CN100415940C - Method for producing pure titanium by anodic electrolysis of titanium monoxide/titanium carbide soluble solid solution - Google Patents
Method for producing pure titanium by anodic electrolysis of titanium monoxide/titanium carbide soluble solid solution Download PDFInfo
- Publication number
- CN100415940C CN100415940C CNB2005100116846A CN200510011684A CN100415940C CN 100415940 C CN100415940 C CN 100415940C CN B2005100116846 A CNB2005100116846 A CN B2005100116846A CN 200510011684 A CN200510011684 A CN 200510011684A CN 100415940 C CN100415940 C CN 100415940C
- Authority
- CN
- China
- Prior art keywords
- titanium
- anode
- electrolysis
- carbon
- tio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010936 titanium Substances 0.000 title claims abstract description 84
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 71
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 54
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 title claims abstract description 12
- KELHQGOVULCJSG-UHFFFAOYSA-N n,n-dimethyl-1-(5-methylfuran-2-yl)ethane-1,2-diamine Chemical compound CN(C)C(CN)C1=CC=C(C)O1 KELHQGOVULCJSG-UHFFFAOYSA-N 0.000 title claims description 4
- 239000006104 solid solution Substances 0.000 title abstract description 12
- 238000004519 manufacturing process Methods 0.000 title description 18
- 238000000034 method Methods 0.000 claims abstract description 52
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 42
- 230000008569 process Effects 0.000 claims abstract description 27
- 239000002994 raw material Substances 0.000 claims abstract description 27
- 150000003839 salts Chemical class 0.000 claims abstract description 26
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000001301 oxygen Substances 0.000 claims abstract description 19
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims abstract description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229960004424 carbon dioxide Drugs 0.000 claims abstract description 6
- 229910002090 carbon oxide Inorganic materials 0.000 claims abstract description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 5
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 229910052784 alkaline earth metal Chemical class 0.000 claims abstract 3
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 16
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 6
- 239000010962 carbon steel Substances 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 239000008151 electrolyte solution Substances 0.000 claims 3
- 229910052728 basic metal Inorganic materials 0.000 claims 2
- 150000003818 basic metals Chemical class 0.000 claims 2
- 239000010802 sludge Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 41
- 239000002184 metal Substances 0.000 abstract description 40
- 239000003792 electrolyte Substances 0.000 abstract description 12
- MVBPAIHFZZKRGD-UHFFFAOYSA-N MTIC Chemical compound CNN=NC=1NC=NC=1C(N)=O MVBPAIHFZZKRGD-UHFFFAOYSA-N 0.000 abstract description 10
- 150000002500 ions Chemical class 0.000 abstract description 7
- 150000001340 alkali metals Chemical class 0.000 abstract description 4
- -1 halide salts Chemical class 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 229910052783 alkali metal Inorganic materials 0.000 abstract 1
- 235000010215 titanium dioxide Nutrition 0.000 description 14
- 229960005196 titanium dioxide Drugs 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 11
- 230000009467 reduction Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 7
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- 235000011148 calcium chloride Nutrition 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 229910001508 alkali metal halide Inorganic materials 0.000 description 3
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- BUKHSQBUKZIMLB-UHFFFAOYSA-L potassium;sodium;dichloride Chemical compound [Na+].[Cl-].[Cl-].[K+] BUKHSQBUKZIMLB-UHFFFAOYSA-L 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910013618 LiCl—KCl Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003519 biomedical and dental material Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Images
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
本发明提供一种具有金属导电性的固溶体阳极TiO·mTiC直接电解制备纯钛的方法,以碳和二氧化钛或者以碳化钛和二氧化钛为原料,按化学反应计量混合为粉末,然后压制成型,在600℃~1600℃的温度范围内真空反应制成具有金属导电性能的TiO·mTiC阳极。以碱金属或碱土金属的卤化物熔盐为电解液,在400℃~1000℃温度下电解;电解过程中阳极所含的碳和氧形成碳氧化物气体CO,CO2或氧气放出,同时钛以低价离子形式进入熔盐并在阴极沉积得到纯钛。本发明的优点在于:该电解过程连续进行,并且无阳极泥产生,工艺简单。
The invention provides a method for preparing pure titanium by direct electrolysis of a solid solution anode TiO·mTiC with metal conductivity, using carbon and titanium dioxide or titanium carbide and titanium dioxide as raw materials, mixing them into powder according to stoichiometric reaction, and then pressing and forming, at 600 The vacuum reaction in the temperature range of ℃ ~ 1600 ℃ makes TiO·mTiC anode with metal conductivity. Use molten halide salts of alkali metals or alkaline earth metals as the electrolyte, and electrolyze at a temperature of 400 ° C to 1000 ° C; during the electrolysis process, the carbon and oxygen contained in the anode form carbon oxide gas CO, CO 2 or oxygen, and at the same time titanium Enter the molten salt in the form of low-valent ions and deposit pure titanium at the cathode. The invention has the advantages that: the electrolysis process is carried out continuously, no anode slime is generated, and the process is simple.
Description
技术领域 technical field
本发明属于电解法生产纯钛技术领域,特别是提供了一种一氧化钛/碳化钛可溶性固溶体阳极电解生产纯钛的方法。将可溶性阳极TiO·mTiC(其中0≤m≤1)在碱金属和/或碱土金属卤化物熔盐中直接电解制备纯钛,在该方法中,阳极所含碳和氧以碳氧化物气体(CO,CO2)或氧气的形式放出,钛以低价离子形式溶进熔盐并在阴极沉积得到纯钛。采用该方法可以在不出现阳极泥的前提下完成连续性电解生产纯钛的工艺过程,将大幅度降低钛的金属的生产成本。The invention belongs to the technical field of producing pure titanium by electrolysis, and in particular provides a method for producing pure titanium by anode electrolysis of titanium monoxide/titanium carbide soluble solid solution. The soluble anode TiO·mTiC (where 0≤m≤1) is directly electrolyzed in alkali metal and/or alkaline earth metal halide molten salt to prepare pure titanium. In this method, the carbon and oxygen contained in the anode are dissolved in carbon oxide gas ( CO, CO 2 ) or oxygen is released, and titanium dissolves into the molten salt in the form of low-valent ions and is deposited on the cathode to obtain pure titanium. By adopting the method, the technological process of continuous electrolytic production of pure titanium can be completed under the premise of no anode slime, and the production cost of titanium metal will be greatly reduced.
背景技术 Background technique
金属钛具有非常优异的物理、化学性能,其密度比钢小43%,比强度高、熔点高、耐高温腐蚀且无毒害。目前,钛已经成为优异的轻型结构材料、新型功能材料和重要的生物医用材料。钛已经被广泛的应用于航空航天、军工及化工、船舶、汽车、体育器材、医疗器械、建筑等民用领域。其已经被誉为“未来金属”、“第三金属”。然而,钛的价格大大了限制了钛的利用,尽管钛在地壳中的储量丰富(0.44%,在所有金属元素中排列第8,仅次于镁的2.0%),但是由于钛的现行冶金过程繁琐,使其价格无法降低。Metal titanium has excellent physical and chemical properties, its density is 43% lower than steel, high specific strength, high melting point, high temperature corrosion resistance and non-toxic. At present, titanium has become an excellent lightweight structural material, a new functional material and an important biomedical material. Titanium has been widely used in civilian fields such as aerospace, military industry and chemical industry, shipbuilding, automobiles, sports equipment, medical equipment, and construction. It has been hailed as "future metal" and "third metal". However, the price of titanium greatly limits the utilization of titanium. Although titanium is abundant in the earth's crust (0.44%, ranking 8th among all metal elements, second only to magnesium's 2.0%), due to the current metallurgical process of titanium cumbersome, making it impossible to lower the price.
目前金属钛的主流生产工艺为Kroll法,生产得到的海绵钛可用电子束熔炼提纯。Kroll法生产金属钛过程首先是将二氧化钛通过加碳氯化制取四氯化钛(TiCl4),然后用金属镁通过热还原获得海绵钛,而金属镁则是通过电解氯化镁来获取,电解所得的氯气又用于氯化钛的制取,所以整个生产过程包括氯化镁电解、氧化钛氯化、以及镁热还原三个主要部分,步骤繁琐、能源消耗大,而且核心的镁热还原步骤是间歇式操作,生产效益非常低,由于这些原因造成了金属钛的价格昂贵,以此方法生产的海绵钛的价格约为5.6~10.0US$/kg,其价格远高于钢铁的价格,单位重量价格也是金属铝的3倍以上。At present, the mainstream production process of titanium metal is the Kroll method, and the sponge titanium produced can be purified by electron beam melting. The process of producing titanium metal by the Kroll method is firstly to prepare titanium tetrachloride (TiCl 4 ) by adding carbon to titanium dioxide, and then use metal magnesium to obtain sponge titanium through thermal reduction, while metal magnesium is obtained by electrolysis of magnesium chloride. The chlorine gas is used for the production of titanium chloride, so the whole production process includes three main parts: electrolysis of magnesium chloride, chlorination of titanium oxide, and magnesium thermal reduction. The steps are cumbersome and energy consumption is large, and the core magnesium thermal reduction step is intermittent. Due to these reasons, the price of metal titanium is expensive. The price of titanium sponge produced by this method is about 5.6-10.0 US$/kg, which is much higher than the price of steel, and the price per unit weight It is also more than 3 times that of metal aluminum.
为了降低海绵钛的价格,在过去的近70年中,世界各国的冶金学家们多方位寻求新的低成本纯钛冶炼工艺,其中包括化学热还原,电解等方法。In order to reduce the price of sponge titanium, in the past nearly 70 years, metallurgists from all over the world have sought new low-cost pure titanium smelting processes, including chemical thermal reduction, electrolysis and other methods.
研究过的钛电解方法主要有,TiCl4电解和钛氧化物电解(文献:M.V.Ginatta.Process for the electrolytic production of metals[P].US6074545,2000;M.V.Ginatta,G.Orsello,R.Berruti.Method and cell for the electrolytic production of a polyvalent metal[P].US5015342,1991;倪福生,陆庆桃,陈世官.LiCl-NaCl-KCl体系中钛与低价氯化物之间的平衡.稀有金属,.111(1984):23-28;杜继红,祁和述.Ti(IV)在氯化物熔体中的电化学还原.稀有金属材料与工程,27(1998):165-168。)。The studied titanium electrolysis methods mainly include TiCl 4 electrolysis and titanium oxide electrolysis (document: MVGinatta.Process for the electrolytic production of metals[P].US6074545,2000; MVGinatta, G.Orsello, R.Berruti.Method and cell for the electrolytic production of a polyvalent metal[P]. US5015342, 1991; Ni Fusheng, Lu Qingtao, Chen Shiguan. The equilibrium between titanium and low-valent chlorides in the LiCl-NaCl-KCl system. Rare Metals, .111(1984): 23-28; Du Jihong, Qi Heshu. Electrochemical Reduction of Ti(IV) in Chloride Melt. Rare Metal Materials and Engineering, 27(1998): 165-168.).
由于TiCl4是共价键分子,在融盐中的溶解度较低,难以满足工业化生产的需要。另外钛是典型的过渡族金属元素,钛离子在阴极的不完全放电以及不同价态离子在阴、阳极之间的迁移可以降低电解过程的电流效率。Because TiCl 4 is a covalent bond molecule, its solubility in molten salt is low, and it is difficult to meet the needs of industrial production. In addition, titanium is a typical transition metal element. The incomplete discharge of titanium ions at the cathode and the migration of ions in different valence states between the cathode and the anode can reduce the current efficiency of the electrolysis process.
本世纪初期,英国剑桥大学以D.J.Fray为首的研究小组提出了一种以TiO2为原料在熔融氯化钙中阴极脱氧生产海绵钛的新工艺(文献:G.Z.Chen,D.J.Fray,T.W.Farthing.Direct electrochemical reduction of titanium dioxide to titanium in moltencalcium chloride.Nature,407(2000):361-364)。该方法的预算成本比Kroll法低,且被认为无毒。由此,氧化物电解直接生产海绵钛成为钛金属冶炼的研究热点(文献:G.Z.Chen,D.J.Fray,T.W.Farthing.Direct electrochemical reduction of titaniumdioxide to titanium in molten calcium chloride.Nature,407(2000):361-364;D.J.Fray.Emerging molten salt technologies for metals production.JOM,53(2001):26-31;G.Z.Chen,D.J.Fray.Electro-deoxidation of metal oxides.Light Metals,2001:1147-1151)。但最近关于FFC工艺的研究证明该法生产海绵钛存在以下问题:At the beginning of this century, a research team headed by DJFray at the University of Cambridge proposed a new process for producing sponge titanium by cathodic deoxidation in molten calcium chloride using TiO2 as raw material (document: GZChen, DJFray, TWFarthing.Direct electrochemical reduction of titanium Dioxide to titanium in molten calcium chloride. Nature, 407 (2000): 361-364). This method has a lower estimated cost than the Kroll method and is considered non-toxic. Thus, the direct production of titanium sponge by oxide electrolysis has become a research hotspot in titanium metal smelting (document: GZChen, DJFray, TWFarthing.Direct electrochemical reduction of titaniumdioxide to titanium in molten calcium chloride.Nature, 407(2000):361-364; . Emerging molten salt technologies for metals production. JOM, 53(2001): 26-31; GZ Chen, DJFray. Electro-deoxidation of metal oxides. Light Metals, 2001: 1147-1151). However, recent research on the FFC process has proved that the production of sponge titanium by this method has the following problems:
(1)采用氧溶解能力较高的CaCl2融盐体系使得生成的海绵钛氧含量过高,要降低氧含量必须进行过量电解,这又造成了电流效率极低;(1) The use of CaCl2 molten salt system with high oxygen solubility makes the oxygen content of the generated sponge titanium too high, and excessive electrolysis must be carried out to reduce the oxygen content, which causes the current efficiency to be extremely low;
(2)原料阴极准备很不方便,TiO2是半导体,电解初期必须由其它金属材料承担电极的导通,如原料阴极太大自然会造成很大的电压降,并阻碍电极过程的进行;(2) It is very inconvenient to prepare the raw material cathode. TiO 2 is a semiconductor. In the initial stage of electrolysis, other metal materials must undertake the conduction of the electrode. If the raw material cathode is too large, it will naturally cause a large voltage drop and hinder the progress of the electrode process;
(3)氧离子固相扩散速率太慢造成极化使阴极的电流密度很低,并且随着电解的进行电极面积逐渐变化,即使以恒电势的方式进行电解电流也会随着TiO2被还原量的增加而增加,因此在工业生产上很难实现稳定的电解;(3) The solid-phase diffusion rate of oxygen ions is too slow, resulting in polarization so that the current density of the cathode is very low, and the electrode area gradually changes with the progress of electrolysis, even if the electrolysis current is carried out in a constant potential mode, it will be reduced with TiO 2 Therefore, it is difficult to achieve stable electrolysis in industrial production;
(4)由于原料TiO2和产物金属钛为同一阴极,整个工艺只能是间歇式的,也就是说即使电解成功也只能在结束一个阴极电解之后将电极取出,替换另一个TiO2电极后再电解。(4) Since the raw material TiO 2 and the product metal titanium are the same cathode, the whole process can only be intermittent, that is to say, even if the electrolysis is successful, the electrode can only be taken out after the end of a cathode electrolysis, and after another TiO 2 electrode is replaced Re-electrolysis.
(5)产物金属钛是原料TiO2逐步还原所得,原料中绝大部分杂质将会进入到产物金属钛中。要获得高纯度的金属就必须用高纯度的原料TiO2。然而,生产高纯度TiO2成本并不低,这就会带来整个过程生产成本的提高。(5) The product metal titanium is obtained by gradually reducing the raw material TiO 2 , and most of the impurities in the raw material will enter the product metal titanium. To obtain high-purity metals, high-purity raw material TiO 2 must be used. However, the cost of producing high-purity TiO2 is not low, which will increase the production cost of the whole process.
所以FFC工艺的工业化的可能性仍然有待讨论,只有在解决了以上的问题之后才有可能实用化,而现实上又很难看到在本质上解决这些问题的途径(M.F.Liu,Z.C.Guo,W.C.Lu.An investigation into electrochemical reduction of TiO2 pellet.Transaction of the institute of mining and metallurgy,sectrion C.In press)。Therefore, the possibility of the industrialization of the FFC process still needs to be discussed, and it is only possible to put it into practical use after solving the above problems, but in reality it is difficult to see the way to solve these problems in essence (MFLiu, ZCGuo, WCLu.An investigation into electrochemical reduction of TiO 2 pellet. Transaction of the institute of mining and metallurgy, sectrion C. In press).
日本研究人员岗部(Okabe)和小野(Ono)等同样用熔融氯化钙作为电解质电解获得了金属钛(文献:T.H.Okabe,M.Nakamura,T.Oishi et al.Electrochemicaldeoxidation of titanium.Met.Trans.,24B(1993):449-455;K.Ono,R.O.Suzuki.a newconcept for producing Ti sponge:calciothermic reduction.JOM,54(2002)(2):59-61),所不同的是他们并没将原料TiO2和阴极直接接触,因此他们认为是通过电解获得金属钙之后再还原得到金属钛的,该方法是电解和热还原的一种组合,这一方法省去了FFC法中准备TiO2阴极的步骤,但存在着如何将阴极产物的金属钙和原料的TiO2合理混合以及提取产物钛等问题;而FFC法的其他部分的问题同样还是在此方法中存在。Japanese researchers Okabe and Ono also used molten calcium chloride as electrolyte to electrolyze titanium metal (document: THOkabe, M.Nakamura, T.Oishi et al.Electrochemicaldeoxidation of titanium.Met.Trans. , 24B(1993): 449-455; K.Ono, ROSuzuki.a new concept for producing Ti sponge: calciothermic reduction. JOM, 54(2002)(2): 59-61), the difference is that they did not use raw materials TiO 2 is in direct contact with the cathode, so they believe that metal calcium is obtained by electrolysis and then reduced to obtain metal titanium. This method is a combination of electrolysis and thermal reduction. This method saves the preparation of the TiO 2 cathode in the FFC method. Steps, but there are problems such as how to properly mix the metal calcium of the cathode product and the TiO2 of the raw material and extract the product titanium; and the problems of other parts of the FFC method also exist in this method.
因此要获得质量足够高的金属钛还是必须将氧和产物钛金属隔离,并且能将原料钛连续的提供到电解液中。现实上高纯度钛就是用海绵钛为阳极通过熔融盐(多为氯化物)电解精炼获得的,但是这些原料阳极是通过Kroll法获得的,也就是说这只不过是一个精炼过程而已,并没有在任何意义上达到还原提取的目的。由于TiC是一种具有金属导电性能的化合物,也可作为可溶解性阳极用于熔融盐电解制备高纯钛,电解过程中钛以低价离子形式进入熔盐,并在阴极沉积得到纯钛,但阳极区残留碳严重影响电解的进行。为解决上述阳极剩碳问题,上世纪50年代,E.Wainer(文献:E.Wainer.Cell feed material for the production of titanium[P].US2868703,1959.;E.Wainer,C.Heights,O.Assignor.Production of titanium[P].US2722509,1955.)以TiC和TiO为原料混合后,在2100℃的高温下热处理形成TiC和TiO的固溶体(TiC·TiO),以此为阳极在氯化物熔融盐电解,研究发现阳极上有CO气体放出并且阳极区没有剩余产物(阳极泥),经过电解后可在阴极沉积获得纯钛。这里用到的TiO是一种类似TiC的金属导电性化合物,因此TiC和TiO固溶体可用于类似于金属的可溶性阳极,而且在适当的条件下阳极产物为碳氧化合物气体(CO,CO2),而钛则以离子的形式溶入电解液中。但是Wainer所提的方案需要以TiC和TiO为原料,其中TiO不容易制备和控制,并且他所提出的固溶体熔炼是采用电弧熔炼高温(>2100℃)下完成的,显然在实际应用意义上还是存在问题。Therefore, in order to obtain high-quality titanium metal, it is still necessary to isolate oxygen from the product titanium metal, and to continuously provide the raw material titanium into the electrolyte. In fact, high-purity titanium is obtained by electrolytic refining of molten salt (mostly chloride) with sponge titanium as the anode, but these raw material anodes are obtained by the Kroll method, which means that this is just a refining process, and there is no Reductive extraction is achieved in any sense. Since TiC is a compound with metal conductivity, it can also be used as a soluble anode for molten salt electrolysis to prepare high-purity titanium. During the electrolysis process, titanium enters the molten salt in the form of low-valent ions and deposits pure titanium at the cathode. However, the residual carbon in the anode area seriously affects the electrolysis. In order to solve the problem of remaining carbon in the anode, in the 1950s, E.Wainer (document: E.Wainer.Cell feed material for the production of titanium[P].US2868703, 1959.; E.Wainer, C.Heights, O. Assignor.Production of titanium[P].US2722509, 1955.) After mixing TiC and TiO as raw materials, heat treatment at a high temperature of 2100°C to form a solid solution of TiC and TiO (TiC TiO), which is used as an anode when the chloride melts In salt electrolysis, it is found that CO gas is released from the anode and there is no remaining product (anode slime) in the anode area. After electrolysis, pure titanium can be deposited on the cathode. The TiO used here is a metal conductive compound similar to TiC, so TiC and TiO solid solutions can be used in soluble anodes similar to metals, and the anode product is carbon oxide gas (CO, CO 2 ) under appropriate conditions, Titanium dissolves into the electrolyte in the form of ions. However, the scheme proposed by Wainer needs to use TiC and TiO as raw materials, among which TiO is not easy to prepare and control, and the solid solution melting he proposed is completed at high temperature (>2100°C) by arc melting, which obviously still exists in the sense of practical application. question.
日本研究研究人员桥本(Y.Hashimoto)以过量的碳和TiO2为原料混合,在电弧高温下(>1700℃)制成氧掺杂碳化钛(TiC doped by Oxygen),并以之为阳极电解,熔融盐电解阴极沉积得到纯钛(文献:橋本雍彦.Ti-C-O合金またはを陽極とするTiの溶融塩電解.日本金属学会誌,32(1968):1327-1333.;橋本雍彦.チタンの溶融塩製錬における低品位(δ)-Ti-C-O可溶性陽極のチタン陽極溶出。日本金属学会誌,35(1971):480-486.;橋本雍彦.ア一ク還元Ti-C-OおよびTiC可溶性陽極よりのTiの抽出.日本金属学会誌,35(1971):282-289.;橋本雍彦.チタンの溶融塩電解製錬における可溶性陽極としての焼结TiCについて.日本金属学会誌,35(1971):487-493.;橋本雍彦.高純度TiC粉末製造に関する研究(第1報)--TiO2の真空炭化による微粉TiC製造について.粉体および粉末冶金,17(1970):168-175.)。但是其阳极的制备过程仍然依赖于非常高温的还原条件,并没有在本质上达到低成本提取钛的目的。并且其电解实验都是以低氧的碳化钛为主的,阳极碳含量太高产生大量阳极泥,连续电解无法正常进行。Japanese researcher Y. Hashimoto mixed excess carbon and TiO 2 as raw materials, made oxygen-doped titanium carbide (TiC doped by Oxygen) at high temperature (>1700°C) in the arc, and used it as an anode Electrolysis, molten salt electrolytic cathodic deposition to obtain pure titanium (document: Hashimoto Yongyan. Ti-CO alloy またはを anode and するTi の melting 塩 electrolysis. Journal of the Japanese Society for Metals, 32 (1968): 1327-1333.; Hashimoto Yongyan. チタンの烧食塩制錬におけるLow-grade (δ)-Ti-CO soluble anode のちタン anode dissolution. Journal of the Japanese Society for Metals, 35(1971): 480-486.; Extraction of anode よりのTiの. The Journal of the Japanese Society for Metals, 35(1971): 282-289. ): 487-493.; Hashimoto Yuhiko. Research on high-purity TiC powder manufacturing に关する (1st report)--TiO 2の vacuum carbonization による fine powder TiC manufacturing について. Powder および powder metallurgy, 17(1970): 168-175. ). However, the preparation process of its anode still relies on very high temperature reducing conditions, and it does not essentially achieve the purpose of extracting titanium at low cost. Moreover, the electrolysis experiments are all based on low-oxygen titanium carbide. If the carbon content of the anode is too high, a large amount of anode slime will be generated, and continuous electrolysis cannot be carried out normally.
发明内容 Contents of the invention
本发明的目的在于:提供一氧化钛/碳化钛可溶性固溶体阳极电解生产纯钛的方法,即一种具有金属导电性的固溶体阳极TiO·mTiC(其中0≤m≤1)直接电解制备纯钛的方法。实现了低能耗制备TiO·mTiC(其中0≤m≤1)固溶体可溶性阳极,并在卤化物熔盐中对之电解,阳极中所含的碳和氧结合为碳氧气体(CO、CO2)的形式或氧气放出,而所含的钛以低价离子形式进入熔盐并在阴极沉积得到纯钛。The object of the present invention is to: provide the method for producing pure titanium by anode electrolysis of titanium monoxide/titanium carbide soluble solid solution, that is, a kind of solid solution anode TiO mTiC (wherein 0≤m≤1) with metal conductivity directly electrolytically prepares pure titanium method. Realized the preparation of TiO mTiC (where 0≤m≤1) solid solution soluble anode with low energy consumption, and electrolyzed it in halide molten salt, the carbon and oxygen contained in the anode combined into carbon and oxygen gas (CO, CO 2 ) The form or oxygen is released, and the contained titanium enters the molten salt in the form of low-valent ions and deposits pure titanium at the cathode.
本发明以碳和二氧化钛或者以碳化钛和二氧化钛为原料,按化学反应计量混合为粉末,然后压制成型,在600℃~1600℃的温度范围内真空反应制成具有金属导电性能的TiO·mTiC阳极,其中0≤m≤1;以碱金属或碱土金属的卤化物熔盐为电解液,在400℃~1000℃温度下电解;电解过程中阳极所含的碳和氧形成碳氧化物气体CO、CO2或氧气放出,同时钛以低价离子形式进入熔盐并在阴极沉积得到纯钛;电解完成后将阴极产物常温除下,用去离子水5~8次清洗出去来自电解液的氯化物;该电解过程连续进行,并且无阳极泥产生。具体工艺过程如下:In the present invention, carbon and titanium dioxide or titanium carbide and titanium dioxide are used as raw materials, mixed into powder according to the stoichiometric reaction, then pressed and formed, and vacuum-reacted in a temperature range of 600 ° C to 1600 ° C to produce a TiO mTiC anode with metal conductivity. , where 0≤m≤1; the molten salt of alkali metal or alkaline earth metal halide is used as the electrolyte, and electrolyzed at a temperature of 400 ° C to 1000 ° C; during the electrolysis process, the carbon and oxygen contained in the anode form carbon oxide gases CO, CO 2 or oxygen is released, and titanium enters the molten salt in the form of low-valent ions and deposits pure titanium on the cathode; after the electrolysis is completed, the cathode product is removed at room temperature, and the chloride from the electrolyte is washed out with deionized water 5 to 8 times ; The electrolysis process is carried out continuously, and no anode slime is produced. The specific process is as follows:
1.以化学反应计量的碳和TiO2为原料,以100kg/cm2~1000kg/cm2的压力成型,成型压力优选600kg/cm2~1000kg/cm2;在600℃~1600℃的温度范围内真空反应制成具有金属导电性能的TiO·mTiC(其中0≤m≤1)阳极。1. Using stoichiometric carbon and TiO 2 as raw materials, molding at a pressure of 100kg/cm 2 to 1000kg/cm 2 , the molding pressure is preferably 600kg/cm 2 to 1000kg/cm 2 ; at a temperature range of 600°C to 1600°C The internal vacuum reaction makes a TiO·mTiC (where 0≤m≤1) anode with metal conductivity.
2.以碳和二氧化钛或者以碳化钛和二氧化钛为原料分别按如下反应的化学计量比将原料均匀混合;2. Use carbon and titanium dioxide or titanium carbide and titanium dioxide as raw materials to uniformly mix the raw materials according to the stoichiometric ratio of the following reactions;
2TiO2+4C=Ti2CO+3CO2TiO 2 +4C=Ti 2 CO+3CO
3TiO2+5C=Ti3CO2+4CO3TiO 2 +5C=Ti 3 CO 2 +4CO
4TiO2+6C=Ti4CO3+5CO4TiO 2 +6C=Ti 4 CO 3 +5CO
..
..
..
..
..
..
TiO2+C=TiO+COTiO 2 +C=TiO+CO
或or
2TiO2+4TiC=3Ti2CO+CO2TiO 2 +4TiC=3Ti 2 CO+CO
4TiO2+5TiC=3Ti3CO2+2CO4TiO 2 +5TiC=3Ti 3 CO 2 +2CO
2TiO2+2TiC=Ti4CO3+CO2TiO 2 +2TiC=Ti 4 CO 3 +CO
..
..
..
..
..
..
2TiO2+TiC=3TiO+CO2TiO 2 +TiC=3TiO+CO
3.以化学反应计量的TiC和TiO2为原料,以100kg/cm2~1000kg/cm2的压力成型,成型压力优选600kg/cm2~1000kg/cm2;在600℃~1600℃的温度范围内真空反应制成具有金属导电性能的TiO·mTiC(其中0≤m≤1)阳极。3. Using stoichiometric TiC and TiO 2 as raw materials, molding at a pressure of 100kg/cm 2 to 1000kg/cm 2 , the molding pressure is preferably 600kg/cm 2 to 1000kg/cm 2 ; at a temperature range of 600°C to 1600°C The internal vacuum reaction makes a TiO·mTiC (where 0≤m≤1) anode with metal conductivity.
4.选择碱金属或碱土金属卤化物熔盐体系,优选氟化物或氯化物,更优选氯化物共晶体系。4. Select alkali metal or alkaline earth metal halide molten salt system, preferably fluoride or chloride, more preferably chloride eutectic system.
5.以步骤1和2制备的TiO·mTiC(其中0≤m≤1)为阳极,选择一种金属材料作为阴极,优选钛、碳钢、镍为阴极。5. The TiO·mTiC (where 0≤m≤1) prepared in
6.以步骤3选用的熔盐作为电解液,和步骤4选用的电极组成电解池,在400℃~1000℃的温度下电解。6. Use the molten salt selected in step 3 as the electrolyte, and the electrode selected in step 4 to form an electrolytic cell, and perform electrolysis at a temperature of 400°C to 1000°C.
7.电解时的电流密度范围分别为:阳极,0.05A/cm2~1.00A/cm2,优选0.20A/cm2~0.5A/cm2;阴极,0.10A/cm2~1.00A/cm2,优选0.10A/cm2~0.4A/cm2。7. The range of current density during electrolysis is: anode, 0.05A/cm 2 ~ 1.00A/cm 2 , preferably 0.20A/cm 2 ~ 0.5A/cm 2 ; cathode, 0.10A/cm 2 ~ 1.00A/
8.连续添加可溶性固溶体阳极,每次电解15小时后检查阴极产物。8. Continuously add soluble solid solution anode, and check the cathode product after 15 hours of electrolysis each time.
9.电解完成后将阴极产物常温除下,用去离子水清洗六次出去来自电解液的氯化物。9. After the electrolysis is completed, remove the cathode product at room temperature, and wash it with deionized water six times to remove the chloride from the electrolyte.
本发明的优点在于:在低于1600℃的条件下制备得到具有金属导电性能的阳极TiO·mTiC(其中0≤m≤1)在卤化物熔盐中电解,阴极得到纯钛并且阳极区没有阳极泥产生。如此可完成连续性电解过程。The advantage of the present invention is that: the anode TiO mTiC (where 0≤m≤1) with metal conductivity is prepared under the condition of lower than 1600°C and electrolyzed in halide molten salt, the cathode obtains pure titanium and the anode area has no anode mud produced. In this way, a continuous electrolysis process can be completed.
附图说明 Description of drawings
图1为本发明实例1制备得到阳极材料的X-射线衍射图。Fig. 1 is the X-ray diffraction diagram of the anode material prepared in Example 1 of the present invention.
图2为本发明实例2制备得到阳极材料的X-射线衍射图。Fig. 2 is an X-ray diffraction pattern of the anode material prepared in Example 2 of the present invention.
图3为本发明实例3阴极产物的扫描电镜照片。Figure 3 is a scanning electron micrograph of the cathode product of Example 3 of the present invention.
图4为本发明实例3阴极产物的X-射线衍射图。Fig. 4 is the X-ray diffraction diagram of the cathode product of Example 3 of the present invention.
图5为本发明实例4阴极产物的X-射线衍射图Fig. 5 is the X-ray diffraction pattern of the cathode product of example 4 of the present invention
图6为本发明实例5阴极产物的扫描电镜照片。Fig. 6 is a scanning electron micrograph of the cathode product of Example 5 of the present invention.
图7为本发明实例6阴极产物的扫描电镜照片。Fig. 7 is a scanning electron micrograph of the cathode product of Example 6 of the present invention.
具体实施方式 Detailed ways
实施例1Example 1
阳极制备Anode preparation
原料:碳粉,二氧化钛以如下反应化学计量比混合。Raw materials: carbon powder, titanium dioxide are mixed in the following reaction stoichiometric ratio.
2TiO2+4C=Ti2CO+3CO2TiO 2 +4C=Ti 2 CO+3CO
制备工艺条件(见下表)Preparation process conditions (see the table below)
压制得到的块体热处理前电阻为38欧姆·厘米,热处理后电阻急剧降为0.1欧姆·厘米。对热处理后材料元素分析表明,其具有的原子配比形式应该为Ti2CO,采用X-射线衍射手段分析该材料的结构成分,其结果见附图1,由图可见热处理后材料的结构发生明显变化,主要为具有金属导电性能的TiC·TiO固溶体。The electrical resistance of the pressed block was 38 ohm·cm before heat treatment, and the resistance dropped sharply to 0.1 ohm·cm after heat treatment. The elemental analysis of the material after heat treatment shows that its atomic proportion form should be Ti 2 CO, and the structural composition of the material is analyzed by means of X-ray diffraction. The results are shown in Figure 1, and the structure of the material after heat treatment can be seen from the figure. Obvious changes, mainly TiC TiO solid solution with metal conductivity.
实施例2Example 2
阳极制备Anode preparation
原料:碳化钛,二氧化钛粉末以如下反应化学计量比混合。Raw materials: Titanium carbide, titanium dioxide powder mixed in the following reaction stoichiometric ratio.
2TiO2+4TiC=3Ti2CO+CO2TiO 2 +4TiC=3Ti 2 CO+CO
制备工艺条件(见下表)Preparation process conditions (see the table below)
压制得到的块体热处理前电阻为72欧姆·厘米,热处理后电阻急剧降为0.05欧姆·厘米。采用X-射线衍射手段分析该材料的结构成分,其结果见附图2,由图可见热处理后为TiC·TiO固溶体。The resistance of the pressed block was 72 ohm·cm before heat treatment, and the resistance dropped sharply to 0.05 ohm·cm after heat treatment. The structural composition of the material was analyzed by means of X-ray diffraction, and the results are shown in Figure 2. It can be seen from the figure that it is a TiC·TiO solid solution after heat treatment.
实施例3Example 3
以实施例1得到的块体材料为阳极,碳钢为阴极,NaCl-KCl熔盐为电解液进行电解,具体的实施工艺见下表:The bulk material obtained in Example 1 is used as the anode, the carbon steel is used as the cathode, and the NaCl-KCl molten salt is used as the electrolyte for electrolysis. The specific implementation process is shown in the table below:
为说明阳极反应机理,电解过程中采用气相色谱分析仪器对阳极过程生成气体进行检测,所采用的载气为氩气,得到各种气体的浓度见下表In order to illustrate the mechanism of the anode reaction, a gas chromatographic analysis instrument is used to detect the gas generated in the anode process during the electrolysis process. The carrier gas used is argon, and the concentrations of various gases are shown in the table below.
上表数据说明电解过程中在阳极产生碳氧化物气体,并且在实验条件下以CO为主。电解完成后阴极沉积得到纯钛,将其用稀盐酸(1wt%)洗涤后用去离子水清洗5次自然干燥收存,通过法拉第定理计算得到阴极电流效率为90%;附图3实例3阴极产物的扫描电子显微镜照片。附图4实例3为阴极产物的X-射线衍射图,从图中可以看出,阴极产物具有纯钛的晶体结构。The data in the above table shows that carbon oxide gas is generated at the anode during the electrolysis process, and CO is the main form under the experimental conditions. After the electrolysis is completed, the cathodic deposition obtains pure titanium, which is washed with dilute hydrochloric acid (1wt%) and then cleaned with deionized water for 5 times and stored in natural drying. Calculated by Faraday's law, the cathode current efficiency is 90%; accompanying drawing 3 example 3 cathode Scanning electron micrograph of the product. Accompanying drawing 4 example 3 is the X-ray diffraction pattern of cathode product, as can be seen from the figure, cathode product has the crystal structure of pure titanium.
实施例4Example 4
以实施例2得到的块体材料为阳极,碳钢为阴极,LiCl-KCl熔盐为电解液进行电解,具体的实施工艺见下表:The bulk material obtained in Example 2 is used as the anode, the carbon steel is used as the cathode, and the LiCl-KCl molten salt is used as the electrolyte for electrolysis. The specific implementation process is shown in the table below:
电解完成后阴极得到的纯钛,将其用稀盐酸(1wt%)洗涤后用去离子水清洗8次收存,通过法拉第定理计算得到阴极电流效率为85%;附图5实例4阴极产物的扫描电子显微镜照片。After the electrolysis is completed, the pure titanium obtained by the negative electrode is washed with dilute hydrochloric acid (1wt%) and stored for 8 times with deionized water. It is calculated by Faraday's law that the cathode current efficiency is 85%; Scanning electron microscope photo.
实施例5Example 5
阳极制备Anode preparation
原料:碳粉,二氧化钛以如下反应化学计量比混合。Raw materials: carbon powder, titanium dioxide are mixed in the following reaction stoichiometric ratio.
3TiO2+5C=Ti3CO2+4CO3TiO 2 +5C=Ti 3 CO 2 +4CO
制备工艺条件(见下表)Preparation process conditions (see the table below)
压制得到的块体热处理前电阻为46欧姆·厘米,热处理后电阻急剧降为0.07欧姆·厘米。The resistance of the pressed block before heat treatment was 46 ohm·cm, and the resistance dropped sharply to 0.07 ohm·cm after heat treatment.
以该块体材料为阳极,碳钢为阴极NaCl-KCl熔盐为电解液以下表的电解条件进行电解气相色谱检测阳极气体分析结果如下:The block material is used as the anode, and the carbon steel is used as the cathode. NaCl-KCl molten salt is used as the electrolyte, and the electrolytic gas chromatography is used to detect the anode gas analysis results as follows:
法拉第定理计算电流效率为89%,附图6实例5阴极产物的扫描电子显微镜照片。元素分析结果表明阴极产物中氧含量为210ppm。The current efficiency calculated by Faraday's theorem is 89%, and the scanning electron microscope photo of the cathode product in Example 5 of the accompanying drawing 6. Elemental analysis results showed that the oxygen content in the cathode product was 210 ppm.
实施例6Example 6
阳极制备Anode preparation
原料:碳粉,二氧化钛以如下反应化学计量比混合。Raw materials: carbon powder, titanium dioxide are mixed in the following reaction stoichiometric ratio.
TiO2+C=TiO+COTiO 2 +C=TiO+CO
制备工艺条件(见下表)Preparation process conditions (see the table below)
压制得到的块体热处理前电阻为43欧姆·厘米,热处理后电阻急剧降为0.2欧姆·厘米。The electrical resistance of the pressed block was 43 ohm·cm before heat treatment, and the resistance dropped sharply to 0.2 ohm·cm after heat treatment.
以该块体材料为阳极,碳钢为阴极,LiF-NaF-KF熔盐为电解液以下表电解条件电解气相色谱检测阳极气体分析结果如下。The block material is used as the anode, the carbon steel is used as the cathode, and the LiF-NaF-KF molten salt is used as the electrolyte. The electrolysis conditions in the following table are used to detect the anode gas by electrolytic gas chromatography. The analysis results are as follows.
法拉第定理计算电流效率为87%,附图7实例6阴极产物的扫描电子显微镜照片。元素分析结果表明阴极产物中氧含量为380ppm。The current efficiency calculated by Faraday's theorem is 87%, and the scanning electron micrograph of the cathode product in Example 6 of the accompanying drawing 7. Elemental analysis results showed that the oxygen content in the cathode product was 380 ppm.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100116846A CN100415940C (en) | 2005-05-08 | 2005-05-08 | Method for producing pure titanium by anodic electrolysis of titanium monoxide/titanium carbide soluble solid solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100116846A CN100415940C (en) | 2005-05-08 | 2005-05-08 | Method for producing pure titanium by anodic electrolysis of titanium monoxide/titanium carbide soluble solid solution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1712571A CN1712571A (en) | 2005-12-28 |
CN100415940C true CN100415940C (en) | 2008-09-03 |
Family
ID=35718362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100116846A Active CN100415940C (en) | 2005-05-08 | 2005-05-08 | Method for producing pure titanium by anodic electrolysis of titanium monoxide/titanium carbide soluble solid solution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100415940C (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101649471B (en) * | 2009-09-23 | 2013-06-12 | 攀钢集团研究院有限公司 | Method for producing high purity vanadium metal |
US10081874B2 (en) | 2013-09-16 | 2018-09-25 | Hongmin Zhu | Method for electrowinning titanium from titanium-containing soluble anode molten salt |
US11473207B2 (en) | 2018-11-16 | 2022-10-18 | University Of Science And Technology Beijing | Preparing method for titanium of Ti—C—S anode by carbonized/sulfurized ilmenite |
US11821096B2 (en) | 2019-01-14 | 2023-11-21 | Zhejiang Haihong Holding Group Co., Ltd. | Device and method for preparing high-purity titanium powder by continuous electrolysis |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7794580B2 (en) | 2004-04-21 | 2010-09-14 | Materials & Electrochemical Research Corp. | Thermal and electrochemical process for metal production |
US7410562B2 (en) | 2003-08-20 | 2008-08-12 | Materials & Electrochemical Research Corp. | Thermal and electrochemical process for metal production |
WO2008091806A1 (en) | 2007-01-22 | 2008-07-31 | Materials & Electrochemical Research Corp. | Metallothermic reduction of in-situ generated titanium chloride |
CN101343755B (en) * | 2008-08-20 | 2010-08-25 | 攀钢集团研究院有限公司 | Method for preparing metal vanadium |
GB0913736D0 (en) * | 2009-08-06 | 2009-09-16 | Chinuka Ltd | Treatment of titanium ores |
CN101914788B (en) * | 2010-07-26 | 2012-10-03 | 攀钢集团有限公司 | Method for preparing metallic titanium |
CN101947652A (en) * | 2010-09-21 | 2011-01-19 | 攀钢集团有限公司 | Method for preparing C-O-T (carbon-oxygen-titanium) composite anode by microwave heating |
CN101949038B (en) * | 2010-09-21 | 2011-12-14 | 攀钢集团钢铁钒钛股份有限公司 | Method for preparing TiCxOy composite anode with electrolysis method |
CN102925930B (en) | 2012-10-25 | 2015-11-25 | 攀钢集团攀枝花钢铁研究院有限公司 | A kind of titaniferous material produces the method for metal titanium |
CN102925929B (en) * | 2012-10-25 | 2015-04-29 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for producing metal titanium by molten salt electrolysis |
CN102912379A (en) * | 2012-10-25 | 2013-02-06 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for preparing metal titanium |
CN103255438A (en) * | 2013-05-24 | 2013-08-21 | 贵州师范大学 | Preparation method of modified pre-baked carbon anode containing titanium additive |
CN103290433B (en) * | 2013-06-26 | 2016-01-20 | 石嘴山市天和铁合金有限公司 | Device and the technique thereof of pure titanium are prepared in a kind of pair of electrolyzer fused salt electrolysis |
CN103320822A (en) * | 2013-06-27 | 2013-09-25 | 中国铝业股份有限公司 | Method for electroplating titanium on surface of metal |
CN103305875A (en) * | 2013-06-27 | 2013-09-18 | 中国铝业股份有限公司 | Preparation method for preparing anode of metallic titanium by molten salt electrolysis |
CN104120457B (en) * | 2014-07-10 | 2016-11-23 | 上海大学 | Preparation method containing metal carbides multilamellar multicomponent composite materials |
CN104451781A (en) * | 2014-12-08 | 2015-03-25 | 中国铝业股份有限公司 | Preparation method of anode for producing metallic titanium by electrolysis |
CN105225721B (en) * | 2015-08-26 | 2017-04-19 | 贵州理工学院 | Highly-conductive composite metal oxidation powder material and preparation method thereof |
WO2020103366A1 (en) | 2018-11-23 | 2020-05-28 | 北京科技大学 | Device and method for preparing pure titanium by means of electrolysis-chlorination-electrolysis |
CN109267100B (en) * | 2018-11-23 | 2021-01-15 | 北京科技大学 | Device and method for preparing pure titanium through electrolysis-chlorination-electrolysis |
CN109811370B (en) * | 2019-03-15 | 2020-10-13 | 北京科技大学 | Method for preparing metal titanium by electrolyzing-titanium carbon sulfur anode |
CN110042433A (en) * | 2019-05-08 | 2019-07-23 | 北京科技大学 | A kind of industrialized preparing process of titaniferous solubility solid solution anode |
CN110699552B (en) * | 2019-10-25 | 2021-06-11 | 郑州大学 | Method for selectively extracting high-purity metal titanium from SCR catalyst |
CN110983378B (en) * | 2019-11-15 | 2020-12-18 | 北京理工大学 | Device and method for preparing metal aluminum and titanium tetrachloride from soluble anode in molten salt |
CN111364065A (en) * | 2020-03-05 | 2020-07-03 | 中国原子能科学研究院 | A kind of method that utilizes uranium oxide to prepare metallic uranium |
CN113699560B (en) * | 2021-07-17 | 2023-12-29 | 广西大学 | Method for preparing metallic titanium by soluble anode electrolysis of fluorine-chlorine mixed molten salt system |
CN114481227A (en) * | 2022-01-04 | 2022-05-13 | 中山大学 | Method for recovering copper by high-temperature electrolysis of multi-component solid molten salt |
CN114481230B (en) * | 2022-02-25 | 2023-05-09 | 北京科技大学 | A high-density hafnium carbon-oxygen solid solution and its preparation method and a method of electrolytic preparation of metal hafnium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1376813A (en) * | 2001-12-28 | 2002-10-30 | 郑州轻金属研究院 | Process for preparing AlTi alloy by direct electrolysis with carbon anode containing titanium oxide |
CN1404530A (en) * | 2000-02-22 | 2003-03-19 | 秦内蒂克有限公司 | Electrolytic reduction of metal oxides such as titanium dioxide and process application |
WO2005019501A2 (en) * | 2003-08-20 | 2005-03-03 | Materials & Electrochemical Research Corp. | Thermal and electrochemical process for metal production |
-
2005
- 2005-05-08 CN CNB2005100116846A patent/CN100415940C/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1404530A (en) * | 2000-02-22 | 2003-03-19 | 秦内蒂克有限公司 | Electrolytic reduction of metal oxides such as titanium dioxide and process application |
CN1376813A (en) * | 2001-12-28 | 2002-10-30 | 郑州轻金属研究院 | Process for preparing AlTi alloy by direct electrolysis with carbon anode containing titanium oxide |
WO2005019501A2 (en) * | 2003-08-20 | 2005-03-03 | Materials & Electrochemical Research Corp. | Thermal and electrochemical process for metal production |
Non-Patent Citations (12)
Title |
---|
Ti-C-O合金またはTiCを阳极よするTiの熔融盐电解. 桥本雍彦.日本金属学会志,第32卷第12期. 1968 |
Ti-C-O合金またはTiCを阳极よするTiの熔融盐电解. 桥本雍彦.日本金属学会志,第32卷第12期. 1968 * |
アーク还原Ti-C-OおよびTiC可溶性阳极よりのTiの抽出. 桥本雍彦.日本金属学会志,第35卷第3期. 1971 |
アーク还原Ti-C-OおよびTiC可溶性阳极よりのTiの抽出. 桥本雍彦.日本金属学会志,第35卷第3期. 1971 * |
チタンの熔融盐电解制炼における低品位(δ)-Ti-C-O可溶性阳极よりのチタンの阳极的溶出. 桥本雍彦.日本金属学会志,第35卷第5期. 1971 |
チタンの熔融盐电解制炼における低品位(δ)-Ti-C-O可溶性阳极よりのチタンの阳极的溶出. 桥本雍彦.日本金属学会志,第35卷第5期. 1971 * |
四氯化钛熔盐电解法制取金属钛提高电流效率的研究. 顾学范,田秋占.北京钢铁学院学报,第3期. 1982 |
四氯化钛熔盐电解法制取金属钛提高电流效率的研究. 顾学范,田秋占.北京钢铁学院学报,第3期. 1982 * |
氧碳化钛电解精炼制取钛粉. 金志一,译.稀有金属材料与工程,第6期. 1976 |
氧碳化钛电解精炼制取钛粉. 金志一,译.稀有金属材料与工程,第6期. 1976 * |
高纯度TiC粉末制造に关する研究(第1报). 桥本雍彦.粉体および粉末冶金,第17卷第4期. 1970 |
高纯度TiC粉末制造に关する研究(第1报). 桥本雍彦.粉体および粉末冶金,第17卷第4期. 1970 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101649471B (en) * | 2009-09-23 | 2013-06-12 | 攀钢集团研究院有限公司 | Method for producing high purity vanadium metal |
US10081874B2 (en) | 2013-09-16 | 2018-09-25 | Hongmin Zhu | Method for electrowinning titanium from titanium-containing soluble anode molten salt |
US11473207B2 (en) | 2018-11-16 | 2022-10-18 | University Of Science And Technology Beijing | Preparing method for titanium of Ti—C—S anode by carbonized/sulfurized ilmenite |
US11821096B2 (en) | 2019-01-14 | 2023-11-21 | Zhejiang Haihong Holding Group Co., Ltd. | Device and method for preparing high-purity titanium powder by continuous electrolysis |
Also Published As
Publication number | Publication date |
---|---|
CN1712571A (en) | 2005-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100415940C (en) | Method for producing pure titanium by anodic electrolysis of titanium monoxide/titanium carbide soluble solid solution | |
Jiao et al. | Novel metallurgical process for titanium production | |
CN103451682B (en) | A kind of method of titaniferous soluble anode electroextraction by molten salt electrolysis titanium | |
Li et al. | A review on the extraction and recovery of critical metals using molten salt electrolysis | |
Fray et al. | Reduction of titanium and other metal oxides using electrodeoxidation | |
Fray | Novel methods for the production of titanium | |
CN108251866B (en) | A kind of preparation method of metallic titanium powder | |
CN101949038B (en) | Method for preparing TiCxOy composite anode with electrolysis method | |
WO2011015845A2 (en) | Treatment of titanium ores | |
CN103290433A (en) | Device for preparing pure titanium by molten salt electrolysis through double electrolytic baths and process thereof | |
CN101343756A (en) | A kind of method for preparing metal titanium by high-temperature molten salt electrolysis of titanium dioxide | |
Li et al. | Preparation of zirconium metal by electrolysis | |
CN102925929B (en) | Method for producing metal titanium by molten salt electrolysis | |
An et al. | Facile preparation of metallic vanadium from consumable V2CO solid solution by molten salt electrolysis | |
CN109811370B (en) | Method for preparing metal titanium by electrolyzing-titanium carbon sulfur anode | |
Jiao et al. | Electrochemical dissolution behavior of conductive TiCxO1–x solid solutions | |
Feng et al. | Optimal V2O3 extraction by sustainable vanadate electrolysis in molten salts | |
CN108546964B (en) | Preparation device and preparation method of metallic titanium | |
CN110129572A (en) | A method for preparing high-purity ammonium rhenate by using waste nickel-based superalloy | |
CN113699560A (en) | Method for preparing metal titanium by soluble anode electrolysis of fluorine-chlorine mixed molten salt system | |
CN113279022B (en) | Reducing molten salt medium and preparation method thereof | |
Nagesh et al. | Electrochemical process of titanium extraction | |
CN116265617A (en) | A kind of method that molten salt electrolysis prepares metal hafnium | |
Zhang et al. | Progress in Research and Application of Molten Salt Electrolysis for Titanium Extraction | |
Miao et al. | Research Progress of Preparing Titanium Alloy By Molten Salt Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180530 Address after: 100083 Room 102, building 7, Institute of electrical and mechanical research, No. 18, Xue Qing Road, Haidian District, Beijing. Patentee after: Beijing Mawei Machinery Co., Ltd. Address before: 100083 No. 30, Haidian District, Beijing, Xueyuan Road Patentee before: University of Science and Technology Beijing |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180710 Address after: 100086 A03-59, ground floor, 1 building, 13 Dazhong temple, Haidian District, Beijing. Patentee after: Hung titanium (Beijing) Technology Co., Ltd. Address before: 100083 Room 102, building 7, Institute of electrical and mechanical research, No. 18, Xue Qing Road, Haidian District, Beijing. Patentee before: Beijing Mawei Machinery Co., Ltd. |
|
TR01 | Transfer of patent right |