CN106222703A - Multistep selective electrolysis reclaims the method for metal in hard alloy scraps - Google Patents
Multistep selective electrolysis reclaims the method for metal in hard alloy scraps Download PDFInfo
- Publication number
- CN106222703A CN106222703A CN201610728320.8A CN201610728320A CN106222703A CN 106222703 A CN106222703 A CN 106222703A CN 201610728320 A CN201610728320 A CN 201610728320A CN 106222703 A CN106222703 A CN 106222703A
- Authority
- CN
- China
- Prior art keywords
- electrolysis
- cathode
- molten salt
- cemented carbide
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims abstract description 46
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 32
- 239000002184 metal Substances 0.000 title claims abstract description 25
- 229910045601 alloy Inorganic materials 0.000 title abstract description 17
- 239000000956 alloy Substances 0.000 title abstract description 17
- 150000003839 salts Chemical class 0.000 claims abstract description 55
- 239000002699 waste material Substances 0.000 claims abstract description 25
- 238000011084 recovery Methods 0.000 claims abstract description 15
- JPNWDVUTVSTKMV-UHFFFAOYSA-N cobalt tungsten Chemical compound [Co].[W] JPNWDVUTVSTKMV-UHFFFAOYSA-N 0.000 claims description 13
- 238000000926 separation method Methods 0.000 claims description 13
- BUKHSQBUKZIMLB-UHFFFAOYSA-L potassium;sodium;dichloride Chemical compound [Na+].[Cl-].[Cl-].[K+] BUKHSQBUKZIMLB-UHFFFAOYSA-L 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 10
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 238000009210 therapy by ultrasound Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- YWJQGSHYTRHJJH-UHFFFAOYSA-N [Co].[Ti].[W] Chemical compound [Co].[Ti].[W] YWJQGSHYTRHJJH-UHFFFAOYSA-N 0.000 claims description 2
- ZTJWUVMPZRLXAB-UHFFFAOYSA-N [Ta].[Ti].[W] Chemical compound [Ta].[Ti].[W] ZTJWUVMPZRLXAB-UHFFFAOYSA-N 0.000 claims description 2
- QDNARMPMTMJYMK-UHFFFAOYSA-N [W].[Ti].[Nb] Chemical compound [W].[Ti].[Nb] QDNARMPMTMJYMK-UHFFFAOYSA-N 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 9
- 150000002500 ions Chemical class 0.000 abstract description 4
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 150000002739 metals Chemical class 0.000 abstract description 2
- 238000012546 transfer Methods 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 29
- 229910017052 cobalt Inorganic materials 0.000 description 18
- 239000010941 cobalt Substances 0.000 description 18
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 18
- 229910052721 tungsten Inorganic materials 0.000 description 15
- 239000010937 tungsten Substances 0.000 description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 14
- 229910052786 argon Inorganic materials 0.000 description 7
- 238000002848 electrochemical method Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- -1 tungsten ions Chemical class 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/34—Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/005—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明提供一种多步选择性电解回收废硬质合金中金属的方法,包括以下操作:第一步电解:将废硬质合金作为阳极,在熔盐介质中插入阳极和阴极,在熔融的熔盐电介质中电解;第二步电解:将第一步使用的阴极取出,在所述熔盐介质中插入第二个阴极后进行第二步电解;或,将阳极取出清洗后再用新的熔盐介质进行第二步电解,电解方式为恒压电解或恒流电解。本发明提出的方法,在电解过程中,采用多阴极和分步电解的方法,通过控制电解参数,控制阳极材料‑废硬质合金溶解时进入熔盐介质中离子的种类。经过扩散传质,阳极掉落的离子迁移到阴极,放电沉积为金属单质,不同的元素沉积在不同的阴极上,实现选择性回收硬质合金中金属元素的目的。
The invention provides a method for multi-step selective electrolytic recovery of metals in waste hard alloys, which includes the following operations: the first step of electrolysis: using waste hard alloys as an anode, inserting an anode and a cathode into a molten salt medium, and Electrolysis in the molten salt dielectric; the second step of electrolysis: take out the cathode used in the first step, insert the second cathode into the molten salt medium, and then perform the second step of electrolysis; or, take out the anode and clean it before using a new one The molten salt medium is subjected to the second step of electrolysis, and the electrolysis method is constant voltage electrolysis or constant current electrolysis. In the method proposed by the present invention, in the electrolysis process, the method of multi-cathode and stepwise electrolysis is adopted, and by controlling the electrolysis parameters, the types of ions entering the molten salt medium when the anode material-waste cemented carbide is dissolved are controlled. After diffusion and mass transfer, the ions dropped from the anode migrate to the cathode, and are deposited as simple metal by discharge, and different elements are deposited on different cathodes, so as to realize the purpose of selectively recovering the metal elements in the cemented carbide.
Description
技术领域technical field
本发明属于冶金领域,具体涉及一种从废硬质合金中回收金属的方法。The invention belongs to the field of metallurgy, in particular to a method for recovering metal from waste cemented carbide.
背景技术Background technique
钨是一种高熔点,高比重,高硬度的稀有金属,是不可替代的战略资源。其碳化物和粘结金属经粉末冶金方法可以制成高复合材料硬质合金,具有高硬度、高耐磨性,高弹性模量,高抗压强度,化学稳定性好(耐酸、碱、高温氧化),冲击韧性较低,膨胀系数低,导热、导电等特点。在机械制造、矿山开采、交通运输、能源勘探、建筑装饰等领域都得到了广泛的应用。据统计,进入21世纪以后,世界硬质合金年产量达到了3.8万吨,其中中国硬质合金产量为1.5万吨左右,超过世界硬质合金产量的三分之一[1]。因此,从生产规模和生产量看,中国是世界名符其实的第一生产大国。但是随着近年来国民经济的高速发展,钨矿资源的消耗迅速增长,钨矿滥采滥用现象严重,资源利用效率很低,使钨矿资源储量快速减少。另一方面,钨制品工业的迅速发展,不可避免造成了大量的硬质合金废料的堆积,由于种种原因造成的废弃硬质合金每年就达到半数以上[2,3]。不仅污染环境,也造成钨、钴等金属资源的浪费[4,5]。Tungsten is a rare metal with high melting point, high specific gravity and high hardness, and it is an irreplaceable strategic resource. Its carbide and bonding metal can be made into high-composite cemented carbide by powder metallurgy, which has high hardness, high wear resistance, high elastic modulus, high compressive strength, and good chemical stability (acid, alkali, high temperature, etc.) Oxidation), low impact toughness, low expansion coefficient, thermal conductivity, electrical conductivity and other characteristics. It has been widely used in machinery manufacturing, mining, transportation, energy exploration, architectural decoration and other fields. According to statistics, after entering the 21st century, the world's annual output of cemented carbide has reached 38,000 tons, of which China's cemented carbide output is about 15,000 tons, more than one-third of the world's cemented carbide output [1] . Therefore, from the perspective of production scale and production volume, China is truly the world's largest producer. However, with the rapid development of the national economy in recent years, the consumption of tungsten ore resources has increased rapidly, the phenomenon of excessive mining and abuse of tungsten ore is serious, and the utilization efficiency of resources is very low, which has rapidly reduced the reserves of tungsten ore resources. On the other hand, the rapid development of the tungsten products industry has inevitably resulted in the accumulation of a large amount of cemented carbide waste, and the discarded cemented carbide due to various reasons reaches more than half every year [2,3] . It not only pollutes the environment, but also causes waste of metal resources such as tungsten and cobalt [4,5] .
目前世界各国用于废旧硬质合金和钨基合金回收再生的主要方法有十余种之多,主要包括高温处理法、机械破碎法、氧化法、锌熔法、电化学法,以及在这些方法上的延伸出的新工艺等[6]。这几种方法中,高温处理法、机械破碎法和氧化法都不能实现对钨钴的分离,只能得到与硬质合金废料成分相同的合金混合料[7]。锌熔法工艺比较简单、流程短、投资小,成本低,特别适合于处理含钴量低于10%的废旧硬质合金,适用于小型企业利用废旧硬质合金再制硬质合金,但是这种方法环境污染比较大,能源利用率不高。电化学法主要是水溶液电化学法[8]、离子液体电化学法[9-11]和熔盐电化学法[12,13]。其中在废硬质合金回收领域主要研究开发的是水溶液电化学法回收钴。该方法通过通电电解,把硬质合金中的钴金属回收出来。虽然水溶液电解法能缩短钴的回收工艺、简化操作步骤以及提高钴的回收率、改善工作环境,但是电解过程容易出现阳极钝化,电流效率降低等问题,具有一定局限性。同时由于水溶液的电化学窗口的原因,只能回收硬质合金中的钴金属,却不能实现沉积电位较负的钨离子的回收。At present, there are more than ten main methods for recycling waste cemented carbide and tungsten-based alloys in various countries in the world, mainly including high-temperature treatment, mechanical crushing, oxidation, zinc melting, electrochemical methods, and in these methods The extension of the new technology on [6] . Among these methods, the high temperature treatment method, mechanical crushing method and oxidation method cannot achieve the separation of tungsten and cobalt, and only the alloy mixture with the same composition as the cemented carbide scrap can be obtained [7] . Zinc melting process is relatively simple, short process, small investment, low cost, especially suitable for processing waste cemented carbide with cobalt content less than 10%, suitable for small enterprises to use waste cemented carbide to remanufacture cemented carbide, but this A kind of method environmental pollution is bigger, and energy utilization rate is not high. Electrochemical methods are mainly aqueous solution electrochemical method [8] , ionic liquid electrochemical method [9-11] and molten salt electrochemical method [12,13] . Among them, the main research and development in the field of waste cemented carbide recovery is the recovery of cobalt by electrochemical method in aqueous solution. This method recovers the cobalt metal in the cemented carbide through electrification and electrolysis. Although the aqueous solution electrolysis method can shorten the cobalt recovery process, simplify the operation steps, increase the cobalt recovery rate, and improve the working environment, the electrolysis process is prone to anode passivation and current efficiency reduction, which has certain limitations. At the same time, due to the electrochemical window of the aqueous solution, only the cobalt metal in the cemented carbide can be recovered, but the recovery of tungsten ions with a relatively negative deposition potential cannot be realized.
熔盐电解法是以熔盐作为电解质,废硬质合金作为阳极,直接一步回收金属元素的方法,回收产物在阴极收集。整个过程流程简单、没有废气或废液排出、回收效率高。符合冶金行业短流程、低成本、环境友好的大趋势。中国专利CN104018190A提出了一种熔盐电解废硬质合金回收钨钴金属的方法,但是没有实现产物的分离。而其他的一些湿法冶金法、氧化还原法等虽然实现了金属元素的分离,但是都存在限制。所以探寻一种环保、高效、简单的选择性回收硬质合金中金属元素的方法是非常有必要的。The molten salt electrolysis method uses molten salt as the electrolyte and waste cemented carbide as the anode to directly recover metal elements in one step, and the recovered products are collected at the cathode. The whole process is simple, there is no exhaust gas or waste liquid discharge, and the recovery efficiency is high. It is in line with the general trend of short process, low cost and environmental friendliness in the metallurgical industry. Chinese patent CN104018190A proposes a method for recovering tungsten-cobalt metal by molten salt electrolysis of waste cemented carbide, but the separation of the product is not realized. However, although some other hydrometallurgical methods and redox methods have achieved the separation of metal elements, they all have limitations. Therefore, it is necessary to find an environmentally friendly, efficient and simple method for selectively recovering metal elements in cemented carbide.
参考文献references
[1]徐传华.国外钴生产[J].北京矿冶研究院报,1980,(3):31.[1] Xu Chuanhua. Foreign Cobalt Production [J]. Journal of Beijing Research Institute of Mining and Metallurgy, 1980, (3): 31.
[2]徐涛.硬质合金高端产品及新材料发展趋势分析[J].硬质合金,2011,28(6):395-402.[2] Xu Tao. Analysis on the development trend of cemented carbide high-end products and new materials [J]. Cemented Carbide, 2011,28(6):395-402.
[3]J.C.Lee,E.Y.Kim,J.H.Kim.Recycling of WC Co hardmetal sludge by anew hydrometallurgical route[J].International Journal of Refractory MetalsandHard Materials,2011,29(3):365-371.[3]J.C.Lee,E.Y.Kim,J.H.Kim.Recycling of WC Co hardmetal sludge by a new hydrometallurgical route[J].International Journal of Refractory Metals and Hard Materials,2011,29(3):365-371.
[4]M.Watanabe,C.Pornthep,S.Kuroda,J.Kawakita,J.Kitamura,K.Sato,Development of WC-Co coatings by warm spray deposition for resource savingsof tungsten,Journal of the Japan Institute of Metals,2007,32(71):853-859.[4] M. Watanabe, C. Pornthep, S. Kuroda, J. Kawakita, J. Kitamura, K. Sato, Development of WC-Co coatings by warm spray deposition for resource savings of tungsten, Journal of the Japan Institute of Metals, 2007,32(71):853-859.
[5]陈颢,李剑波,羊建高,硬质合金回收研究进展及发展趋势,有色金属科学与工程,2012,9(12):18-22.[5] Chen Hao, Li Jianbo, Yang Jiangao, Research progress and development trend of cemented carbide recycling, Nonferrous Metal Science and Engineering, 2012, 9(12): 18-22.
[6]翟昕.硬质合金回收利用工艺现状[J].有色金属再生与利用,2004,35(1):14-16.[6] Zhai Xin. Current status of cemented carbide recycling technology [J]. Nonferrous Metal Recycling and Utilization, 2004,35(1):14-16.
[7]方兴建.废硬质合金的破碎工艺[P]:中国,102049521AEP.2011.[7] Fang Xingjian. Crushing process of waste cemented carbide [P]: China, 102049521AEP.2011.
[8]梁琥琪,陈世琯,电化学法处理废硬质合金回收钨钴,上海大学学报(自然科学版),1995,17(65):105-112.[8] Liang Huqi, Chen Shiguan, Electrochemical treatment of waste cemented carbide to recover tungsten and cobalt, Journal of Shanghai University (Natural Science Edition), 1995, 17(65): 105-112.
[9]Y.T.Hsieh,M.C.Lai,H.L.Huang,I.W.Sun,Speciation of cobalt-chloride-based ionic liquids and electrodeposition of Co wires,Electrochimica Acta,2014,36(117):217-223.[9]Y.T.Hsieh,M.C.Lai,H.L.Huang,I.W.Sun,Specification of cobalt-chloride-based ionic liquids and electrodeposition of Co wires,Electrochimica Acta,2014,36(117):217-223.
[10]A.Unemoto,H.Ogawa,Y.Gambe,I.Honma,Development of lithium-sulfurbatteries using room temperature ionic liquid-based quasi-solid-stateelectrolytes,Electrochimica Acta,2011,28(125):386-394.[10] A.Unemoto, H.Ogawa, Y.Gambe, I.Honma, Development of lithium-sulfurbatteries using room temperature ionic liquid-based quasi-solid-state electrolytes, Electrochimica Acta, 2011, 28(125): 386-394 .
[11]Y.L.Zhu,Y.Katayama,T.Miura,Effects of coumarin and saccharin onelectrodeposition of Ni from a hydrophobic ionic liquid,Electrochimica Acta,2014,17(123):303-308.[11]Y.L.Zhu,Y.Katayama,T.Miura,Effects of coumarin and saccharin onelectrodeposition of Ni from a hydrophobic ionic liquid,Electrochimica Acta,2014,17(123):303-308.
[12]E.Juzeliunas,A.Cox,D.J.Fray,Electro-deoxidation of thin silicalayer in molten salt-Globular structures with effective light absorbance,Electrochimica Acta,2012,37(68):123-127.[12]E.Juzeliunas,A.Cox,D.J.Fray,Electro-deoxidation of thin silicalayer in molten salt-Globular structures with effective light absorption,Electrochimica Acta,2012,37(68):123-127.
[13]K.Yasuda,S.Kobayashi,T.Nohira,R.Hagiwara,Electrochemicalformation of Nd Ni alloys in molten NaCl KCl NdCl3,Electrochimica Acta,2013,8(92):349-355.[13] K. Yasuda, S. Kobayashi, T. Nohira, R. Hagiwara, Electrochemical formation of Nd Ni alloys in molten NaCl KCl NdCl3, Electrochimica Acta, 2013, 8(92): 349-355.
发明内容Contents of the invention
针对本技术领域存在的不足之处,本发明的目的是提出一种回收废硬质合金中金属的方法。Aiming at the deficiencies in the technical field, the purpose of the present invention is to propose a method for recovering metal in waste cemented carbide.
实现本发明上述目的技术方案为:Realize above-mentioned object technical scheme of the present invention is:
一种多阴极选择性回收废硬质合金中金属的方法,包括以下操作:A method for selectively recycling metals in waste cemented carbide with multiple cathodes, comprising the following operations:
第一步电解:将废硬质合金作为阳极,第一步电解时在熔盐介质中插入阳极和第一阴极,在熔融的熔盐电介质中电解,电解温度为600~1000℃,电解方式为恒压电解或恒流电解,电解时进行气体保护;The first step of electrolysis: use waste cemented carbide as the anode, insert the anode and the first cathode in the molten salt medium during the first step of electrolysis, and electrolyze in the molten molten salt dielectric, the electrolysis temperature is 600 ~ 1000 ℃, and the electrolysis method is Constant voltage electrolysis or constant current electrolysis, gas protection during electrolysis;
第二步电解:将第一阴极取出,在第一步电解的熔盐介质中插入第二阴极后进行第二步电解;或,将阳极取出清洗后,和第二阴极插入新的熔盐介质中,进行第二步电解;电解温度为600~1000℃,电解方式为恒压电解或恒流电解。The second step of electrolysis: take out the first cathode, insert the second cathode into the molten salt medium electrolyzed in the first step, and then perform the second step of electrolysis; or, take out the anode and insert it into a new molten salt medium with the second cathode , carry out the second step of electrolysis; the electrolysis temperature is 600-1000°C, and the electrolysis method is constant voltage electrolysis or constant current electrolysis.
第二步只换阴极,或换新的熔盐体系,得到的阴极产物不一样。其机理可能是因为在新的熔盐体系中,碳原子的浓度低,不足以和阴极沉积的钨发生反应。In the second step, only the cathode is replaced, or a new molten salt system is replaced, and the obtained cathode products are different. The mechanism may be due to the low concentration of carbon atoms in the new molten salt system, which is not enough to react with the tungsten deposited on the cathode.
所述气体保护是用非氧化性气体进行保护,所述非氧化性气可以由氮气、氩气、氦气中的一种或多种组成,也可以是其他不含氧气的气体。The gas protection is protection with a non-oxidizing gas, and the non-oxidizing gas may be composed of one or more of nitrogen, argon, helium, or other gases that do not contain oxygen.
其中,第一步的熔盐介质和第二步所述新的熔盐介质均为摩尔比1:0.2~2.0的NaCl-KCl熔盐体系。电解采用别的熔盐体系也可以,选择NaCl-KCl体系具有价廉和易于分离的优势。Wherein, the molten salt medium in the first step and the new molten salt medium in the second step are both NaCl-KCl molten salt systems with a molar ratio of 1:0.2-2.0. Other molten salt systems can also be used for electrolysis, and the NaCl-KCl system has the advantages of being cheap and easy to separate.
所述废硬质合金为钨钴类硬质合金、钨钛钴类硬质合金、钨钛钽类、钨钛铌类硬质合金中的一种,具体可以是YG3、YG6、YG8、YG10、YG16、YG20、YT15、YG11中的一种。The waste cemented carbide is one of tungsten-cobalt cemented carbide, tungsten-titanium-cobalt cemented carbide, tungsten-titanium-tantalum, tungsten-titanium-niobium cemented carbide, specifically YG3, YG6, YG8, YG10, One of YG16, YG20, YT15, YG11.
其中,所述第一阴极和第二阴极的材质互相独立地为钼、钛、不锈钢、碳、石墨中的一种。Wherein, the materials of the first cathode and the second cathode are independently one of molybdenum, titanium, stainless steel, carbon, and graphite.
其中,所述恒压电解的电压为0.1V-1.6Vvs.Ag/AgCl,恒流电解的电流密度为0.01-1A/cm2。Wherein, the voltage of the constant voltage electrolysis is 0.1V-1.6Vvs.Ag/AgCl, and the current density of the constant current electrolysis is 0.01-1A/cm 2 .
进一步地,所述第一步电解为恒压电解,电压为0.1V-0.5Vvs.Ag/AgCl,电解的时间为6~12小时。Further, the first step of electrolysis is constant voltage electrolysis, the voltage is 0.1V-0.5Vvs.Ag/AgCl, and the electrolysis time is 6-12 hours.
作为本发明优选技术方案之一,所述第二步电解为恒压电解,电解电压为0.6~1.6Vvs.Ag/AgCl。As one of the preferred technical solutions of the present invention, the second step of electrolysis is constant voltage electrolysis, and the electrolysis voltage is 0.6-1.6Vvs.Ag/AgCl.
或,所述第二步电解为恒流电解,通过控制电流密度使电解的槽电压为3.2V以下。Or, the second step of electrolysis is constant current electrolysis, and the cell voltage of electrolysis is kept below 3.2V by controlling the current density.
第二步电解中,将第一阴极取出,在第一步电解的熔盐介质中插入第二阴极后进行第二步电解,电解时间为1~48h;或,将阳极取出清洗后,和第二阴极插入新的熔盐介质中,进行第二步电解,电解的时间为1~4h。In the second step of electrolysis, the first cathode is taken out, and the second cathode is inserted into the molten salt medium of the first step of electrolysis, and then the second step of electrolysis is performed, and the electrolysis time is 1 to 48 hours; or, after the anode is taken out and cleaned, and the second step of electrolysis The two cathodes are inserted into a new molten salt medium, and the second step of electrolysis is performed, and the electrolysis time is 1 to 4 hours.
关于第二步电解的时间:如果第二步换了熔盐、目的是获得纯钨,则电解时间为1~4h,超过4小时产物的纯度下降;如果第二步不换熔盐、目的是获得WC,只依阳极废合金量而定,可以长时间电解。About the time of the second step of electrolysis: If the second step is to change the molten salt, the purpose is to obtain pure tungsten, then the electrolysis time is 1 to 4 hours, and the purity of the product will decrease after 4 hours; if the second step does not change the molten salt, the purpose is Obtaining WC depends only on the amount of anode waste alloy, and it can be electrolyzed for a long time.
其中,将第一阴极取出后,与第一阴极附近的熔盐介质一同置于水中超声处理,再经固液分离,获得金属;第二步电解后将第二阴极取出,与第二阴极附近的熔盐介质,一同置于水中超声处理,再经固液分离,获得第二步电解产物。Among them, after the first cathode is taken out, it is placed in water for ultrasonic treatment together with the molten salt medium near the first cathode, and then solid-liquid separation is carried out to obtain the metal; after the second step of electrolysis, the second cathode is taken out, and the The molten salt medium is placed in water for ultrasonic treatment, and then solid-liquid separation is performed to obtain the second-step electrolysis product.
进一步地,所述固液分离的方法包括离心分离、过滤、烘干中的一种或多种,其中所述离心分离的离心速度为2000~6000rpm,烘干的温度为30~100℃。Further, the solid-liquid separation method includes one or more of centrifugal separation, filtration, and drying, wherein the centrifugal speed of the centrifugal separation is 2000-6000 rpm, and the drying temperature is 30-100°C.
本发明的方法,可以采用一种用于回收废硬质合金中金属元素的多阴极电解装置,其包括电源、电解槽、阳极、第一阴极、第二阴极,所述电解槽为坩埚,所述第一阴极和第二阴极均通过导线与电源连接。所述电解槽置于密闭的容器中,所述容器设置有控温装置和气体保护装置。所述坩埚可以为氧化铝坩埚。The method of the present invention can adopt a kind of multi-cathode electrolysis device for reclaiming metal elements in waste cemented carbide, which comprises a power supply, an electrolytic cell, an anode, a first cathode, and a second cathode, and the electrolytic cell is a crucible, so Both the first cathode and the second cathode are connected to the power supply through wires. The electrolytic cell is placed in a closed container, and the container is provided with a temperature control device and a gas protection device. The crucible may be an alumina crucible.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明提出的方法,在电解过程中,采用多阴极和分步电解的方法,通过控制电解参数,控制阳极材料-废硬质合金溶解时进入熔盐介质中离子的种类。经过扩散传质,阳极掉落的离子迁移到阴极,放电沉积为金属单质,不同的元素沉积在不同的阴极上,实现选择性回收硬质合金中金属元素的目的。此方法工艺流程短,可以回收硬质合金中的多种金属单质;对环境友好,没有废气废液排放;设备简单,只需要一个可以控温的电解槽。The method proposed by the present invention adopts multi-cathode and step-by-step electrolysis in the electrolysis process, and controls the types of ions that enter the molten salt medium when the anode material-waste hard alloy dissolves, by controlling the electrolysis parameters. After diffusion and mass transfer, the ions dropped from the anode migrate to the cathode, and are deposited as simple metal by discharge, and different elements are deposited on different cathodes, so as to realize the purpose of selectively recovering the metal elements in the cemented carbide. This method has a short technological process, and can recover various metal elements in the hard alloy; it is environmentally friendly, and there is no waste gas and liquid discharge; the equipment is simple, and only needs an electrolytic cell that can control the temperature.
本方法分离得到的碳化钨、钨、钴材料,纯度高,可以应用到军工、航空航天、机械加工、矿山工具、电子通讯、建筑等领域。The tungsten carbide, tungsten and cobalt materials separated and obtained by the method have high purity and can be applied to fields such as military industry, aerospace, mechanical processing, mining tools, electronic communication, and construction.
附图说明Description of drawings
图1为本发明的多电极电解槽结构示意图;Fig. 1 is the structural representation of multi-electrode electrolyzer of the present invention;
图2为实施例3第一步电解时的电解槽结构示意图。Fig. 2 is the schematic diagram of the structure of the electrolyzer during the first step of electrolysis in embodiment 3.
图中,1:电源,2:第一阴极,3:第二阴极,4:废硬质合金阳极,5:熔盐,6:坩埚。7电化学工作站,8参比电极。In the figure, 1: power supply, 2: first cathode, 3: second cathode, 4: waste cemented carbide anode, 5: molten salt, 6: crucible. 7 electrochemical workstations, 8 reference electrodes.
图3为实施例1采用多阴极法电解YG6型硬质合金选择性回收钨钴金属的阴极产物XRD图。Fig. 3 is the cathode product XRD diagram of the selective recovery of tungsten-cobalt metal by electrolysis of YG6 type cemented carbide by multi-cathode method in embodiment 1.
图4为实施例2采用多阴极法电解YG6型硬质合金选择性回收钨钴金属的阴极产物XRD图。Fig. 4 is the cathode product XRD figure of embodiment 2 adopting multi-cathode method to electrolyze YG6 type cemented carbide to selectively recover tungsten-cobalt metal.
图5为实施例3采用分步电解法电解YG6型硬质合金选择性回收钨钴金属的阴极产物XRD图。Fig. 5 is the cathode product XRD diagram of the selective recovery of tungsten-cobalt metal by electrolysis of YG6 type cemented carbide in embodiment 3.
图6为实施例4采用分步电解法电解YG6型硬质合金选择性回收钨钴金属的阴极产物XRD图。Fig. 6 is the cathode product XRD diagram of the selective recovery of tungsten-cobalt metal by electrolysis of YG6 type cemented carbide in embodiment 4.
图7为实施例5采用分步电解法电解YG11型硬质合金选择性回收钨钴金属的阴极产物XRD图。Figure 7 is the XRD pattern of the cathode product of the selective recovery of tungsten-cobalt metal by electrolysis of YG11 type cemented carbide in Example 5 by the step-by-step electrolysis method.
具体实施方式detailed description
下面通过最佳实施例来说明本发明。本领域技术人员所应知的是,实施例只用来说明本发明而不是用来限制本发明的范围。The present invention is illustrated below through the preferred embodiments. It should be understood by those skilled in the art that the examples are only used to illustrate the present invention and not to limit the scope of the present invention.
实施例中,如无特别说明,所用手段均为本领域常规的手段。In the examples, unless otherwise specified, the means used are conventional means in the art.
试验例:第一步电解时间的比较Test example: comparison of electrolysis time in the first step
采用直流电源电解YG6型硬质合金,电解所用熔盐体系为等摩尔的NaCl-KCl熔盐体系,保护气为氩气,阳极为YG6型硬质合金块,阴极为钼片,参比电极为Ag/AgCl,控制电解的温度为750℃,0.4V恒压电解,电解时间分别为1h,2h,…至12h,共12次试验,然后换成第二阴极,进行第二步的恒压电解电解,电压0.8V,时间2h。DC power supply is used to electrolyze YG6 hard alloy, the molten salt system used for electrolysis is an equimolar NaCl-KCl molten salt system, the protective gas is argon, the anode is YG6 hard alloy block, the cathode is molybdenum sheet, and the reference electrode is Ag/AgCl, control the electrolysis temperature to 750°C, 0.4V constant voltage electrolysis, the electrolysis time is 1h, 2h, ... to 12h, a total of 12 tests, and then change to the second cathode for the second step of constant voltage electrolysis Electrolysis, voltage 0.8V, time 2h.
第二步电解后,取第二阴极上分离出的粉末做XRD,与标准图谱PDF#15-0805比较,发现第一步电解1h~8h时,第二阴极上获得的样品都有Co的特征峰,8h之后的样品都没有Co峰。综合考虑到电能的损耗,选择第一步电解时间为8h为宜。After the second step of electrolysis, take the powder separated from the second cathode for XRD, and compare it with the standard spectrum PDF#15-0805. It is found that the samples obtained on the second cathode have the characteristics of Co during the first step of electrolysis for 1h to 8h There is no Co peak in the samples after 8h. Considering the loss of electric energy comprehensively, it is advisable to choose the electrolysis time of the first step as 8h.
实施例1:Example 1:
本实施例中,使用图1所示的装置:,包括电源1、电解槽、废硬质合金阳极4、第一阴极2、第二阴极3,所述电解槽为坩埚6(氧化铝坩埚),坩埚内放置熔盐5,所述第一阴极和第二阴极均通过导线与电源1连接。所述电解槽置于密闭的容器中,所述容器设置有控温装置和气体保护装置。In the present embodiment, use the device shown in Figure 1:, comprise power source 1, electrolyzer, waste cemented carbide anode 4, first cathode 2, second cathode 3, described electrolyzer is crucible 6 (aluminum oxide crucible) , molten salt 5 is placed in the crucible, and both the first cathode and the second cathode are connected to the power supply 1 through wires. The electrolytic cell is placed in a closed container, and the container is provided with a temperature control device and a gas protection device.
采用多阴极法电解YG6型硬质合金选择性回收钨钴金属:电解所用熔盐体系为等摩尔的NaCl-KCl熔盐体系,保护气为氩气,阳极为YG6型硬质合金块,阴极为钼片,控制电解的温度为750℃,第一步的电解方式为恒压电解。首先在阳极与第一阴极间施加相对于参比电极0.4V的电压,电解8h;Selective recovery of tungsten-cobalt metal by electrolysis of YG6 hard alloy by multi-cathode method: the molten salt system used in electrolysis is an equimolar NaCl-KCl molten salt system, the protective gas is argon, the anode is YG6 hard alloy block, and the cathode is For molybdenum sheets, the temperature of the electrolysis is controlled at 750°C, and the electrolysis method of the first step is constant voltage electrolysis. First, apply a voltage of 0.4V relative to the reference electrode between the anode and the first cathode, and electrolyze for 8h;
第二步的电解方式为恒压电解。拔出第一阴极,插入第二阴极,在阳极与第二阴极间施加相对于Ag/AgCl参比电极0.8V的电压,电解2h。The electrolysis method of the second step is constant voltage electrolysis. Pull out the first cathode, insert the second cathode, apply a voltage of 0.8V relative to the Ag/AgCl reference electrode between the anode and the second cathode, and perform electrolysis for 2h.
电解后的阴极和阴极附近的熔盐置于水中,经超声水洗,取固体粉末,再经离心、过滤、烘干,去除杂质。其中离心速度为5000rpm,烘干温度为100℃。The cathode after electrolysis and the molten salt near the cathode are placed in water, washed with ultrasonic water, and the solid powder is taken, and then centrifuged, filtered, and dried to remove impurities. Wherein the centrifugal speed is 5000rpm, and the drying temperature is 100°C.
电解后所得阴极产物的XRD图如图3所示,第一阴极上所得产物为纯钴,第二阴极上为WC。用EDS(能谱仪)检测第一阴极的产物样品,图谱上只有钴和碳的峰,求得Co的平均纯度为92%。The XRD pattern of the cathode product obtained after electrolysis is shown in Figure 3, the product obtained on the first cathode is pure cobalt, and the product on the second cathode is WC. The product sample of the first cathode is detected by EDS (energy dispersive spectrometer), and there are only peaks of cobalt and carbon on the spectrum, and the average purity of Co obtained is 92%.
实施例2Example 2
采用多阴极法电解YG6型硬质合金选择性回收钨钴金属,电解装置同实施例1。电解所用熔盐体系为等摩尔的NaCl-KCl熔盐体系,实验所用保护气为氩气,阳极为YG6型硬质合金块,阴极为石墨棒,电解温度750℃,电解方式为第一步恒压电解和第二步恒流电解。The multi-cathode method is used to electrolyze the YG6 type hard alloy to selectively recover tungsten-cobalt metal, and the electrolysis device is the same as that in Example 1. The molten salt system used in electrolysis is an equimolar NaCl-KCl molten salt system, the protective gas used in the experiment is argon, the anode is a YG6 type hard alloy block, the cathode is a graphite rod, the electrolysis temperature is 750°C, and the electrolysis method is the first step constant Piezoelectrolysis and second step constant current electrolysis.
首先在阳极与第一阴极间施加相对于参比电极0.4V的电压,电解8h;随后拔出第一阴极,插入第二阴极,在阳极与第二阴极间施加72mA/cm2的恒定电流,电解2h。电解过程中槽电压始终低于3.2V。First, apply a voltage of 0.4V relative to the reference electrode between the anode and the first cathode, and electrolyze for 8 hours; then pull out the first cathode, insert the second cathode, and apply a constant current of 72mA/ cm2 between the anode and the second cathode, Electrolysis 2h. The cell voltage is always lower than 3.2V during the electrolysis process.
阴极所得粉末经超声水洗、离心、过滤、烘干,去除杂质。离心速度为4000rpm,烘干温度为80℃。The powder obtained from the cathode is ultrasonically washed, centrifuged, filtered, and dried to remove impurities. The centrifugal speed is 4000rpm, and the drying temperature is 80°C.
图4所示为第一阴极与第二阴极收集到的产物的XRD图,其中第一阴极的产物为纯钴,第二阴极的产物为WC。用EDS(能谱仪)检测第一阴极的产物样品,图谱上只有钴和碳的峰,求得Co的平均纯度为94%。Figure 4 shows the XRD patterns of the products collected from the first cathode and the second cathode, wherein the product of the first cathode is pure cobalt, and the product of the second cathode is WC. The product sample of the first cathode is detected by EDS (energy dispersive spectrometer), and there are only peaks of cobalt and carbon on the spectrum, and the average purity of Co obtained is 94%.
实施例3Example 3
采用分步电解法电解YG6型硬质合金选择性回收钨钴金属,电解装置和实施例1不同的是:恒压电解采用三电极体系,参比电极8也插入熔盐5中,第一阴极2、参比电极8和废硬质合金阳极4均连接于电化学工作站7(图2),其他设置同实施例1。The step-by-step electrolysis method is used to electrolyze YG6 type hard alloy to selectively recover tungsten-cobalt metal. The difference between the electrolysis device and Example 1 is that the constant voltage electrolysis adopts a three-electrode system, and the reference electrode 8 is also inserted into the molten salt 5. The first cathode 2. Both the reference electrode 8 and the waste cemented carbide anode 4 are connected to the electrochemical workstation 7 ( FIG. 2 ), and other settings are the same as in Embodiment 1.
电解所用熔盐体系为等摩尔的NaCl-KCl熔盐体系,实验所用保护气为氩气,阳极为YG6型硬质合金块,第一阴极为钼片,参比电极为Ag/AgCl,电解温度750℃,电解方式为第一步恒压电解、第二步恒压电解。The molten salt system used in electrolysis is an equimolar NaCl-KCl molten salt system, the protective gas used in the experiment is argon, the anode is YG6 type hard alloy block, the first cathode is molybdenum sheet, the reference electrode is Ag/AgCl, the electrolysis temperature 750°C, the electrolysis method is the first step of constant voltage electrolysis and the second step of constant voltage electrolysis.
第一步电解时,在阳极与阴极间施加相对于参比电极0.4V的电压,电解8h;电解完后冷却,取出残余的阳极块,清洗干净并以之为阳极进行二步电解。第二步为恒电压电解,换成新的NaCl-KCl熔盐体系,第二阴极为新的钼片,施加的电压为0.8V,电解时间2h。阴极所得粉末经超声水洗、离心、过滤、烘干,去除杂质。离心速度为4000rpm,烘干温度为70℃。In the first step of electrolysis, apply a voltage of 0.4V relative to the reference electrode between the anode and the cathode for 8 hours of electrolysis; after electrolysis, cool down, take out the remaining anode block, clean it and use it as the anode for the second step of electrolysis. The second step is constant voltage electrolysis, replaced by a new NaCl-KCl molten salt system, the second cathode is a new molybdenum sheet, the applied voltage is 0.8V, and the electrolysis time is 2h. The powder obtained from the cathode is ultrasonically washed, centrifuged, filtered, and dried to remove impurities. The centrifugal speed is 4000rpm, and the drying temperature is 70°C.
第一步电解阴极所得产物为纯钴,第二步电解阴极所得产物为纯钨。图5为实例3所得产物的XRD图。用EDS(能谱仪)检测第一阴极的产物样品,图谱上只有钴和碳的峰,求得Co的平均纯度为93%。The product obtained in the first step of electrolyzing the cathode is pure cobalt, and the product obtained in the second step of electrolyzing the cathode is pure tungsten. Fig. 5 is the XRD pattern of the product obtained in example 3. The product sample of the first cathode is detected by EDS (energy dispersive spectrometer), and there are only peaks of cobalt and carbon on the spectrum, and the average purity of Co obtained is 93%.
实施例4Example 4
采用分步电解法电解YG6型硬质合金选择性回收钨钴金属:电解装置同实施例3。Selective recovery of tungsten-cobalt metal by electrolysis of YG6 type cemented carbide by step-by-step electrolysis: the electrolysis device is the same as in Example 3.
实验所用熔盐体系为等摩尔的NaCl-KCl熔盐体系,实验所用保护气为氩气,阳极为YG6型硬质合金块,阴极为石墨棒,参比电极为Ag/AgCl,电解温度750℃,电解方式为恒压电解和恒流电解。第一步电解时,在阳极与阴极间施加相对于参比电极0.4V的电压,电解8h;电解完后冷却,取出残余的阳极块,清洗干净并以之为阳极进行二步电解。The molten salt system used in the experiment is an equimolar NaCl-KCl molten salt system, the protective gas used in the experiment is argon, the anode is a YG6 hard alloy block, the cathode is a graphite rod, the reference electrode is Ag/AgCl, and the electrolysis temperature is 750°C , The electrolysis method is constant voltage electrolysis and constant current electrolysis. In the first step of electrolysis, apply a voltage of 0.4V relative to the reference electrode between the anode and the cathode for 8 hours of electrolysis; after electrolysis, cool down, take out the remaining anode block, clean it and use it as the anode for the second step of electrolysis.
第二步电解换入新的NaCl-KCl熔盐体系,第二阴极为钼片,在阴阳极间施加72mA/cm2的恒定电流,电解时间2h。电解过程中槽电压始终低于3.2V。阴极所得粉末经超声水洗、离心、过滤、烘干,去除杂质。离心速度为2000-6000rpm,烘干温度为30-100℃。In the second step, a new NaCl-KCl molten salt system is replaced by electrolysis. The second cathode is a molybdenum sheet. A constant current of 72mA/ cm2 is applied between the cathode and anode, and the electrolysis time is 2h. The cell voltage is always lower than 3.2V during the electrolysis process. The powder obtained from the cathode is ultrasonically washed, centrifuged, filtered, and dried to remove impurities. The centrifugal speed is 2000-6000rpm, and the drying temperature is 30-100°C.
第一步电解阴极所得产物为纯钴,第二步电解阴极所得产物为纯钨。图6为实例4所得产物的XRD图谱。用EDS(能谱仪)检测第一阴极的产物样品,图谱上只有钴和碳的峰,求得Co的平均纯度为92%。The product obtained in the first step of electrolyzing the cathode is pure cobalt, and the product obtained in the second step of electrolyzing the cathode is pure tungsten. Fig. 6 is the XRD spectrum of the product obtained in Example 4. The product sample of the first cathode is detected by EDS (energy dispersive spectrometer), and there are only peaks of cobalt and carbon on the spectrum, and the average purity of Co obtained is 92%.
实施例5Example 5
采用分步电解法电解YG11型硬质合金选择性回收钨钴金属:电解装置同实施例3。Selective recovery of tungsten-cobalt metal by electrolysis of YG11 type cemented carbide by step-by-step electrolysis: the electrolysis device is the same as in Example 3.
实验所用熔盐体系为等摩尔的NaCl-KCl熔盐体系,实验所用保护气为氩气,阳极为YG11型硬质合金块,阴极为石墨棒,电解温度750℃,电解方式为恒压电解和恒流电解。第一步电解时,在阳极与阴极间施加相对于参比电极0.4V的电压,电解9h;电解完后冷却,取出残余的阳极块,清洗干净并以之为阳极进行二步电解,第二步在阴阳极间施加72mA/cm2的恒定电流,电解时间2h。阴极所得粉末经超声水洗、离心、过滤、烘干,去除杂质。离心速度为2000-6000rpm,烘干温度为30-100℃。The molten salt system used in the experiment is an equimolar NaCl-KCl molten salt system. The protective gas used in the experiment is argon. Constant current electrolysis. In the first step of electrolysis, apply a voltage of 0.4V relative to the reference electrode between the anode and the cathode, and electrolyze for 9 hours; The first step is to apply a constant current of 72mA/cm 2 between the cathode and the anode, and the electrolysis time is 2h. The powder obtained from the cathode is ultrasonically washed, centrifuged, filtered, and dried to remove impurities. The centrifugal speed is 2000-6000rpm, and the drying temperature is 30-100°C.
通过XRD检测可知(图7),第一步电解阴极所得产物为纯钴,第二步电解阴极所得产物为纯钨。It can be known from XRD detection (FIG. 7) that the product obtained from the cathode electrolysis in the first step is pure cobalt, and the product obtained from the cathode electrolysis in the second step is pure tungsten.
以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案做出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。The above embodiments are only descriptions of preferred implementations of the present invention, and are not intended to limit the scope of the present invention. On the premise of not departing from the design spirit of the present invention, various technical solutions of the present invention can be made by ordinary engineers and technicians in the field. Variations and improvements should fall within the scope of protection defined by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610728320.8A CN106222703A (en) | 2016-08-25 | 2016-08-25 | Multistep selective electrolysis reclaims the method for metal in hard alloy scraps |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610728320.8A CN106222703A (en) | 2016-08-25 | 2016-08-25 | Multistep selective electrolysis reclaims the method for metal in hard alloy scraps |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106222703A true CN106222703A (en) | 2016-12-14 |
Family
ID=57555310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610728320.8A Pending CN106222703A (en) | 2016-08-25 | 2016-08-25 | Multistep selective electrolysis reclaims the method for metal in hard alloy scraps |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106222703A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107513730A (en) * | 2017-08-31 | 2017-12-26 | 北京工业大学 | The continuous device and method for preparing tungsten powder and cobalt powder |
CN108149279A (en) * | 2017-11-30 | 2018-06-12 | 北京工业大学 | The method that electrolysis discarded hard alloy directly prepares tungsten-base alloy powder |
CN108360022A (en) * | 2018-05-02 | 2018-08-03 | 东北大学 | A kind of method that melten salt electriochemistry method recycles cobalt element in anode material of lithium battery |
CN108531942A (en) * | 2018-07-03 | 2018-09-14 | 包头市圣友稀土有限责任公司 | Rare earth electrolysis cell |
CN109208046A (en) * | 2018-09-29 | 2019-01-15 | 北京工业大学 | A kind of fused salt original position electro-deposition tungsten carbide/tungsten composite coating method |
CN109368613A (en) * | 2018-10-17 | 2019-02-22 | 北京工业大学 | A method for preparing porous carbon from waste cemented carbide |
CN110656357A (en) * | 2019-08-22 | 2020-01-07 | 北京工业大学 | Device and method for removing carbon and recovering cobalt and tungsten in waste WC-Co alloy |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3729397A (en) * | 1970-09-25 | 1973-04-24 | Molybdenum Corp | Method for the recovery of rare earth metal alloys |
US5118396A (en) * | 1989-06-09 | 1992-06-02 | The Dow Chemical Company | Electrolytic process for producing neodymium metal or neodymium metal alloys |
CN1180112A (en) * | 1997-04-11 | 1998-04-29 | 冯乃祥 | Method for preparing thin tungsten powder by using molten-salt electrolysis |
CN102575364A (en) * | 2009-04-30 | 2012-07-11 | 金属氧分离技术公司 | Primary production of elements |
CN103906861A (en) * | 2011-11-04 | 2014-07-02 | 住友电气工业株式会社 | Molten salt electrolysis metal fabrication method and apparatus for use in same |
CN104018190A (en) * | 2014-06-17 | 2014-09-03 | 北京工业大学 | Method for recovering waste hard alloy |
CN104313643A (en) * | 2014-07-31 | 2015-01-28 | 贵州重力科技环保有限公司 | High-purity antimony producing method by two-section fused salt electrolysis method |
-
2016
- 2016-08-25 CN CN201610728320.8A patent/CN106222703A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3729397A (en) * | 1970-09-25 | 1973-04-24 | Molybdenum Corp | Method for the recovery of rare earth metal alloys |
US5118396A (en) * | 1989-06-09 | 1992-06-02 | The Dow Chemical Company | Electrolytic process for producing neodymium metal or neodymium metal alloys |
CN1180112A (en) * | 1997-04-11 | 1998-04-29 | 冯乃祥 | Method for preparing thin tungsten powder by using molten-salt electrolysis |
CN102575364A (en) * | 2009-04-30 | 2012-07-11 | 金属氧分离技术公司 | Primary production of elements |
CN103906861A (en) * | 2011-11-04 | 2014-07-02 | 住友电气工业株式会社 | Molten salt electrolysis metal fabrication method and apparatus for use in same |
CN104018190A (en) * | 2014-06-17 | 2014-09-03 | 北京工业大学 | Method for recovering waste hard alloy |
CN104313643A (en) * | 2014-07-31 | 2015-01-28 | 贵州重力科技环保有限公司 | High-purity antimony producing method by two-section fused salt electrolysis method |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107513730A (en) * | 2017-08-31 | 2017-12-26 | 北京工业大学 | The continuous device and method for preparing tungsten powder and cobalt powder |
CN107513730B (en) * | 2017-08-31 | 2019-06-14 | 北京工业大学 | Device and method for continuously preparing tungsten powder and cobalt powder |
CN108149279A (en) * | 2017-11-30 | 2018-06-12 | 北京工业大学 | The method that electrolysis discarded hard alloy directly prepares tungsten-base alloy powder |
WO2019104809A1 (en) * | 2017-11-30 | 2019-06-06 | 北京工业大学 | Method for directly preparing tungsten-base alloy powder by electrolyzing discarded hard alloy |
CN108360022A (en) * | 2018-05-02 | 2018-08-03 | 东北大学 | A kind of method that melten salt electriochemistry method recycles cobalt element in anode material of lithium battery |
CN108531942A (en) * | 2018-07-03 | 2018-09-14 | 包头市圣友稀土有限责任公司 | Rare earth electrolysis cell |
CN109208046A (en) * | 2018-09-29 | 2019-01-15 | 北京工业大学 | A kind of fused salt original position electro-deposition tungsten carbide/tungsten composite coating method |
CN109368613A (en) * | 2018-10-17 | 2019-02-22 | 北京工业大学 | A method for preparing porous carbon from waste cemented carbide |
CN110656357A (en) * | 2019-08-22 | 2020-01-07 | 北京工业大学 | Device and method for removing carbon and recovering cobalt and tungsten in waste WC-Co alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106222703A (en) | Multistep selective electrolysis reclaims the method for metal in hard alloy scraps | |
JP6239117B2 (en) | Method for recovering discarded cemented carbide | |
CN100415940C (en) | Method for producing pure titanium by anodic electrolysis of titanium monoxide/titanium carbide soluble solid solution | |
CN101597776B (en) | Metallurgy method of metal sulfide M1S | |
CN112941567B (en) | Electrochemical method and device for high-temperature molten salt electrolysis in humid atmosphere | |
CN106544701B (en) | With the method for the metal in electrolysis of fluorides recovered WC waste material | |
CN108149279A (en) | The method that electrolysis discarded hard alloy directly prepares tungsten-base alloy powder | |
Li et al. | Recovery of tungsten from WC–Co hard metal scraps using molten salts electrolysis | |
Si et al. | Preparation and characterization of tungsten nanopowders from WC scrap in molten salts | |
Xie et al. | Electro-reduction of hematite using water as the redox mediator | |
Kang et al. | Study of the electrochemical recovery of cobalt from spent cemented carbide | |
Xi et al. | Electrochemical preparation of tungsten and cobalt from cemented carbide scrap in NaF–KF molten salts | |
CN105980303B (en) | The purifying of tungsten carbide composition | |
CN103668323B (en) | The method of a kind of electrolysis-segmentation electrodeposition method Treatment of Copper nickel materials | |
CN105401168A (en) | Method for preparing copper-nickel alloy by electro-deposition of low-grade copper and nickel mixed ore | |
CN102899689B (en) | Environment protection type metal refining method | |
CN105671598A (en) | Method for directly preparing aluminum foil through low temperature electrolysis | |
Wang et al. | Electrochemical Dissolution Process of Tungsten Carbide in Low Temperature Molten Salt System | |
Chen et al. | Recycling alloy scrap and CO 2 by paired molten salt electrolysis | |
Muneer et al. | Tungsten Carbide Recovery from Hard Material Scrape | |
Xue et al. | High-efficiency separation of Ni from Cu-Ni alloy by electrorefining in choline chloride-ethylene glycol deep eutectic solvent | |
CN105780060B (en) | A kind of method using eutectic solvent electrolytic separation lead-antimony alloy | |
Chang et al. | Metallic bismuth morphology and microstructure control during the membrane electro-deposition in methane-sulfonic acid system | |
CN114059103A (en) | Method for recovering tungsten carbide and cobalt from waste hard alloy | |
Safarzadeh et al. | The electrowinning of cadmium in the presence of zinc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161214 |
|
RJ01 | Rejection of invention patent application after publication |