 13

Met Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala ArgMet Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala Arg

1 5 10 151 5 10 15

Glu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg PheGlu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg Phe

20 25 30 20 25 30

Leu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu GluLeu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu Glu

35 40 45 35 40 45

Asp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln LeuAsp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln Leu

50 55 60 50 55 60

Asp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr GlnAsp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr Gln

65 70 75 8065 70 75 80

Asp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly SerAsp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly Ser

85 90 95 85 90 95

Phe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser ValPhe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser Val

100 105 110 100 105 110

Gly Ala Pro Trp Tyr Ser Val Gly Ala Pro Trp Tyr Ser Val Gly AlaGly Ala Pro Trp Tyr Ser Val Gly Ala Pro Trp Tyr Ser Val Gly Ala

115 120 125 115 120 125

Pro Trp Tyr Ser Val Gly Ala Pro Thr Gly Asn Ala Arg Glu Pro SerPro Trp Tyr Ser Val Gly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser

130 135 140 130 135 140

Asp Glu Glu Tyr Arg Met Ile Leu Lys Ala Lys Ile Ile Lys Asn ArgAsp Glu Glu Tyr Arg Met Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg

145 150 155 160145 150 155 160

Thr Asn Ser Thr Pro Glu Gln Val Ile Glu Ala Tyr Lys Phe Val PheThr Asn Ser Thr Pro Glu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe

165 170 175 165 170 175

Gly Val Pro Glu Val Phe Leu Glu Glu Tyr Ala Pro Ala Ala Val ArgGly Val Pro Glu Val Phe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg

180 185 190 180 185 190

Ile Gly Ile Gly Lys Ile Leu Thr Asn Val Glu Arg Ser Leu Leu PheIle Gly Ile Gly Lys Ile Leu Thr Asn Val Glu Arg Ser Leu Leu Phe

195 200 205 195 200 205

Asp Leu Gly Gly Ala Gly Ala Leu Leu Pro Lys Thr Ile Gly Val AsnAsp Leu Gly Gly Ala Gly Ala Leu Leu Pro Lys Thr Ile Gly Val Asn

210 215 220 210 215 220

Tyr Thr Tyr Thr Glu Phe Gln Ala Gly Arg Val Phe Ala Thr Glu GlyTyr Thr Tyr Thr Glu Phe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly

225 230 235 240225 230 235 240

Phe Pro Gly Gly Gln Gly Val Gly Asp Leu Asn Asp Pro Thr Val GlyPhe Pro Gly Gly Gln Gly Val Gly Asp Leu Asn Asp Pro Thr Val Gly

245 250 255 245 250 255

Gly Ile Leu Thr Asn Leu Val ThrGly Ile Leu Thr Asn Leu Val Thr

260 260

<210> 14<210> 14

<211> 243<211> 243

<212> PRT<212> PRT

<213> K8-E126K的氨基酸序列(Unknown)<213> Amino acid sequence of K8-E126K (Unknown)

<400> 14<400> 14

Met Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala ArgMet Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala Arg

1 5 10 151 5 10 15

Glu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg PheGlu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg Phe

20 25 30 20 25 30

Leu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu GluLeu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu Glu

35 40 45 35 40 45

Asp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln LeuAsp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln Leu

50 55 60 50 55 60

Asp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr GlnAsp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr Gln

65 70 75 8065 70 75 80

Asp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly SerAsp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly Ser

85 90 95 85 90 95

Phe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser ValPhe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser Val

100 105 110 100 105 110

Gly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Lys Tyr ArgGly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Lys Tyr Arg

115 120 125 115 120 125

Met Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr ProMet Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr Pro

130 135 140 130 135 140

Glu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu ValGlu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu Val

145 150 155 160145 150 155 160

Phe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly LysPhe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly Lys

165 170 175 165 170 175

Ile Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly AlaIle Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly Ala

180 185 190 180 185 190

Gly Ala Leu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr GluGly Ala Leu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr Glu

195 200 205 195 200 205

Phe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly GlnPhe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly Gln

210 215 220 210 215 220

Gly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr AsnGly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr Asn

225 230 235 240225 230 235 240

Leu Val ThrLeu Val Thr

<210> 15<210> 15

<211> 243<211> 243

<212> PRT<212> PRT

<213> K8-S142L的氨基酸序列(Unknown)<213> Amino acid sequence of K8-S142L (Unknown)

<400> 15<400> 15

Met Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala ArgMet Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala Arg

1 5 10 151 5 10 15

Glu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg PheGlu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg Phe

20 25 30 20 25 30

Leu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu GluLeu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu Glu

35 40 45 35 40 45

Asp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln LeuAsp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln Leu

50 55 60 50 55 60

Asp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr GlnAsp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr Gln

65 70 75 8065 70 75 80

Asp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly SerAsp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly Ser

85 90 95 85 90 95

Phe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser ValPhe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser Val

100 105 110 100 105 110

Gly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr ArgGly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr Arg

115 120 125 115 120 125

Met Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Leu Thr ProMet Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Leu Thr Pro

130 135 140 130 135 140

Glu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu ValGlu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu Val

145 150 155 160145 150 155 160

Phe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly LysPhe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly Lys

165 170 175 165 170 175

Ile Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly AlaIle Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly Ala

180 185 190 180 185 190

Gly Ala Leu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr GluGly Ala Leu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr Glu

195 200 205 195 200 205

Phe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly GlnPhe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly Gln

210 215 220 210 215 220

Gly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr AsnGly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr Asn

225 230 235 240225 230 235 240

Leu Val ThrLeu Val Thr

<210> 16<210> 16

<211> 243<211> 243

<212> PRT<212> PRT

<213> K8-L189R的氨基酸序列(Unknown)<213> Amino acid sequence of K8-L189R (Unknown)

<400> 16<400> 16

Met Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala ArgMet Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala Arg

1 5 10 151 5 10 15

Glu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg PheGlu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg Phe

20 25 30 20 25 30

Leu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu GluLeu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu Glu

35 40 45 35 40 45

Asp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln LeuAsp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln Leu

50 55 60 50 55 60

Asp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr GlnAsp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr Gln

65 70 75 8065 70 75 80

Asp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly SerAsp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly Ser

85 90 95 85 90 95

Phe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser ValPhe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser Val

100 105 110 100 105 110

Gly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr ArgGly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr Arg

115 120 125 115 120 125

Met Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr ProMet Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr Pro

130 135 140 130 135 140

Glu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu ValGlu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu Val

145 150 155 160145 150 155 160

Phe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly LysPhe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly Lys

165 170 175 165 170 175

Ile Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Arg Gly Gly AlaIle Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Arg Gly Gly Ala

180 185 190 180 185 190

Gly Ala Leu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr GluGly Ala Leu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr Glu

195 200 205 195 200 205

Phe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly GlnPhe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly Gln

210 215 220 210 215 220

Gly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr AsnGly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr Asn

225 230 235 240225 230 235 240

Leu Val ThrLeu Val Thr

<210> 17<210> 17

<211> 243<211> 243

<212> PRT<212> PRT

<213> K8-P197L的氨基酸序列(Unknown)<213> Amino acid sequence of K8-P197L (Unknown)

<400> 17<400> 17

Met Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala ArgMet Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala Arg

1 5 10 151 5 10 15

Glu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg PheGlu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg Phe

20 25 30 20 25 30

Leu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu GluLeu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu Glu

35 40 45 35 40 45

Asp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln LeuAsp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln Leu

50 55 60 50 55 60

Asp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr GlnAsp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr Gln

65 70 75 8065 70 75 80

Asp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly SerAsp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly Ser

85 90 95 85 90 95

Phe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser ValPhe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser Val

100 105 110 100 105 110

Gly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr ArgGly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr Arg

115 120 125 115 120 125

Met Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr ProMet Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr Pro

130 135 140 130 135 140

Glu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu ValGlu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu Val

145 150 155 160145 150 155 160

Phe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly LysPhe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly Lys

165 170 175 165 170 175

Ile Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly AlaIle Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly Ala

180 185 190 180 185 190

Gly Ala Leu Leu Leu Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr GluGly Ala Leu Leu Leu Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr Glu

195 200 205 195 200 205

Phe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly GlnPhe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly Gln

210 215 220 210 215 220

Gly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr AsnGly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Thr Asn

225 230 235 240225 230 235 240

Leu Val ThrLeu Val Thr

<210> 18<210> 18

<211> 243<211> 243

<212> PRT<212> PRT

<213> K8-T239A的氨基酸序列(Unknown)<213> Amino acid sequence of K8-T239A (Unknown)

<400> 18<400> 18

Met Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala ArgMet Ala Val Asn Gln Phe Asp Arg Glu Asp Tyr Leu Glu Val Ala Arg

1 5 10 151 5 10 15

Glu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg PheGlu Arg Val Thr Glu Gln Phe Lys Glu Lys Pro Ile Phe Asp Arg Phe

20 25 30 20 25 30

Leu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu GluLeu Gln Val Leu Leu Ser Gly Lys Phe Asp Ile Gln Asn Ala Leu Glu

35 40 45 35 40 45

Asp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln LeuAsp Leu Gln Thr Leu Arg Ser Leu Asp Thr Ala Thr Gly Lys Gln Leu

50 55 60 50 55 60

Asp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr GlnAsp Ile Ile Gly Asp Ile Val Gly Arg Pro Arg Gly Leu Val Tyr Gln

65 70 75 8065 70 75 80

Asp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly SerAsp Ile Phe Asn Tyr Phe Gly Phe Ala Gly Thr Glu Arg Ala Gly Ser

85 90 95 85 90 95

Phe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser ValPhe Gly Ser Leu Ser Asp Pro Thr Val Gly Ala Pro Trp Tyr Ser Val

100 105 110 100 105 110

Gly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr ArgGly Ala Pro Thr Gly Asn Ala Arg Glu Pro Ser Asp Glu Glu Tyr Arg

115 120 125 115 120 125

Met Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr ProMet Ile Leu Lys Ala Lys Ile Ile Lys Asn Arg Thr Asn Ser Thr Pro

130 135 140 130 135 140

Glu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu ValGlu Gln Val Ile Glu Ala Tyr Lys Phe Val Phe Gly Val Pro Glu Val

145 150 155 160145 150 155 160

Phe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly LysPhe Leu Glu Glu Tyr Ala Pro Ala Ala Val Arg Ile Gly Ile Gly Lys

165 170 175 165 170 175

Ile Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly AlaIle Leu Thr Asn Val Glu Arg Ser Leu Leu Phe Asp Leu Gly Gly Ala

180 185 190 180 185 190

Gly Ala Leu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr GluGly Ala Leu Leu Pro Lys Thr Ile Gly Val Asn Tyr Thr Tyr Thr Glu

195 200 205 195 200 205

Phe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly GlnPhe Gln Ala Gly Arg Val Phe Ala Thr Glu Gly Phe Pro Gly Gly Gln

210 215 220 210 215 220

Gly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Ala AsnGly Val Gly Asp Leu Asn Asp Pro Thr Val Gly Gly Ile Leu Ala Asn

225 230 235 240225 230 235 240

Leu Val ThrLeu Val Thr

Claims (10)

1.一种铜绿假单胞菌噬菌体K8假定蛋白GP075,其特征在于:其核苷酸序列为SEQNo.1,其氨基酸序列为SEQ No.10。1. A pseudomonas aeruginosa bacteriophage K8 hypothetical protein GP075, characterized in that: its nucleotide sequence is SEQ No.1, and its amino acid sequence is SEQ No.10. 2.一株铜绿假单胞菌噬菌体K8突变株K8-D7,其特征在于:所述突变株K8-D7能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如权利要求1所述的假定蛋白GP075的氨基酸105、106之间插入1个与106至112完全重复的氨基酸序列;所述突变株K8-D7的核苷酸序列为SEQ No.2,其氨基酸序列为SEQ No.11。2. A Pseudomonas aeruginosa phage K8 mutant strain K8-D7 is characterized in that: said mutant strain K8-D7 can infect lipopolysaccharide O-antigen deficient host cells, and its sequence is as described in claim 1 1 amino acid sequence completely repeated from 106 to 112 is inserted between amino acids 105 and 106 of the hypothetical protein GP075; the nucleotide sequence of the mutant K8-D7 is SEQ No.2, and its amino acid sequence is SEQ No.11 . 3.一种含有如权利要求1所述的假定蛋白GP075的突变蛋白GP075-14,其特征在于:其序列是在所述GP075氨基酸105、106之间插入2个与106至112完全重复的氨基酸序列,所述突变蛋白GP075-14的核苷酸序列为SEQ No.3,其氨基酸序列为SEQ No.12。3. A mutant protein GP075-14 containing the hypothetical protein GP075 as claimed in claim 1, characterized in that: its sequence is to insert 2 completely repeated amino acids from 106 to 112 between amino acids 105 and 106 of the GP075 Sequence, the nucleotide sequence of the mutant protein GP075-14 is SEQ No.3, and its amino acid sequence is SEQ No.12. 4.一种含有如权利要求1所述的假定蛋白GP075的突变蛋白GP075-21,其特征在于:其序列是GP075氨基酸105、106之间插入3个与106至102完全重复的氨基酸序列,所述突变蛋白GP075-21的核苷酸序列为SEQ No.4,其氨基酸序列为SEQ No.13。4. A mutant protein GP075-21 containing the hypothetical protein GP075 as claimed in claim 1, characterized in that: its sequence is an amino acid sequence with 3 completely repeated amino acids 106 to 102 inserted between amino acids 105 and 106 of GP075, so The nucleotide sequence of the mutant protein GP075-21 is SEQ No.4, and its amino acid sequence is SEQ No.13. 5.一株铜绿假单胞菌噬菌体K8突变株K8-E126K,其特征在于:所述突变株K8-E126K能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如权利要求1所述的假定蛋白GP075发生突变E126K,所述突变株K8-E126K的核苷酸序列为SEQ No.5,其氨基酸序列为SEQ No.14。5. A Pseudomonas aeruginosa phage K8 mutant strain K8-E126K is characterized in that: said mutant strain K8-E126K can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is as described in claim 1 The hypothetical protein GP075 has a mutation E126K, the nucleotide sequence of the mutant K8-E126K is SEQ No.5, and its amino acid sequence is SEQ No.14. 6.一株铜绿假单胞菌噬菌体K8突变株K8-S142L,其特征在于:所述突变株K8-S142L能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如权利要求1所述的假定蛋白GP075发生突变S142L,所述突变株K8-S142L的核苷酸序列为SEQ No.6,其氨基酸序列为SEQ No.15。6. A Pseudomonas aeruginosa phage K8 mutant strain K8-S142L, characterized in that: said mutant strain K8-S142L can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is as described in claim 1 The hypothetical protein GP075 has a mutation S142L, the nucleotide sequence of the mutant K8-S142L is SEQ No.6, and its amino acid sequence is SEQ No.15. 7.一株铜绿假单胞菌噬菌体K8突变株K8-L189R,其特征在于:所述突变株K8-L189R能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如权利要求1所述的假定蛋白GP075发生突变L189R,所述突变株K8-L189R的核苷酸序列为SEQ No.7,其氨基酸序列如为SEQ No.16。7. A Pseudomonas aeruginosa phage K8 mutant strain K8-L189R, characterized in that: said mutant strain K8-L189R can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is as described in claim 1 The hypothetical protein GP075 has a mutation L189R, the nucleotide sequence of the mutant K8-L189R is SEQ No.7, and its amino acid sequence is, for example, SEQ No.16. 8.一株铜绿假单胞菌噬菌体K8突变株K8-P197L,其特征在于:所述突变株K8-P197L能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如权利要求1所述的假定蛋白GP075发生突变P197L,所述突变株K8-P197L的核苷酸序列为SEQ No.8,其氨基酸序列为SEQ No.17。8. A Pseudomonas aeruginosa phage K8 mutant strain K8-P197L, characterized in that: said mutant strain K8-P197L can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is as described in claim 1 The hypothetical protein GP075 has a mutation P197L, the nucleotide sequence of the mutant K8-P197L is SEQ No.8, and its amino acid sequence is SEQ No.17. 9.一株铜绿假单胞菌噬菌体K8突变株K8-T239A,其特征在于:所述突变株K8-T239A能够感染脂多糖O-抗原缺陷型宿主细胞,其序列是在如权利要求1所述的假定蛋白GP075发生突变T239A,所述突变株K8-T239A的核苷酸序列为SEQ No.9,其氨基酸序列为SEQ No.18。9. A Pseudomonas aeruginosa phage K8 mutant strain K8-T239A, characterized in that: said mutant strain K8-T239A can infect lipopolysaccharide O-antigen-deficient host cells, and its sequence is as described in claim 1 The hypothetical protein GP075 has a mutation T239A, the nucleotide sequence of the mutant K8-T239A is SEQ No.9, and its amino acid sequence is SEQ No.18. 10.一株铜绿假单胞菌噬菌体K8突变株K8-X,其特征在于:所述突变株K8-X能够感染脂多糖O-抗原缺陷型宿主细胞,在铜绿假单胞菌自发突变的抑制方面中的应用,假定蛋白GP075未发生突变。10. A Pseudomonas aeruginosa bacteriophage K8 mutant strain K8-X, characterized in that: the mutant strain K8-X can infect lipopolysaccharide O-antigen-deficient host cells, in the suppression of Pseudomonas aeruginosa spontaneous mutation For use in this aspect, it is assumed that the protein GP075 is not mutated.
CN201910720978.8A 2019-08-06 2019-08-06 A pseudomonas aeruginosa phage K8 hypothetical protein GP075 and its mutant strain, mutant protein and application Expired - Fee Related CN110563815B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910720978.8A CN110563815B (en) 2019-08-06 2019-08-06 A pseudomonas aeruginosa phage K8 hypothetical protein GP075 and its mutant strain, mutant protein and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910720978.8A CN110563815B (en) 2019-08-06 2019-08-06 A pseudomonas aeruginosa phage K8 hypothetical protein GP075 and its mutant strain, mutant protein and application

Publications (2)

Publication Number Publication Date
CN110563815A true CN110563815A (en) 2019-12-13
CN110563815B CN110563815B (en) 2022-04-08

Family

ID=68774718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910720978.8A Expired - Fee Related CN110563815B (en) 2019-08-06 2019-08-06 A pseudomonas aeruginosa phage K8 hypothetical protein GP075 and its mutant strain, mutant protein and application

Country Status (1)

Country Link
CN (1) CN110563815B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030124634A1 (en) * 1996-04-30 2003-07-03 University Of Guelph Novel proteins involved in the synthesis and assembly of O-antigen in pseudomonas aeruginosa
WO2004045630A1 (en) * 2002-11-15 2004-06-03 Andrzej Gorski An application of bacteriophages in transplantation
CN105543256A (en) * 2016-01-12 2016-05-04 天津科技大学 Lyase of bacteriophage and sterilization application
CA3045284A1 (en) * 2016-12-05 2018-06-14 Technophage, Investigacao E Desenvolvimento Em Biotecnologia, Sa Bacteriophage compositions comprising respiratory antibacterial phages and methods of use thereof
CN108410840A (en) * 2018-04-03 2018-08-17 大连理工大学 A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application
CN109593728A (en) * 2018-11-17 2019-04-09 菲吉乐科(南京)生物科技有限公司 A kind of bacteriophage flocculant and its application in treatment process after fermentation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030124634A1 (en) * 1996-04-30 2003-07-03 University Of Guelph Novel proteins involved in the synthesis and assembly of O-antigen in pseudomonas aeruginosa
WO2004045630A1 (en) * 2002-11-15 2004-06-03 Andrzej Gorski An application of bacteriophages in transplantation
CN105543256A (en) * 2016-01-12 2016-05-04 天津科技大学 Lyase of bacteriophage and sterilization application
CA3045284A1 (en) * 2016-12-05 2018-06-14 Technophage, Investigacao E Desenvolvimento Em Biotecnologia, Sa Bacteriophage compositions comprising respiratory antibacterial phages and methods of use thereof
CN108410840A (en) * 2018-04-03 2018-08-17 大连理工大学 A kind of Pseudomonas aeruginosa phage endolysin and its coding gene and application
CN109593728A (en) * 2018-11-17 2019-04-09 菲吉乐科(南京)生物科技有限公司 A kind of bacteriophage flocculant and its application in treatment process after fermentation

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LIBERA LATINO等: "Investigation of Pseudomonas aeruginosa strain PcyII-10 variants resisting infection by N4-like phage Ab09 in search for genes involved in phage adsorption", 《PLOS ONE》 *
MENGYU SHEN等: "Characterization and Comparative Genomic Analyses of Pseudomonas aeruginosa Phage PaoP5: New Members Assigned to PAK_P1-like Viruses", 《SCIENTIFIC REPORTS》 *
PAN,X.等: "Genetic Evidence for O-Specific Antigen as Receptor of Pseudomonas aeruginosa Phage K8 and Its Genomic Analysis", 《GENBANK》 *
XUEWEI PAN等: "Genetic Evidence for O-Specific Antigen as Receptor of Pseudomonas aeruginosa Phage K8 and Its Genomic Analysis", 《FRONT. MICROBIOL.》 *
孙利: "噬菌体突变株感染铜绿假单胞菌分子机制的研究", 《中国优秀博硕士学位论文全文数据库(硕士)基础科学辑》 *
张克斌等: "铜绿假单胞菌噬菌体的分离鉴定及耐噬菌体突变频率测定", 《微生物学通报》 *

Also Published As

Publication number Publication date
CN110563815B (en) 2022-04-08

Similar Documents

Publication Publication Date Title
CA2614800C (en) Bacteriophage specifically for lysing propionibacterium acnes and uses thereof
Zivanovic et al. Insights into bacteriophage T5 structure from analysis of its morphogenesis genes and protein components
RU2654586C2 (en) Recombinational cartridge containing the ep153r and ep364r genes of the congo (kk-262) strain of the african swine fever virus and recombinant δcongocd2v strain of the african swine fever virus
Thomas et al. Identification of essential genes in the Salmonella phage SPN3US reveals novel insights into giant phage head structure and assembly
Spinelli et al. Cryo-electron microscopy structure of lactococcal siphophage 1358 virion
Cai et al. Biological properties and genomics analysis of vB_KpnS_GH-K3, a Klebsiella phage with a putative depolymerase-like protein
Dieterle et al. Characterization of prophages containing “evolved” Dit/Tal modules in the genome of Lactobacillus casei BL23
CN108531461B (en) A Bacillus cereus phage and its application
Lee et al. A newly isolated bacteriophage, PBES 02, infecting Cronobacter sakazakii
CN111748507A (en) A kind of Mycoplasma bovis Mbov_0475 gene mutant strain and application thereof
KR20130087118A (en) Podoviridae bacteriophage having killing activity specific to gram negative bacteria
CN114929868A (en) Cocktail-type compositions comprising respiratory antibacterial bacteriophages and methods of use thereof
Gorodnichev et al. Molecular genetic characterization of three new Klebsiella pneumoniae bacteriophages suitable for phage therapy
EP3186361B1 (en) Enterococcus faecalis strains for the production of bacteriophage preparations
CN110563815B (en) A pseudomonas aeruginosa phage K8 hypothetical protein GP075 and its mutant strain, mutant protein and application
RU2571858C1 (en) Recombinational cartridge containing genes ep153r and ep402r of strain f-32 of african swine fever virus and recombinant strain dswcongo/francelectincd2 of african swine fever virus
CN107384961A (en) Goat capripoxvirus of TK Gene Deletions and preparation method and application
Alexeeva et al. Genomics of tailless bacteriophages in a complex lactic acid bacteria starter culture
Kim et al. Morphological features and lipopolysaccharide attachment of coliphages specific to Escherichia coli O157: H7 and to a broad range of E. coli hosts
Martelet et al. Bacterial detection using unlabeled phage amplification and mass spectrometry through structural and nonstructural phage markers
Vincent et al. Advances in Mimivirus pathogenicity
CN117070434A (en) A live attenuated vaccine strain with slyA gene deletion of Klebsiella pneumoniae and its preparation method and application
CN104237508B (en) A kind of detection kit of Much&#39;s bacillus and application
Krylov et al. New temperate Pseudomonas aeruginosa phage, phi297: specific features of genome structure
CN102304185A (en) Fusion protein surface immunogenic protein-target of RNA III activating protein (SIP-TRAP) for preventing bovine mastitis and preparation method and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220408

CF01 Termination of patent right due to non-payment of annual fee