CN103906861A - Molten salt electrolysis metal fabrication method and apparatus for use in same - Google Patents
Molten salt electrolysis metal fabrication method and apparatus for use in same Download PDFInfo
- Publication number
- CN103906861A CN103906861A CN201280054132.1A CN201280054132A CN103906861A CN 103906861 A CN103906861 A CN 103906861A CN 201280054132 A CN201280054132 A CN 201280054132A CN 103906861 A CN103906861 A CN 103906861A
- Authority
- CN
- China
- Prior art keywords
- molten salt
- metal
- potential
- processed
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000003839 salts Chemical class 0.000 title claims abstract description 666
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 506
- 239000002184 metal Substances 0.000 title claims abstract description 468
- 238000000034 method Methods 0.000 title claims abstract description 159
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 66
- 238000005868 electrolysis reaction Methods 0.000 title claims description 133
- 150000002739 metals Chemical class 0.000 claims abstract description 96
- 239000000463 material Substances 0.000 claims abstract description 52
- 229910052744 lithium Inorganic materials 0.000 claims description 137
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 132
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 130
- 239000010937 tungsten Substances 0.000 claims description 130
- 229910052721 tungsten Inorganic materials 0.000 claims description 130
- 238000000151 deposition Methods 0.000 claims description 124
- 229910045601 alloy Inorganic materials 0.000 claims description 72
- 239000000956 alloy Substances 0.000 claims description 72
- 239000000126 substance Substances 0.000 claims description 67
- 238000011282 treatment Methods 0.000 claims description 43
- 229910052750 molybdenum Inorganic materials 0.000 claims description 41
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 30
- 238000005275 alloying Methods 0.000 claims description 29
- 239000000843 powder Substances 0.000 claims description 25
- 229910052712 strontium Inorganic materials 0.000 claims description 25
- 229910052720 vanadium Inorganic materials 0.000 claims description 25
- 150000002910 rare earth metals Chemical class 0.000 claims description 21
- 229910052732 germanium Inorganic materials 0.000 claims description 20
- 229910052723 transition metal Inorganic materials 0.000 claims description 20
- 150000003624 transition metals Chemical class 0.000 claims description 20
- 239000010405 anode material Substances 0.000 claims description 19
- 239000007769 metal material Substances 0.000 claims description 19
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 15
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 14
- 229910052787 antimony Inorganic materials 0.000 claims description 13
- 229910052797 bismuth Inorganic materials 0.000 claims description 13
- 239000007772 electrode material Substances 0.000 claims description 13
- 229910052793 cadmium Inorganic materials 0.000 claims description 11
- 229910052733 gallium Inorganic materials 0.000 claims description 11
- 229910052738 indium Inorganic materials 0.000 claims description 11
- 229910052715 tantalum Inorganic materials 0.000 claims description 11
- 229910052718 tin Inorganic materials 0.000 claims description 11
- 229910052758 niobium Inorganic materials 0.000 claims description 10
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 229910052735 hafnium Inorganic materials 0.000 claims description 6
- 229910052745 lead Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052788 barium Inorganic materials 0.000 claims description 5
- 239000011833 salt mixture Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 150000001805 chlorine compounds Chemical group 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 description 65
- 230000008569 process Effects 0.000 description 58
- 238000004090 dissolution Methods 0.000 description 45
- 229910021397 glassy carbon Inorganic materials 0.000 description 39
- 238000012545 processing Methods 0.000 description 33
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 32
- 239000011733 molybdenum Substances 0.000 description 32
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 31
- 239000012535 impurity Substances 0.000 description 31
- 230000008859 change Effects 0.000 description 25
- 229910052799 carbon Inorganic materials 0.000 description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 21
- 239000000203 mixture Substances 0.000 description 21
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 21
- 229910052692 Dysprosium Inorganic materials 0.000 description 20
- 229910052779 Neodymium Inorganic materials 0.000 description 20
- 229910052777 Praseodymium Inorganic materials 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 20
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 20
- 239000010406 cathode material Substances 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 239000002245 particle Substances 0.000 description 18
- 238000003723 Smelting Methods 0.000 description 17
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- 239000010959 steel Substances 0.000 description 16
- 229910000831 Steel Inorganic materials 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 15
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 15
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 13
- 238000005520 cutting process Methods 0.000 description 13
- 238000000926 separation method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 12
- 239000007774 positive electrode material Substances 0.000 description 12
- 229910013618 LiCl—KCl Inorganic materials 0.000 description 11
- PNXOJQQRXBVKEX-UHFFFAOYSA-N iron vanadium Chemical compound [V].[Fe] PNXOJQQRXBVKEX-UHFFFAOYSA-N 0.000 description 11
- BUKHSQBUKZIMLB-UHFFFAOYSA-L potassium;sodium;dichloride Chemical compound [Na+].[Cl-].[Cl-].[K+] BUKHSQBUKZIMLB-UHFFFAOYSA-L 0.000 description 11
- 239000010955 niobium Substances 0.000 description 10
- 239000002699 waste material Substances 0.000 description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 9
- 229910001080 W alloy Inorganic materials 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 238000000605 extraction Methods 0.000 description 9
- 230000005484 gravity Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 229910000640 Fe alloy Inorganic materials 0.000 description 8
- 229910017315 Mo—Cu Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000005137 deposition process Methods 0.000 description 8
- 239000008187 granular material Substances 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 239000011572 manganese Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- UXBZSSBXGPYSIL-UHFFFAOYSA-N phosphoric acid;yttrium(3+) Chemical compound [Y+3].OP(O)(O)=O UXBZSSBXGPYSIL-UHFFFAOYSA-N 0.000 description 8
- 239000001103 potassium chloride Substances 0.000 description 8
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 8
- 229910000164 yttrium(III) phosphate Inorganic materials 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 229910000733 Li alloy Inorganic materials 0.000 description 7
- 230000005496 eutectics Effects 0.000 description 7
- 238000005342 ion exchange Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910004261 CaF 2 Inorganic materials 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 229910000990 Ni alloy Inorganic materials 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 6
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- -1 metal oxide ions Chemical class 0.000 description 6
- 239000013307 optical fiber Substances 0.000 description 6
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 5
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 229910016036 BaF 2 Inorganic materials 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 229910001634 calcium fluoride Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000002386 leaching Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 3
- 229910001182 Mo alloy Inorganic materials 0.000 description 3
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000001989 lithium alloy Substances 0.000 description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 description 3
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 3
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 3
- 229910001947 lithium oxide Inorganic materials 0.000 description 3
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000009853 pyrometallurgy Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 235000010344 sodium nitrate Nutrition 0.000 description 3
- 239000004317 sodium nitrate Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 3
- 229910000628 Ferrovanadium Inorganic materials 0.000 description 2
- 229910020549 KCl—NaCl Inorganic materials 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229910001122 Mischmetal Inorganic materials 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910000756 V alloy Inorganic materials 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 2
- 229910052586 apatite Inorganic materials 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- IKNAJTLCCWPIQD-UHFFFAOYSA-K cerium(3+);lanthanum(3+);neodymium(3+);oxygen(2-);phosphate Chemical compound [O-2].[La+3].[Ce+3].[Nd+3].[O-]P([O-])([O-])=O IKNAJTLCCWPIQD-UHFFFAOYSA-K 0.000 description 2
- 150000003841 chloride salts Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005363 electrowinning Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000009854 hydrometallurgy Methods 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052590 monazite Inorganic materials 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 239000000382 optic material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052642 spodumene Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910000927 Ge alloy Inorganic materials 0.000 description 1
- 229910013574 LiCo0.3Ni0.7O2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- MMVYPOCJESWGTC-UHFFFAOYSA-N Molybdenum(2+) Chemical compound [Mo+2] MMVYPOCJESWGTC-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001278 Sr alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- TUEGREKNWIPDRA-UHFFFAOYSA-N [Ca].[Mn] Chemical compound [Ca].[Mn] TUEGREKNWIPDRA-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- HEHRHMRHPUNLIR-UHFFFAOYSA-N aluminum;hydroxy-[hydroxy(oxo)silyl]oxy-oxosilane;lithium Chemical compound [Li].[Al].O[Si](=O)O[Si](O)=O.O[Si](=O)O[Si](O)=O HEHRHMRHPUNLIR-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- PUUPYXQOFNNGRK-UHFFFAOYSA-N cerium niobium Chemical compound [Nb].[Ce] PUUPYXQOFNNGRK-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052629 lepidolite Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052670 petalite Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/34—Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/02—Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/26—Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/26—Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
- C25C3/28—Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/36—Alloys obtained by cathodic reduction of all their ions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/06—Operating or servicing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
本发明提供一种由含有两种以上金属元素的待处理材料安全且低成本地获得高纯度的特定金属的方法。本发明的熔融盐电解金属制造方法的特征在于包括以下步骤:使包含于待处理材料中的两种以上金属元素溶解在熔融盐中的步骤;以及通过在溶解了上述金属元素的熔融盐中设置一对电极部件,并将该电极部件的电位控制为给定值,从而使存在于熔融盐中的特定金属元素在该电极部件中的一者上析出或形成合金的步骤。
The present invention provides a method for obtaining high-purity specific metals safely and at low cost from materials to be treated containing two or more metal elements. The molten salt electrolytic metal production method of the present invention is characterized by including the steps of: dissolving two or more metal elements contained in the material to be treated in the molten salt; A pair of electrode parts, and a step of controlling the potential of the electrode parts to a given value so that a specific metal element present in the molten salt is precipitated or alloyed on one of the electrode parts.
Description
技术领域technical field
本发明涉及通过熔融盐电解制造金属的方法;以及用于该制造方法的装置。The present invention relates to a method of producing metal by molten salt electrolysis; and an apparatus used in the production method.
背景技术Background technique
通过冶炼矿石以制造特定金属的已知方法有火法冶金和湿法冶金。Known methods of producing specific metals by smelting ores are pyrometallurgy and hydrometallurgy.
火法冶炼是在高温熔炉中将矿石熔化以分离目标金属的方法。例如,将精矿、焙烧矿或烧结矿在高温熔炉中熔化,在将脉石、杂质等作为炉渣而分离的同时将其浓缩成粗金属锭(非专利文献1,第46页)。Pyrometallurgy is the process of melting ore in a high temperature furnace to separate target metals. For example, concentrate, roasted ore, or sintered ore is melted in a high-temperature furnace, and gangue, impurities, etc. are concentrated into crude metal ingots while separating them as slag (Non-Patent
冶炼时,由于利用熔融金属之间的比重差来将金属从矿石中分离出来,所以待分离的金属之间的比重差必须较大。另外,分离目标物相互之间的溶解度必须较低。由于满足金属材料之间的这些条件的元素有限,因此通过火法冶金分离的目标元素有限,这成为一个问题。During smelting, since the difference in specific gravity between molten metals is used to separate the metal from the ore, the difference in specific gravity between the metals to be separated must be relatively large. In addition, the solubility of the separation targets must be low with respect to each other. Since elements satisfying these conditions among metal materials are limited, target elements separated by pyrometallurgy are limited, which becomes a problem.
湿法冶金是将矿石溶解在(例如)碱性或酸性溶液中并从该溶液中分离并提取出目标金属的方法。从该水溶液中分离并提取目标金属的方法有(例如)利用离子交换的方法、利用溶剂提取的方法、或者利用水溶液电解的方法。Hydrometallurgy is the process of dissolving ores in, for example, alkaline or acidic solutions and separating and extracting target metals from the solutions. Methods for separating and extracting the target metal from the aqueous solution include, for example, a method using ion exchange, a method using solvent extraction, or a method using electrolysis of an aqueous solution.
在利用离子交换的方法中,使用了部分具有能够进行离子交换的离子组且被称作离子交换剂的固态物质来进行可逆离子交换(非专利文献1,第194页)。In the method using ion exchange, reversible ion exchange is performed using a solid substance called an ion exchanger partially having ion groups capable of ion exchange (Non-Patent
利用离子交换树脂的吸附能力和交换能力进行的离子交换是优异的处理方法。然而问题在于,由于该处理是通过离子的反复吸附和解离来进行的,因此离子交换不适用于经济有效地处理大量物质。Ion exchange utilizing the adsorption capacity and exchange capacity of ion exchange resins is an excellent treatment method. The problem, however, is that ion exchange is not suitable for cost-effective treatment of large quantities of substances because the treatment is performed by repeated adsorption and dissociation of ions.
利用溶剂提取的方法是利用不同溶质在彼此不混溶的两种溶剂中的分配差异的分离方法(非专利文献1,第199页)。A method using solvent extraction is a separation method that utilizes a difference in distribution of different solutes in two solvents that are immiscible with each other (Non-Patent
在这种溶剂提取中,例如,进行酸处理以实现离子化;并且在分离时,需要进行大量的处理工序。问题在于,在这些工序中,需要大量的酸和碱并且产生大量的废水。In such solvent extraction, for example, acid treatment is performed to achieve ionization; and at the time of separation, a large number of treatment steps are required. The problem is that, in these processes, a large amount of acid and alkali is required and a large amount of waste water is generated.
在利用水溶液电解的电解冶炼方法中,利用了元素间所存在的倾向于阳极溶解或阴极沉积的差异并制造纯金属。同时,在使用的电解液中,也利用了由杂质离子生成微溶性盐的反应(非专利文献1,第219页)。In the electrowinning method using the electrolysis of an aqueous solution, differences in the tendency of elements to dissolve anodically or deposit cathodically are exploited and pure metals are produced. Meanwhile, in the electrolytic solution used, the reaction of generating a slightly soluble salt from impurity ions is also utilized (Non-Patent
然而,能够通过利用水溶液电解进行纯化从而分离和沉积的金属元素有限。例如,存在理论上不能实现稀土材料的沉积这一问题。However, metal elements that can be isolated and deposited by purification using aqueous electrolysis are limited. For example, there is a problem that the deposition of rare earth materials cannot be realized theoretically.
关于Al,利用熔融盐电解的电解冶炼也是已知的。在这种方法中,形成了由Al(纯化目标材料,其被合金化从而具有更低的熔点)、熔融盐和回收金属构成的三个层,并利用比重差进行冶炼。由于如此利用了比重差,所以需要在三个层全部熔化时进行冶炼(非专利文献1,第254页)。As for Al, electrolytic smelting using molten salt electrolysis is also known. In this method, three layers consisting of Al (purification target material which is alloyed to have a lower melting point), molten salt, and recycled metal are formed and smelted using the difference in specific gravity. Since the difference in specific gravity is utilized in this way, it is necessary to perform smelting when all three layers are melted (Non-Patent
该方法的目标金属是Al。另外,当与纯化目标金属共存的杂质的电位接近于纯化目标金属的电位时,则存在这样的问题,即将会发生该杂质进入沉积的目标金属中。The target metal of this method is Al. In addition, when the potential of an impurity coexisting with the purification target metal is close to that of the purification target metal, there is a problem that entry of the impurity into the deposited target metal will occur.
另一方面,回收钨的方法在(例如)专利文献2中有如下描述。On the other hand, the method of recovering tungsten is described in, for example,
使硬质合金工具的硬质废料或软质废料与硝酸钠熔融盐反应,然后溶于水中从而制得钨酸钠水溶液。利用离子交换树脂并通过离子交换法对钨酸钠水溶液进行处理,从而制得钨酸铵水溶液。使仲钨酸铵(APT)从钨酸铵水溶液中结晶出来。此后,对由此结晶的仲钨酸铵进行煅烧、还原和碳化,从而得到碳化钨。A sodium tungstate aqueous solution is prepared by reacting hard or soft waste of cemented carbide tools with sodium nitrate molten salt and then dissolving in water. An aqueous solution of ammonium tungstate is prepared by treating the aqueous solution of sodium tungstate with an ion exchange resin and an ion exchange method. Ammonium paratungstate (APT) was crystallized from aqueous ammonium tungstate solution. Thereafter, the thus crystallized ammonium paratungstate is calcined, reduced and carbonized to obtain tungsten carbide.
硬质废料泛指仍具有产品形状的废料片。软质废料表示粉末状废料,如在制造硬质合金工具的加工过程中产生的粉末屑和切屑。Hard scrap generally refers to scrap pieces that still have the shape of the product. Soft waste refers to powdery waste such as powder chips and swarf produced during the machining process of making cemented carbide tools.
专利文献1提出了在熔融盐浴中通过氧化硬质合金废料和/或重金属废料来制造钨酸钠时,可使用含有60重量%至90重量%的氢氧化钠和10重量%至40重量%的硫酸钠的熔融盐。专利文献1也提出这些废料和熔融盐之间的反应是在以间歇方式操作并可以直接加热的回转窑中进行的。
然而,在非专利文献2中描述的上述方法中,硬质合金工具的硬质废料或软质废料与硝酸钠熔融盐之间的反应非常剧烈。因此,该反应很难控制且操作存在安全问题。另外,当使硬质合金工具的硬质废料或软质废料与硝酸钠熔融盐反应时,包含于硬质合金工具的硬质废料或软质废料中的金属(如钒和铬)呈现水溶性金属氧化物离子的形式并进入钨酸钠的水溶液中。因此,由于这些金属作为杂质存在,从而难以实现高纯度,这成为一个问题。However, in the above-mentioned method described in
在专利文献1中描述的上述方法中,作为氧化剂的硫酸钠熔融盐具有884℃的高熔点。因此,需要将反应过程中的温度设置为884℃以上的高温。因此,存在金属材料被腐蚀的问题。另外,反应进行缓慢,因此存在反应耗时长且产生大量的能量损失的问题。In the above method described in
另一方面,锂主要从含锂矿石(如锂辉石、锂磷铝石、透锂长石和锂云母)以及具有高锂浓度的盐湖和地下盐水中提取。然而,日本没有含锂矿石或盐湖。因此,实际上锂的总量几乎都是依赖于进口。Lithium, on the other hand, is mainly extracted from lithium-containing ores such as spodumene, spodumene, petalite, and lepidolite, as well as salt lakes and underground brines with high lithium concentrations. However, Japan does not have lithium-bearing ores or salt lakes. Therefore, in fact, the total amount of lithium is almost dependent on imports.
因而,最近启动了关于从(例如)诸如锂电池之类的含锂产品的制造步骤中产生的含锂废弃物或者用过的含锂产品的废弃物中分离并回收锂的研究。Thus, research has recently been initiated on separating and recovering lithium from, for example, lithium-containing waste generated in manufacturing steps of lithium-containing products such as lithium batteries or waste of used lithium-containing products.
已经提出了下列回收锂的方法:将用作锂二次电池的正极材料的钴酸锂与金属锂一同在氯化锂熔融盐中进行还原反应,从而产生氧化锂并通过沉淀将钴或氧化钴分离;此后,在氯化锂熔融盐中将氧化锂电解,从而将金属锂沉积在阴极上并回收(专利文献2:日本未审查专利申请公开No.2005-011698)。The following method for recovering lithium has been proposed: Lithium cobalt oxide, which is used as a positive electrode material for lithium secondary batteries, is subjected to a reduction reaction together with lithium metal in lithium chloride molten salt, thereby producing lithium oxide and removing cobalt or cobalt oxide by precipitation. Separation; thereafter, lithium oxide is electrolyzed in lithium chloride molten salt, thereby depositing metallic lithium on the cathode and recovering (Patent Document 2: Japanese Unexamined Patent Application Publication No. 2005-011698).
然而,在该方法中,为了通过还原分离出包含于处理对象物中的钴,需要添加金属锂。为了回收金属锂,该方法采用了添加金属锂的步骤,因此存在效率低的问题。However, in this method, metal lithium needs to be added in order to isolate cobalt contained in the object to be treated by reduction. In order to recover metal lithium, this method adopts the step of adding metal lithium, so there is a problem of low efficiency.
已经提出了如下回收锂的方法,其中将用作锂二次电池的正极材料的碳与锰酸锂的混合物在大气气氛、氧化性气氛、惰性气氛和还原性气氛中的任意一种气氛下焙烧,以将锂转化为氧化锂;然后将该焙烧物浸入水中从而使锂以氢氧化锂和碳酸锂的形式浸出(专利文献3)A method of recovering lithium has been proposed in which a mixture of carbon and lithium manganate used as a positive electrode material for a lithium secondary battery is calcined under any one of an atmospheric atmosphere, an oxidizing atmosphere, an inert atmosphere, and a reducing atmosphere , to convert lithium into lithium oxide; and then immerse the calcined product in water so that lithium is leached in the form of lithium hydroxide and lithium carbonate (Patent Document 3)
然而,在该方法中,由于氢氧化锂和碳酸锂不具有高溶解度,因此回收效率低。另外,将氢氧化锂和碳酸锂浸出到水中需要大量的水,因此该处理会产生大量的废水,这成为一个问题。However, in this method, since lithium hydroxide and lithium carbonate do not have high solubility, the recovery efficiency is low. In addition, a large amount of water is required to leach lithium hydroxide and lithium carbonate into water, so the treatment generates a large amount of wastewater, which becomes a problem.
此外,钽(Ta)主要用于钽电容器,并且可以从钽电容器废料中回收钽。具体而言,可以通过氧化处理、磁力分离、筛分、流动水分离、粉碎、筛分、浸出、氧化处理、还原处理和浸出的方法回收钽(参照非专利文献3,第319至326页)。In addition, tantalum (Ta) is mainly used in tantalum capacitors, and tantalum can be recovered from tantalum capacitor scrap. Specifically, tantalum can be recovered by oxidation treatment, magnetic separation, sieving, flowing water separation, crushing, sieving, leaching, oxidation treatment, reduction treatment, and leaching (see Non-Patent
钒(V)用作钢铁添加剂或炼油时的脱硫催化剂。用作钢铁添加剂的钒以钢废料的形式收集并回收为钢。可对废催化剂依次进行分级、焙烧、粉碎、浸出、过滤、浸出液、脱水、热分解和熔化步骤,从而可得到五氧化二钒(非专利文献3,第391至396页)。Vanadium (V) is used as a steel additive or as a desulfurization catalyst in oil refining. Vanadium used as a steel additive is collected as steel scrap and recycled into steel. The waste catalyst can be classified, roasted, pulverized, leached, filtered, leached, dehydrated, thermally decomposed and melted in order to obtain vanadium pentoxide (Non-Patent
钼(Mo)也被用作钢的添加剂、合金或炼油时的脱硫催化剂。用作钢添加剂或合金元素的钼以钢或合金的形式被收集并且在未经提取的情况下以钢或合金的形式使用。可对废催化剂依次进行焙烧、除去油、水和硫、碱性条件下浸出和回收步骤,从而可得到Mo(非专利文献3,第301至303页)。Molybdenum (Mo) is also used as a steel additive, alloy or desulfurization catalyst in oil refining. Molybdenum used as a steel additive or alloying element is collected and used in steel or alloy form without extraction. The spent catalyst can be sequentially subjected to the steps of calcination, removal of oil, water and sulfur, leaching under alkaline conditions, and recovery, whereby Mo can be obtained (Non-Patent
铌(Nb)主要用作钢的添加剂。用作钢添加剂的铌以钢废料的形式被收集。然而,高张力钢、不锈钢等中的铌含量非常低而且铌本身不能回收(非专利文献3,第339页)。Niobium (Nb) is mainly used as an additive to steel. Niobium used as a steel additive is collected as steel scrap. However, the content of niobium in high-tensile steel, stainless steel, etc. is very low and niobium itself cannot be recovered (Non-Patent
锰(Mn)主要用于钢和铝合金,并且分别以钢废料和铝合金废料的形式被收集。在回收钢的情况下,高比例的锰残留在各种炉渣中并且形成炉渣的这类锰不适合回收。炉渣中的锰部分用于(例如)锰-硅酸钙肥料。Manganese (Mn) is mainly used in steel and aluminum alloys, and is collected in the form of steel scrap and aluminum alloy scrap, respectively. In the case of recycling steel, a high proportion of manganese remains in the various slags and such manganese forming slags is not suitable for recycling. The manganese portion of the slag is used, for example, in manganese-calcium silicate fertilizers.
含有这种铝合金的铝罐被收集然后回收(非专利文献3,第343至344页)。Aluminum cans containing this aluminum alloy are collected and then recycled (
用于钢(不锈钢)和超合金的铬(Cr)分别以钢废料和超合金废料的形式被收集然后回收;并且不进行元素铬的提取和回收(非专利文献3,第219至221页)。Chromium (Cr) used for steel (stainless steel) and superalloys are collected and then recycled as steel scrap and superalloy scrap, respectively; and extraction and recovery of elemental chromium are not performed (
在上述回收技术中,回收涉及诸如焙烧(加热)、粉碎、浸出和还原等多个过程。而且这些过程复杂,因此存在处理耗时长且成本高的问题。Among the recycling technologies mentioned above, recycling involves multiple processes such as roasting (heating), pulverization, leaching, and reduction. Furthermore, these processes are complicated, so there is a problem that processing takes a long time and costs are high.
此外,该处理需要焙烧,并且在处理中非提取目标物质也被处理,这导致了不必要的能量消耗。而且,通过对非处理目标物质进行焙烧处理,生成了不必要的氧化物,这产生了大量的废弃物。此外,由于进行了酸处理或碱处理,该处理产生了酸性废水或碱性废水,这增加了环境负担。In addition, this treatment requires roasting, and non-extraction target substances are also treated in the treatment, which results in unnecessary energy consumption. Furthermore, unnecessary oxides are generated by roasting non-processing target substances, which generates a large amount of waste. In addition, since acid treatment or alkali treatment is performed, the treatment generates acidic wastewater or alkaline wastewater, which increases environmental load.
总之,目前的金属回收技术存在以下问题:例如,处理成本高、能量损失大、废弃物的量大、以及环境负担重。此外,由于成本或技术方面的问题,一些金属不能以单质形式回收。In summary, the current metal recovery technology has problems such as high treatment cost, large energy loss, large amount of waste, and heavy environmental burden. Furthermore, some metals cannot be recovered in elemental form due to cost or technical concerns.
引用列表reference list
非专利文献non-patent literature
专利文献1:日本未审查专利申请公开No.11-505801Patent Document 1: Japanese Unexamined Patent Application Publication No. 11-505801
(PCT申请的译文)(translation of PCT application)
专利文献2:日本未审查专利申请公开No.2005-011698Patent Document 2: Japanese Unexamined Patent Application Publication No. 2005-011698
专利文献3:日本未审查专利申请公开No.2011-094227Patent Document 3: Japanese Unexamined Patent Application Publication No. 2011-094227
非专利文献1:Courses of Contemporary Metallurgy,Smelting部分,第2卷,Nonferrous Metal Smelting,The Japan Institute of Metalsand Materials编写(1980年),第46、194、199、219和254页Non-Patent Document 1: Courses of Contemporary Metallurgy, Smelting Part, Vol. 2, Nonferrous Metal Smelting, edited by The Japan Institute of Metals and Materials (1980), pp. 46, 194, 199, 219 and 254
非专利文献2:Rare-Metal High-Efficiency-Recovery-SystemDevelopment Project"Recovery of tungsten etc.from waste cementedcarbide tools",Metal Resource Report,第38卷,第4期,第407-413页,2008年11月Non-Patent Document 2: Rare-Metal High-Efficiency-Recovery-SystemDevelopment Project "Recovery of tungsten etc. from waste cemented carbohydrate tools", Metal Resource Report, Volume 38, Issue 4, Pages 407-413, November 2008
非专利文献3:Compilation of Noble Metal and Rare MetalRecycling Techniques,NTS公司出版,Bookers Ltd.策划并编写,第一版第一次印刷,2007年10月19日Non-Patent Document 3: Compilation of Noble Metal and Rare Metal Recycling Techniques, published by NTS, planned and written by Bookers Ltd., first edition first printing, October 19, 2007
发明内容Contents of the invention
技术问题technical problem
鉴于上述问题,本发明的目的是提供一种金属制造方法,以及用于该制造方法的装置,其中该方法适用于任何矿石并且能够以低成本制造高纯度金属。本发明的目的是提供一种由含有两种以上金属元素的处理对象物以低成本安全地制造高纯度的特定金属的方法;以及用于该制造方法的装置。In view of the above problems, an object of the present invention is to provide a metal manufacturing method, which is applicable to any ore and capable of manufacturing high-purity metal at low cost, and an apparatus for the manufacturing method. An object of the present invention is to provide a method for safely producing a high-purity specific metal at low cost from an object to be processed containing two or more metal elements; and an apparatus used for the production method.
解决问题的方案solution to the problem
本发明的一个实施方案是一种通过熔融盐电解制造金属的方法,该方法包括:将包含于处理对象物中的金属元素溶解在熔融盐中的步骤,其中该处理对象物含有两种以上的金属元素;以及通过将设置于熔融盐中的一对电极部件的电位控制为预定值,从而使存在于熔融盐中的特定金属在所述一对电极部件中的一者上沉积或合金化的步骤,其中该熔融盐含有所述溶解的金属元素。One embodiment of the present invention is a method of producing metal by molten salt electrolysis, the method comprising: a step of dissolving in molten salt a metal element contained in an object to be processed, wherein the object to be processed contains two or more a metal element; and depositing or alloying a specific metal present in the molten salt on one of the pair of electrode members provided in the molten salt by controlling the potential of the pair of electrode members provided in the molten salt to a predetermined value step, wherein the molten salt contains the dissolved metal element.
在本发明的另一个实施方案中,处理对象物为矿石或由该矿石得到的粗金属锭。In another embodiment of the present invention, the object to be processed is an ore or a crude metal ingot obtained from the ore.
本发明的另一个实施方案是一种制造钨的方法,其中包含于所述处理对象物中的金属元素为钨,在将金属元素由处理对象物溶解到熔融盐中的所述步骤中,使钨从所述处理对象物中溶解出来,并且在使特定金属沉积或合金化的所述步骤中,通过将设置于所述熔融盐中的一对电极部件的电位控制为预定值,从而使存在于所述熔融盐中的钨沉积于所述一对电极部件中的一者上,其中所述熔融盐含有溶解的钨。Another embodiment of the present invention is a method for producing tungsten, wherein the metal element contained in the object to be processed is tungsten, and in the step of dissolving the metal element from the object to be processed into the molten salt, the Tungsten is dissolved from the object to be processed, and in the step of depositing or alloying a specific metal, by controlling the potential of a pair of electrode members provided in the molten salt to a predetermined value, the existing Tungsten in the molten salt containing dissolved tungsten is deposited on one of the pair of electrode members.
在本发明的另一个实施方案中,处理对象物为含有钨的金属材料。In another embodiment of the present invention, the object to be treated is a metal material containing tungsten.
在本发明的另一个实施方案中,处理对象物为含有钨和过渡金属的金属材料。In another embodiment of the present invention, the object to be treated is a metal material containing tungsten and a transition metal.
在本发明的另一个实施方案中,处理对象物为硬质合金制品。In another embodiment of the present invention, the object to be treated is a cemented carbide product.
本发明的另一个实施方案是一种制造锂的方法,其中包含于所述处理对象物中的金属元素为锂,在将金属元素由处理对象物溶解到熔融盐中的所述步骤中,使锂从所述处理对象物中溶解出来,并且在使特定金属沉积或合金化的所述步骤中,通过将设置于所述熔融盐中的一对电极部件的电位控制为预定值,从而使存在于所述熔融盐中的锂沉积于所述一对电极部件中的一者上,其中所述熔融盐含有溶解的锂。Another embodiment of the present invention is a method for producing lithium, wherein the metal element contained in the object to be processed is lithium, and in the step of dissolving the metal element from the object to be processed into the molten salt, the Lithium is dissolved from the object to be treated, and in the step of depositing or alloying a specific metal, by controlling the potential of a pair of electrode members provided in the molten salt to a predetermined value, the presence of Lithium in the molten salt containing dissolved lithium is deposited on one of the pair of electrode members.
在本发明的另一个实施方案中,处理对象物为含有锂和过渡金属的材料。In another embodiment of the present invention, the object to be treated is a material containing lithium and a transition metal.
在本发明的另一个实施方案中,处理对象物为含有锂的电池电极材料。In another embodiment of the present invention, the object to be treated is a lithium-containing battery electrode material.
在本发明的另一个实施方案中,处理对象物含有过渡金属或稀土金属。In another embodiment of the present invention, the object to be treated contains a transition metal or a rare earth metal.
在本发明的另一个实施方案中,处理对象物含有选自由V、Nb、Mo、Ti、Ta、Zr和Hf构成的组中的一种或多种金属。In another embodiment of the present invention, the object to be treated contains one or more metals selected from the group consisting of V, Nb, Mo, Ti, Ta, Zr, and Hf.
在本发明的另一个实施方案中,处理对象物含有Sr和/或Ba。In another embodiment of the present invention, the object to be treated contains Sr and/or Ba.
在本发明的另一个实施方案中,处理对象物含有选自由Zn、Cd、Ga、In、Ge、Sn、Pb、Sb和Bi构成的组中的一种或多种金属。In another embodiment of the present invention, the object to be treated contains one or more metals selected from the group consisting of Zn, Cd, Ga, In, Ge, Sn, Pb, Sb, and Bi.
在本发明的另一个实施方案中,这样选择所述熔融盐,使得在使特定金属沉积或合金化的所述步骤中,所述熔融盐中所述特定金属的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差为0.05V以上。In another embodiment of the present invention, the molten salt is selected such that in the step of depositing or alloying the specific metal, the standard electrode potential of the single substance or alloy of the specific metal in the molten salt is equal to The difference between the standard electrode potentials of the simple substance or alloy of another metal is more than 0.05V.
在本发明的另一个实施方案中,在使特定金属沉积或合金化的所述步骤中,将所述电极部件的电位控制为所述预定值,从而选择性地使所述熔融盐中的所述特定金属元素沉积或合金化。In another embodiment of the present invention, in said step of depositing or alloying a specific metal, the potential of said electrode member is controlled to said predetermined value, thereby selectively making all Specific metal element deposition or alloying.
在本发明的另一个实施方案中,在将包含于处理对象物中的金属元素溶解在熔融盐中的所述步骤中,所述金属是通过化学方法溶解在所述熔融盐中的。In another embodiment of the present invention, in the step of dissolving the metal element contained in the object to be treated in the molten salt, the metal is chemically dissolved in the molten salt.
在本发明的另一个实施方案中,在将包含于处理对象物中的金属元素溶解在熔融盐中的所述步骤中,在所述熔融盐中设置阴极以及由含有所述处理对象物的阳极材料形成的阳极,并将所述阳极的电位控制为预定值,从而使对应于该经控制的电位的金属元素由所述处理对象物溶解到所述熔融盐中。In another embodiment of the present invention, in the step of dissolving the metal element contained in the object to be processed in the molten salt, a cathode is provided in the molten salt and an anode containing the object to be processed is The anode is formed of a material, and the potential of the anode is controlled to a predetermined value, so that the metal element corresponding to the controlled potential is dissolved from the object to be processed into the molten salt.
在本发明的另一个实施方案中,这样选择所述熔融盐,使得在将包含于处理对象物中的金属元素溶解在熔融盐中的所述步骤中,所述熔融盐中所述特定金属的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差为0.05V以上。In another embodiment of the present invention, the molten salt is selected such that in the step of dissolving the metal element contained in the object to be treated in the molten salt, the amount of the specific metal in the molten salt The difference between the standard electrode potential of the simple substance or alloy and the standard electrode potential of the simple substance or alloy of another metal is more than 0.05V.
在本发明的另一个实施方案中,在将包含于处理对象物中的金属元素溶解在熔融盐中的所述步骤中,将所述阳极的电位控制为预定值,从而选择性地使所述特定金属元素溶解在所述熔融盐中。In another embodiment of the present invention, in the step of dissolving the metal element contained in the object to be treated in the molten salt, the potential of the anode is controlled to a predetermined value, thereby selectively making the A specific metal element is dissolved in the molten salt.
在本发明的另一个实施方案中,在将包含于处理对象物中的金属元素溶解在熔融盐中的所述步骤中,作为所述特定金属的一种或多种金属均被溶解在所述熔融盐中。In another embodiment of the present invention, in the step of dissolving the metal element contained in the object to be treated in the molten salt, one or more metals as the specific metal are all dissolved in the molten salt. in molten salt.
在本发明的另一个实施方案中,被沉积或合金化的所述特定金属为过渡金属。In another embodiment of the present invention, said specific metal deposited or alloyed is a transition metal.
在本发明的另一个实施方案中,被沉积或合金化的特定金属为稀土金属。In another embodiment of the invention, the particular metals deposited or alloyed are rare earth metals.
在本发明的另一个实施方案中,被沉积或合金化的特定金属为V、Nb、Mo、Ti、Ta、Zr或Hf。In another embodiment of the invention, the specific metal deposited or alloyed is V, Nb, Mo, Ti, Ta, Zr or Hf.
在本发明的另一个实施方案中,被沉积或合金化的特定金属为Sr或Ba。In another embodiment of the invention, the specific metal deposited or alloyed is Sr or Ba.
在本发明的另一个实施方案中,被沉积或合金化的特定金属为Zn、Cd、Ga、In、Ge、Sn、Pb、Sb或Bi。In another embodiment of the invention, the specific metal deposited or alloyed is Zn, Cd, Ga, In, Ge, Sn, Pb, Sb or Bi.
在本发明的另一个实施方案中,熔融盐为氯化物熔融盐或氟化物熔融盐。In another embodiment of the present invention, the molten salt is a chloride molten salt or a fluoride molten salt.
在本发明的另一个实施方案中,熔融盐为含有氯化物熔融盐和氟化物熔融盐的熔融盐混合物。In another embodiment of the present invention, the molten salt is a molten salt mixture comprising molten chloride salt and fluoride molten salt.
在本发明的另一个实施方案中,处理对象物呈颗粒状或粉末状。In another embodiment of the present invention, the object to be treated is in the form of granules or powder.
在本发明的另一个实施方案中,呈颗粒状或粉末状的处理对象物经挤压而形成为阳极。In another embodiment of the present invention, the object to be treated in granular or powder form is formed into an anode by extrusion.
本发明的另一个实施方案是一种通过熔融盐电解制造金属的方法,该方法为通过熔融盐电解从而由含有两种以上金属元素的处理对象物制造特定金属的方法,其中在熔融盐中设置阴极以及由含有所述处理对象物的阳极材料形成的阳极,并将该阳极的电位控制为预定值,从而使对应于该经控制的电位的金属元素由所述处理对象物溶解到所述熔融盐中,并使特定金属保留在所述阳极中。Another embodiment of the present invention is a method for producing a metal by molten salt electrolysis, which is a method for producing a specific metal from an object to be treated containing two or more metal elements by molten salt electrolysis, wherein the molten salt is set A cathode and an anode formed of an anode material containing the object to be processed, and the potential of the anode is controlled to a predetermined value so that the metal element corresponding to the controlled potential is dissolved from the object to be processed to the molten salt, and keep the specific metal in the anode.
在本发明的另一个实施方案中,处理对象物为矿石或由该矿石得到的粗金属锭。In another embodiment of the present invention, the object to be processed is an ore or a crude metal ingot obtained from the ore.
本发明的另一个实施方案是一种通过熔融盐电解从而由含有钨的处理对象物制造钨的方法,其中在熔融盐中设置阴极以及由含有所述处理对象物的阳极材料形成的阳极,并将该阳极的电位控制为预定值,从而使对应于该经控制的电位的金属元素由所述处理对象物溶解到所述熔融盐中,并且使钨保留在所述阳极中。Another embodiment of the present invention is a method for producing tungsten from an object to be processed containing tungsten by molten salt electrolysis, wherein a cathode and an anode formed of an anode material containing the object to be processed are provided in molten salt, and The potential of the anode is controlled to a predetermined value so that the metal element corresponding to the controlled potential is dissolved from the object to be treated into the molten salt and tungsten is retained in the anode.
在本发明的另一个实施方案中,这样选择所述熔融盐,使得在将金属元素由所述处理对象物溶解到所述熔融盐中的所述步骤中,所述熔融盐中所述特定金属的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差为0.05V以上。In another embodiment of the present invention, the molten salt is selected such that in the step of dissolving the metal element from the object to be processed into the molten salt, the specific metal in the molten salt The difference between the standard electrode potential of the elemental substance or alloy of the metal and the standard electrode potential of the elemental substance or alloy of another metal is more than 0.05V.
本发明的另一个实施方案是一种用于通过熔融盐电解制造金属的方法的装置,该装置包括:容纳有熔融盐的容器;阴极,其浸没在容纳于所述容器内的所述熔融盐中;以及阳极,其浸没在容纳于所述容器内的所述熔融盐中并且包含处理对象物,该处理对象物含有两种以上金属元素,其中所述熔融盐可以在所述阳极内部和外部之间流动,所述装置还包括控制单元,该控制单元被构造为将所述阴极和所述阳极的电位控制为预定值,并且在所述控制单元中,所述电位的值是可以改变的。Another embodiment of the present invention is an apparatus for a method of producing metal by molten salt electrolysis, the apparatus comprising: a vessel containing molten salt; a cathode immersed in said molten salt contained in said vessel and an anode which is immersed in the molten salt contained in the container and contains a treatment object containing two or more metal elements, wherein the molten salt may be inside and outside the anode The device further includes a control unit configured to control the potential of the cathode and the anode to a predetermined value, and in the control unit, the value of the potential can be changed .
本发明的另一个实施方案是一种用于通过熔融盐电解制造金属的方法的装置,该装置包括:容纳有熔融盐的容器,该熔融盐包含两种以上溶解的金属元素;阴极和阳极,其浸没在容纳于所述容器内的所述熔融盐中;以及控制单元,其被构造为将所述阴极和所述阳极的电位控制为预定值,其中在所述控制单元中,所述电位的值是可以改变的。Another embodiment of the present invention is an apparatus for a method of producing a metal by molten salt electrolysis, the apparatus comprising: a container containing a molten salt containing two or more dissolved metal elements; a cathode and an anode, which is submerged in the molten salt accommodated in the container; and a control unit configured to control the potentials of the cathode and the anode to predetermined values, wherein in the control unit, the potential value can be changed.
在本发明的另一个实施方案中,所述两种以上金属元素包括钨和锂中的至少一种。In another embodiment of the present invention, the two or more metal elements include at least one of tungsten and lithium.
本发明的有益效果Beneficial effects of the present invention
根据本发明的金属制造方法和用于该制造方法的装置适用于任何矿石。使用根据本发明的制造方法或用于该制造方法的装置能够由含有两种以上金属元素的处理对象物安全且低成本地制造高纯度的特定金属。The metal production method and the device for the production method according to the invention are applicable to any ore. Using the manufacturing method or the apparatus used for the manufacturing method according to the present invention can safely and cost-effectively manufacture a high-purity specific metal from an object to be processed containing two or more metal elements.
附图简要说明Brief description of the drawings
图1是说明本发明实施方案的流程图。Figure 1 is a flow diagram illustrating an embodiment of the present invention.
图2是描述熔融盐中稀土金属的沉积电位的例子的示意图。FIG. 2 is a schematic diagram describing an example of a deposition potential of a rare earth metal in a molten salt.
图3是示出了本发明实施方案中的处理时间与熔融盐中稀土金属离子浓度之间的关系的例子的曲线图。Fig. 3 is a graph showing an example of the relationship between the treatment time and the concentration of rare earth metal ions in the molten salt in the embodiment of the present invention.
图4是说明根据本发明实施方案的装置构造的截面示意图。Fig. 4 is a schematic cross-sectional view illustrating the configuration of a device according to an embodiment of the present invention.
图5是说明根据本发明实施方案的装置构造的截面示意图。Fig. 5 is a schematic cross-sectional view illustrating the configuration of a device according to an embodiment of the present invention.
图6是说明本发明另一个实施方案的流程图。Figure 6 is a flow diagram illustrating another embodiment of the present invention.
图7是说明本发明另一个实施方案的截面示意图。Fig. 7 is a schematic sectional view illustrating another embodiment of the present invention.
图8是说明本发明另一个实施方案的截面示意图。Fig. 8 is a schematic sectional view illustrating another embodiment of the present invention.
图9是说明本发明另一个实施方案的截面示意图。Fig. 9 is a schematic sectional view illustrating another embodiment of the present invention.
图10是说明本发明另一个实施方案的截面示意图。Fig. 10 is a schematic sectional view illustrating another embodiment of the present invention.
图11是说明本发明另一个实施方案的变型的截面示意图。Fig. 11 is a schematic sectional view illustrating a modification of another embodiment of the present invention.
图12是说明本发明另一个实施方案的变型的截面示意图。Fig. 12 is a schematic sectional view illustrating a modification of another embodiment of the present invention.
图13是说明本发明另一个实施方案的变型的截面示意图。Fig. 13 is a schematic sectional view illustrating a modification of another embodiment of the present invention.
图14是说明根据本发明的实施例中使用的阳极的照片。Fig. 14 is a photograph illustrating an anode used in an example according to the present invention.
图15是说明根据本发明实施例中的阳极电流值与时间之间的关系的图。FIG. 15 is a graph illustrating a relationship between an anode current value and time in an embodiment according to the present invention.
图16是在根据本发明实施例中的电解步骤中使用的阴极表面部分的扫描电子显微镜照片。该显微镜照片右下方的尺度表示8μm的长度。Fig. 16 is a scanning electron micrograph of a surface portion of a cathode used in an electrolysis step in an example according to the present invention. The scale at the lower right of the micrograph indicates a length of 8 μm.
图17是说明在图16中所示的显微镜照片的区域内Dy分布状态的扫描电子显微镜照片。FIG. 17 is a scanning electron micrograph illustrating a distribution state of Dy in the area of the micrograph shown in FIG. 16 .
图18是说明根据本发明实施方案的装置构造实例的截面示意图。Fig. 18 is a schematic cross-sectional view illustrating an example of the configuration of a device according to an embodiment of the present invention.
图19是说明根据本发明实施方案的装置构造实例的截面示意图。Fig. 19 is a schematic cross-sectional view illustrating an example of the configuration of a device according to an embodiment of the present invention.
具体实施方式Detailed ways
本发明的一个实施方案是通过熔融盐电解制造金属的方法,该方法包括:将包含于处理对象物中的金属元素溶解在熔融盐中的步骤,其中该处理对象物含有两种以上的金属元素;以及通过将设置于所述熔融盐中的一对电极部件的电位控制为预定值,从而使存在于所述熔融盐中的特定金属在所述一对电极部件中的一者上沉积或合金化的步骤,其中所述熔融盐含有所述溶解的金属元素。One embodiment of the present invention is a method for producing metal by molten salt electrolysis, the method comprising: a step of dissolving a metal element contained in an object to be processed, wherein the object to be processed contains two or more metal elements, in molten salt and causing a specific metal present in the molten salt to be deposited or alloyed on one of the pair of electrode members by controlling the potential of the pair of electrode members provided in the molten salt to a predetermined value The step of melting, wherein the molten salt contains the dissolved metal element.
[第一实施方案][First Embodiment]
在第一实施方案中,处理对象物为含有两种以上金属元素的矿石或由该矿石得到的粗金属锭(下文中有时简称为粗金属锭)。In the first embodiment, the object to be processed is an ore containing two or more metal elements or a crude metal ingot obtained from the ore (hereinafter sometimes simply referred to as a crude metal ingot).
即,粗略地说,该实施方案包括将包含于对象物(矿石或粗金属锭)中的金属溶解在熔融盐中的过程,以及通过熔融盐电解将分离-提取目标元素的金属或合金从熔融盐中沉积于电极中的一者(阴极)上,其中该熔融盐含有溶解的金属。本实施方案的特征在于:通过控制电极的电位,从而选择性地使特定目标元素溶解或沉积,以实现分离和冶炼。That is, roughly speaking, this embodiment includes a process of dissolving a metal contained in an object (ore or crude metal ingot) in a molten salt, and separating-extracting the metal or alloy of the target element from the molten salt by molten salt electrolysis. Salt is deposited on one of the electrodes (cathode), where the molten salt contains dissolved metal. The feature of this embodiment is that by controlling the potential of the electrodes, a specific target element is selectively dissolved or deposited to realize separation and smelting.
首先将描述将包含于对象物中的金属元素溶解在熔融盐中的过程。First, a process of dissolving a metal element contained in an object in a molten salt will be described.
将包含于矿石或粗金属锭中的金属元素溶解在熔融盐中的过程为(例如)化学溶解过程。具体而言,将矿石或粗金属锭研磨成颗粒或粉末,与盐混合并加热。从而,能够将包含于矿石或粗金属锭中的两种以上金属元素溶解在熔融盐中。或者,可以将处理对象物置于熔融盐中并使之溶解。A process of dissolving a metal element contained in an ore or a crude metal ingot in a molten salt is, for example, a chemical dissolution process. Specifically, ore or coarse metal ingots are ground into granules or powders, mixed with salt and heated. Thereby, two or more metal elements contained in the ore or the crude metal ingot can be dissolved in the molten salt. Alternatively, the object to be treated may be dissolved in molten salt.
另一个过程是电化学过程。具体而言,将对象物作为阳极设置在熔融盐中,并控制对象物的电位值,从而选择性地使包含于对象物中的元素溶解:熔融盐电解的特征在于:不同的元素在不同的电位下溶解;以及利用该特征来选择性地分离相应电位的金属。这样,通过将对象物用作阳极并在溶解过程中控制电位,从而可以选择性地将作为冶炼目标的金属元素溶解在熔融盐中。Another process is an electrochemical process. Specifically, the object is placed in the molten salt as an anode, and the potential value of the object is controlled to selectively dissolve the elements contained in the object: molten salt electrolysis is characterized in that different elements are in different Dissolving at a potential; and exploiting this feature to selectively separate metals of the corresponding potential. In this way, by using the object as an anode and controlling the potential during the dissolution process, the metal element to be smelted can be selectively dissolved in the molten salt.
在将包含于对象物中的金属元素溶解在熔融盐的过程中,优选这样控制电位,从而使包含于对象物中的杂质保持为不溶解。这样可以减少后续沉积过程中杂质的进入。In dissolving the metal element contained in the object in the molten salt, it is preferable to control the potential so that the impurities contained in the object remain undissolved. This reduces the ingress of impurities during subsequent deposition.
为此,优选这样选择熔融盐,使得在将包含于矿石或粗金属锭中的金属元素溶解在熔融盐中的步骤中,熔融盐中特定金属(待溶解的金属元素)的单质或合金的标准电位与另一种金属的单质或合金的标准电极电位之差为0.05V以上。从而,能够使溶解于熔融盐中的金属元素与保留在阳极中的金属元素充分分离。标准电极电位之差更优选为0.1V以上,还更优选为0.25V以上。For this reason, it is preferable to select the molten salt such that in the step of dissolving the metal element contained in the ore or the crude metal ingot in the molten salt, the standard of the elemental substance or alloy of the specific metal (metal element to be dissolved) in the molten salt The difference between the potential and the standard electrode potential of a simple substance or alloy of another metal is more than 0.05V. Thereby, the metal elements dissolved in the molten salt can be sufficiently separated from the metal elements remaining in the anode. The difference in standard electrode potential is more preferably 0.1 V or more, still more preferably 0.25 V or more.
阳极上经控制的电位值可以通过下述的能斯特(Nernst)方程来计算。The controlled potential value on the anode can be calculated by the Nernst equation described below.
在使用的矿石或粗金属锭中含有多种目标特定金属的情况下,可以这样控制电位以使各金属分别溶解在熔融盐中。或者,在其中一种特定金属溶解后,可以将含有剩余金属的矿石或粗金属锭(阳极)移至另一熔融盐中,并且以类似方式将电位控制为预定值,以使剩余的特定金属溶解在该熔融盐中。In the case where a plurality of target specific metals are contained in the ore or crude metal ingot used, the potential can be controlled so that each metal is dissolved in the molten salt respectively. Alternatively, after one of the specific metals is dissolved, the ore or crude metal ingot (anode) containing the remaining metal may be moved to another molten salt, and the potential is controlled to a predetermined value in a similar manner so that the remaining specific metal dissolved in the molten salt.
一些金属更易于通过下述的沉积而分离。在这种情况下,可以将全部处理对象物溶解,或者可以仅将特定金属和一些其他金属溶解。Some metals are more easily isolated by deposition as described below. In this case, the entire object to be treated may be dissolved, or only the specific metal and some other metals may be dissolved.
从减少杂质进入的观点来看,在将包含于矿石或粗金属锭中的金属元素溶解在熔融盐中的步骤中,优选将阳极的电位控制为预定值,从而选择性地使特定金属元素溶解在熔融盐中。From the viewpoint of reducing the entry of impurities, in the step of dissolving the metal element contained in the ore or the crude metal ingot in the molten salt, it is preferable to control the potential of the anode to a predetermined value, thereby selectively dissolving the specific metal element in molten salt.
熔融盐可以选自氯化物和氟化物。氯化物熔融盐的例子包括KCl、NaCl、CaCl2、LiCl、RbCl、CsCl、SrCl2、BaCl2和MgCl2。氟化物熔融盐的例子包括LiF、NaF、KF、RbF、CsF、MgF2、CaF2、SrF2和BaF2。在对稀土元素进行熔融盐电解的情况下,考虑到效率优选使用氯化物熔融盐;具体而言,KCl、NaCl和CaCl2因其价格低廉且易于获得而优选使用。The molten salt may be selected from chlorides and fluorides. Examples of chloride molten salts include KCl, NaCl, CaCl2, LiCl, RbCl, CsCl, SrCl2 , BaCl2 and MgCl2 . Examples of the fluoride molten salt include LiF, NaF, KF, RbF, CsF, MgF 2 , CaF 2 , SrF 2 and BaF 2 . In the case of molten salt electrolysis of rare earth elements, chloride molten salts are preferably used in view of efficiency; specifically, KCl, NaCl, and CaCl are preferably used because of their low price and easy availability.
在这些熔融盐中,可以将多种熔融盐组合并用作具有所需组成的熔融盐。例如,可以使用具有诸如KCl-CaCl2、LiCl-KCl或NaCl-KCl之类组成的熔融盐。Among these molten salts, a plurality of molten salts may be combined and used as a molten salt having a desired composition. For example, a molten salt having a composition such as KCl-CaCl 2 , LiCl-KCl, or NaCl-KCl may be used.
阴极由碳或者倾向于与构成熔融盐中阳离子的碱金属(如Li或Na)形成合金的材料形成。例如,可以使用铝(Al)、锌(Zn)、镓(Ga)、镉(Cd)、铟(In)、锡(Sn)、锑(Sb)、铅(Pb)或铋(Bi)。The cathode is formed of carbon or a material that tends to form an alloy with an alkali metal (such as Li or Na) constituting cations in the molten salt. For example, aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), or bismuth (Bi) may be used.
当将矿石或粗金属锭用作阳极时,例如,可以将容纳在由金属等形成的导电性篮筐(basket)中的矿石或粗金属锭设置在熔融盐中。可以在篮筐的上部形成开口,从而使得能够将作为处理对象物的矿石或粗金属锭通过该开口插入篮筐内;并且可以在篮筐的侧壁和底壁上形成大量的孔,以使熔融盐能够流入篮筐内。篮筐可以由所需材料构成,例如由金属线编织的网状部件或为具有大量孔的片状金属板的片材部件。具体而言,由C、Pt、Mo等形成的材料是有效的。When an ore or a rough metal ingot is used as the anode, for example, the ore or the rough metal ingot housed in a conductive basket formed of metal or the like may be set in molten salt. An opening may be formed in the upper part of the basket so that an ore or a rough metal ingot as a processing object can be inserted into the basket through the opening; and a large number of holes may be formed on the side wall and the bottom wall of the basket so that Molten salt can flow into the basket. The basket can be constructed of a desired material, such as a mesh member woven of metal wires or a sheet member that is a sheet metal plate with a large number of holes. Specifically, a material formed of C, Pt, Mo, or the like is effective.
在对象物为矿石等且具有高电阻的情况下,优选增加对象物和导电性材料之间的接触面积。例如,通过用金属网部件包裹对象物或者将对象物填充至金属多孔部件内的空间中,从而可有效地将对象物用作电极。When the object is ore or the like and has high electrical resistance, it is preferable to increase the contact area between the object and the conductive material. For example, by wrapping the object with a metal mesh member or filling the space in the metal porous member with the object, the object can be effectively used as an electrode.
当将阴极和容纳有矿石或粗金属锭的篮筐设置在熔融盐中并且如上所述从外部控制阳极(篮筐)的电位时,可以使目标金属由矿石或粗金属锭溶解到熔融盐中。When the cathode and the basket containing the ore or rough metal ingot are placed in the molten salt and the potential of the anode (basket) is controlled from the outside as described above, the target metal can be dissolved from the ore or the rough metal ingot into the molten salt .
在随后的沉积过程中,通过设置在熔融盐中的一对电极部件进行熔融盐电解,以使溶解在熔融盐中的金属元素沉积在电极部件中的一者(阴极)上。在这种情况下,通过控制熔融盐电解时的电位值,可以选择性地将特定金属元素作为金属或合金而沉积于阴极上。In the subsequent deposition process, molten salt electrolysis is performed by a pair of electrode members disposed in the molten salt, so that a metal element dissolved in the molten salt is deposited on one of the electrode members (cathode). In this case, by controlling the potential value at the time of molten salt electrolysis, a specific metal element can be selectively deposited on the cathode as a metal or an alloy.
与溶解过程相同,在该沉积过程中,熔融盐电解的特征在于:不同的元素在不同的电位下作为金属或合金而沉积于阴极上;并且利用该特征来分离金属。因此,即使熔融盐中含有多种目标特定金属,也能通过控制电位将这些金属分别沉积于阴极上。Like the dissolution process, in this deposition process, molten salt electrolysis is characterized in that different elements are deposited on the cathode as metals or alloys at different potentials; and this characteristic is used to separate the metals. Therefore, even if the molten salt contains multiple target specific metals, these metals can be deposited on the cathode separately by controlling the potential.
电极部件可以由(例如)镍(Ni)、钼(Mo)或玻璃碳(C)形成。The electrode member may be formed of, for example, nickel (Ni), molybdenum (Mo), or glassy carbon (C).
在本实施方案中,使用如上所述两个过程以从对象物中分离并提取作为熔炼目标的特定金属元素。在本实施方案中,由于使用了熔融盐,因此需要将体系加热以使该过程中体系的温度等于或高于熔融盐的熔点。In the present embodiment, the two processes described above are used to separate and extract a specific metal element that is a target of smelting from an object. In the present embodiment, since molten salt is used, it is necessary to heat the system so that the temperature of the system during the process is equal to or higher than the melting point of the molten salt.
这两个过程的特征是使用了熔融盐。因而,利用了不同熔融盐对元素具有不同的溶解-沉积电位这一事实,并且可通过这样选择熔融盐来设计过程,以使作为目标元素的特定金属元素和其它杂质金属元素的溶解-沉积电位的数值能够使该过程容易进行。具体而言,优选这样选择熔融盐,使得在特定金属的沉积或合金化步骤中,熔融盐中该特定金属的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差为0.05V以上。在熔融盐中,该特定金属的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差更优选为0.1V以上,还更优选为0.25V以上。These two processes are characterized by the use of molten salts. Thus, the fact that different molten salts have different dissolution-deposition potentials for elements is utilized, and the process can be designed by selecting the molten salt such that the dissolution-deposition potentials of the specific metal element as the target element and other impurity metal elements A value of 0 can make this process easy. Specifically, it is preferable to select the molten salt such that in the deposition or alloying step of a specific metal, the standard electrode potential of a single substance or alloy of the specific metal in the molten salt is equal to or equal to the standard electrode potential of a simple substance or alloy of another metal. The difference is 0.05V or more. In the molten salt, the difference between the standard electrode potential of the elemental substance or alloy of the specific metal and the standard electrode potential of the elemental substance or alloy of another metal is more preferably 0.1 V or more, still more preferably 0.25 V or more.
这样,在将特定金属沉积或合金化的步骤中,优选将电极部件的电位控制为预定值,从而选择性地使熔融盐中的特定金属元素沉积或合金化。Thus, in the step of depositing or alloying the specific metal, it is preferable to control the potential of the electrode member to a predetermined value, thereby selectively depositing or alloying the specific metal element in the molten salt.
待沉积于阴极上的金属的单质或合金的沉积电位可以通过电化学计算来确定。具体而言,通过能斯特方程进行计算。The deposition potential of the single substance or alloy of the metal to be deposited on the cathode can be determined by electrochemical calculations. Specifically, the calculation is performed by the Nernst equation.
例如,由三价镨(Pr)离子(以下用Pr(III)表示)沉积的Pr单质的电位可以通过以下等式确定。For example, the potential of Pr simple substance deposited from trivalent praseodymium (Pr) ions (hereinafter represented by Pr(III)) can be determined by the following equation.
EPr=E0 Pr+RT/3F·ln(aPr(III)/aPr(0)) 等式(1)E Pr = E 0 Pr +RT/3F·ln(a Pr(III) /a Pr(0) ) Equation (1)
在等式(1)中,E0 Pr表示标准电位,R表示气体常数,T表示绝对温度,F表示法拉第常数,aPr(III)表示Pr(III)离子的活度,aPr(0)表示Pr单质的活度。In equation (1), E 0 Pr represents the standard potential, R represents the gas constant, T represents the absolute temperature, F represents the Faraday constant, a Pr(III) represents the activity of Pr(III) ions, a Pr(0) Indicates the activity of Pr element.
考虑到活度系数γPr(III)而改写等式(1)的情况下,由于aPr(0)=1,从而得到以下等式。When the equation (1) is rewritten in consideration of the activity coefficient γ Pr(III) , since a Pr(0) =1, the following equation is obtained.
EPr=E0 Pr+RT/3F·lnaPr(III)=E0 Pr+RT/3F·ln(γPr(III)·CPr(III)) 等式(2)E Pr =E 0 Pr +RT/3F lna Pr(III) =E 0 Pr +RT/3F ln(γ Pr(III) C Pr(III) ) Equation (2)
EPr=E0’Pr+RT/3F·lnCPr(III) 等式(3)E Pr =E 0 ' Pr +RT/3F·lnC Pr(III) Equation (3)
在等式(3)中,CPr(III)表示三价Pr离子的浓度,E0’Pr表示条件电极电位(formal electrode potential)(这里,等于E0 Pr+RT/3F·lnγPr(III))。In equation (3), C Pr(III) represents the concentration of trivalent Pr ions, E 0 ' Pr represents the conditional electrode potential (formal electrode potential) (here, equal to E 0 Pr +RT/3F·lnγ Pr(III ) ).
类似地,使PrNi合金沉积于电极表面上的电位(沉积电位:EPr·Ni)可以通过以下等式确定。Similarly, the potential at which the PrNi alloy is deposited on the electrode surface (deposition potential: E Pr·Ni ) can be determined by the following equation.
EPr·Ni=E0’Pr·Ni+RT/3F·lnCPr(III) 等式(4)E Pr·Ni =E 0 ' Pr·Ni +RT/3F·lnC Pr(III) equation (4)
在等式(4)中,E0’Pr·Ni表示条件电极电位(这里,等于E0 Pr·Ni+RT/3F·lnγPr(III))。In Equation (4), E 0 ′ Pr·Ni represents the conditional electrode potential (here, equal to E 0 Pr·Ni +RT/3F·lnγ Pr(III) ).
类似地,通过利用上述等式,可以确定对应于不同熔融盐的所有沉积物的沉积电位。在使特定金属在阴极上沉积或合金化的过程中,考虑到该特定金属或其合金的沉积电位值,选择相对于另一种金属或其合金具有电位差的沉积物,或者确定沉积的顺序。Similarly, by using the above equation, the deposition potentials of all deposits corresponding to different molten salts can be determined. In the process of depositing or alloying a particular metal on a cathode, the selection of a deposit having a potential difference with respect to another metal or its alloy, or the determination of the order of deposition, taking into account the value of the deposition potential of that particular metal or its alloy .
操作过程中的电压和电流根据电极的尺寸或位置关系而变化。因此,基于这些条件确定电压和电流的基准值,随后基于由上述方法确定的电位值和顺序来确定每一个步骤中的电压和电流。The voltage and current during operation vary according to the size or positional relationship of the electrodes. Therefore, the reference values of voltage and current are determined based on these conditions, and then the voltage and current in each step are determined based on the potential value and order determined by the above-described method.
如上所述,在根据本实施方案的通过熔融盐电解制造金属的方法中,对电位值进行控制从而以电化学方式溶解并沉积目标金属。因此,与(例如)包括反复进行使用酸等的溶解和提取过程的现有湿法处理相比,可以简化步骤;并且可以选择性地分离和回收特定元素。另外,无需调整熔融盐的比重;而且,通过选择对象物能够在其中以固态进行处理的低温熔融盐,可以采用简单的装置构造。此外,操作模式也可以简化。因此,能够以低成本有效地进行这些步骤。As described above, in the method of producing metal by molten salt electrolysis according to the present embodiment, the potential value is controlled to electrochemically dissolve and deposit the target metal. Therefore, compared with, for example, existing wet processing including repeatedly performing a dissolution and extraction process using an acid or the like, steps can be simplified; and specific elements can be selectively separated and recovered. In addition, there is no need to adjust the specific gravity of the molten salt; and by selecting a low-temperature molten salt in which an object can be processed in a solid state, a simple device configuration can be employed. Furthermore, the mode of operation can also be simplified. Therefore, these steps can be efficiently performed at low cost.
或者,可以基于与上述将特定金属在阴极上沉积或合金化的想法完全相反的构想来冶炼特定金属。Alternatively, specific metals can be smelted based on the exact opposite idea of depositing or alloying specific metals on the cathode as described above.
也就是说,根据本实施方案的金属制造方法是通过熔融盐电解从而由含有两种以上金属元素的矿石或由该矿石获得的粗金属锭制造特定金属的方法,其中在熔融盐中设置有阴极以及由含有矿石或粗金属锭的阳极材料形成的阳极,并将该阳极的电位控制为预定值,从而使对应于该电位的金属元素由矿石或粗金属锭中溶解到熔融盐中,并使特定金属保留在阳极中。That is, the metal production method according to the present embodiment is a method of producing a specific metal from an ore containing two or more metal elements or a crude metal ingot obtained from the ore by molten salt electrolysis in which a cathode is provided and an anode formed of an anode material containing an ore or a rough metal ingot, and controlling the potential of the anode to a predetermined value so that a metal element corresponding to the potential is dissolved from the ore or a rough metal ingot into the molten salt, and the Certain metals remain in the anode.
在该方法中,将对象物(矿石或粗金属锭)用作阳极,并且将除特定金属元素以外的金属元素(即,仅作为杂质的金属元素)溶解在熔融盐中,以使特定金属保留在阳极中。在这种情况下,同样地通过控制阳极的电位,从而引起这样的现象:作为熔炼目标的金属元素保留在阳极中,而杂质元素溶解在熔融盐中。由此,在阳极上得到了冶炼后的金属材料。In this method, an object (ore or rough metal ingot) is used as an anode, and metal elements other than a specific metal element (that is, metal elements that are only impurities) are dissolved in a molten salt so that the specific metal remains in the anode. In this case as well, by controlling the potential of the anode, a phenomenon is caused in which the metal element targeted for smelting remains in the anode while the impurity element is dissolved in the molten salt. Thus, a smelted metal material is obtained on the anode.
在该方法中,同样优选这样选择熔融盐,使得在将金属元素从矿石或粗金属锭中溶解到熔融盐中的步骤中,熔融盐中特定金属的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差为0.05V以上。由此,可以将特定金属与其它金属充分分离并且仅将特定金属保留在阳极中。标准电极电位之差更优选为0.1V以上,还更优选为0.25V以上。In this method, it is also preferable to select the molten salt so that, in the step of dissolving the metal element from the ore or the crude metal ingot into the molten salt, the standard electrode potential of the elemental substance or alloy of the specific metal in the molten salt is the same as that of another The difference between the standard electrode potentials of a single metal or an alloy is 0.05V or more. Thereby, it is possible to sufficiently separate a specific metal from other metals and to retain only the specific metal in the anode. The difference in standard electrode potential is more preferably 0.1 V or more, still more preferably 0.25 V or more.
阳极上的经控制的电位值可以通过上述能斯特方程计算。The controlled potential value on the anode can be calculated by the above-mentioned Nernst equation.
可用于本实施方案的通过熔融盐电解制造金属的方法中的矿石是含有目标特定金属的矿石。这种矿石的例子包括金矿石、银矿石、铜矿石、铁矿石、铝矿石、铅矿石、锌矿石、锡矿石、汞矿石、硫矿石、磷矿石、镍矿石、钴矿石、锰矿石、铬矿石、钼矿石、钨矿石、锑矿石、砷矿石、铋矿石、锶矿石、铍矿石、镁矿石、钡矿石和钙矿石。例如,可以从氟碳铈矿、独居石、铈铌钙钛矿、磷灰石、磷钇矿、褐钇铌矿和异性石中获得稀土金属。The ore usable in the method for producing metal by molten salt electrolysis of the present embodiment is an ore containing the target specific metal. Examples of such ores include gold ore, silver ore, copper ore, iron ore, aluminum ore, lead ore, zinc ore, tin ore, mercury ore, sulfur ore, phosphorous ore, nickel ore, cobalt ore, manganese ore , chromium ore, molybdenum ore, tungsten ore, antimony ore, arsenic ore, bismuth ore, strontium ore, beryllium ore, magnesium ore, barium ore and calcium ore. For example, rare earth metals can be obtained from bastnaesite, monazite, cerium-niobium perovskite, apatite, xenotime, yttrium-niobite, and xenostone.
由矿石得到的粗金属锭表示含有低纯度的目标特定金属的金属,如通过冶炼矿石得到的金属。Rough metal ingots derived from ores represent metals containing a low purity target specific metal, such as metals obtained by smelting ores.
根据本实施方案的通过熔融盐电解制造金属的方法适用于矿石或由该矿石获得的粗金属锭,其中该矿石被用作阳极且含有过渡金属或稀土金属。The method of producing metal by molten salt electrolysis according to the present embodiment is applicable to an ore used as an anode and containing a transition metal or a rare earth metal, or a crude metal ingot obtained from the ore.
对过渡金属没有特别限定,可以是周期表中第3族(IIIA族)至第11族(IB族)中的任意元素。对稀土金属也没有特别限制,可以是周期表中第3族(IIIA族)的钪(Sc)、钇(Y)和15种镧系元素中的任意元素。The transition metal is not particularly limited, and may be any element in Group 3 (Group IIIA) to Group 11 (Group IB) in the periodic table. The rare earth metal is also not particularly limited, and may be scandium (Sc), yttrium (Y) and any of the 15 lanthanide elements in group 3 (IIIA) of the periodic table.
根据本实施方案的通过熔融盐电解制造金属的方法也适用于在阴极上沉积或合金化的特定金属为稀土金属的情况。在本实施方案中,通过对熔融盐的组成进行适当选择,能够使即使通过水溶液电解也不能沉积的稀土金属被均匀沉积。因而,能够容易地得到难以作为资源开采获得的稀土金属。The method of producing a metal by molten salt electrolysis according to the present embodiment is also applicable to the case where the specific metal deposited or alloyed on the cathode is a rare earth metal. In the present embodiment, rare earth metals that cannot be deposited even by electrolysis of an aqueous solution can be uniformly deposited by appropriately selecting the composition of the molten salt. Therefore, rare earth metals that are difficult to mine as resources can be easily obtained.
在本实施方案中,矿石或由该矿石得到的粗金属锭优选呈颗粒状或粉末状。当准备待处理的矿石或粗金属锭以使其呈颗粒状或粉末状时,其表面积增加并且能够提高处理效率。从这个观点来看,矿石或粗金属锭的最大粒径优选为0.01mm至2mm,更优选为0.01mm至1mm,还更优选为0.01mm至0.2mm。In this embodiment, the ore or the crude metal ingot obtained from the ore is preferably in the form of granules or powder. When preparing ore or coarse metal ingots to be processed so as to be in granular or powder form, the surface area is increased and processing efficiency can be improved. From this point of view, the maximum particle diameter of the ore or the crude metal ingot is preferably 0.01 mm to 2 mm, more preferably 0.01 mm to 1 mm, still more preferably 0.01 mm to 0.2 mm.
另外,优选将呈颗粒状或粉末状的矿石或粗金属锭挤压以形成为阳极。可对呈粉末状的矿石或粗金属锭进行挤压,从而能够用作阳极。在这种情况下,颗粒之间存在熔融盐能够容易进入的有利空间。In addition, it is preferable to extrude an ore or a crude metal ingot in a granular or powdery form to form the anode. Ore or ingots of crude metal can be extruded in powder form to be able to be used as anodes. In this case, there are favorable spaces between the particles into which the molten salt can easily enter.
下面,将参照附图说明本实施方案。在下面的附图中,相同或相应的部分用相同的参考符号标出并且省略对其的重复描述。Hereinafter, the present embodiment will be described with reference to the drawings. In the following drawings, the same or corresponding parts are marked with the same reference symbols and repeated descriptions thereof are omitted.
[第一实施方案-1][First Embodiment-1]
将描述本实施方案的一个例子,其为通过熔融盐电解从而由含有钕(Nd)、镝(Dy)和镨(Pr)的矿石中获得Nd、Dy和Pr的方法。该矿石的例子包括独居石、磷灰石、磷钇矿、褐钇铌矿和异性石。An example of the present embodiment will be described, which is a method of obtaining Nd, Dy and Pr from an ore containing neodymium (Nd), dysprosium (Dy) and praseodymium (Pr) by molten salt electrolysis. Examples of such ores include monazite, apatite, xenotime, yttrium niobite, and xenite.
如图1所示,首先进行准备步骤(S10)。As shown in FIG. 1, a preparation step (S10) is performed first.
在这个步骤中,例如,准备作为处理对象物的矿石、待使用的熔融盐、以及包括(例如)电极和容纳熔融盐的容器的装置。可任选地,为了促进处理对象物在熔融盐中的溶解,可以将处理对象物精细研磨以增加处理对象物与熔融盐之间的接触面积。In this step, for example, ore as an object to be processed, molten salt to be used, and an apparatus including, for example, electrodes and a container for accommodating molten salt are prepared. Optionally, in order to promote the dissolution of the object to be treated in the molten salt, the object to be treated may be finely ground to increase the contact area between the object to be treated and the molten salt.
含有Nd、Dy和Pr的矿石可以为(例如)磷钇矿石。例如,组成为3.0%Nd、7.9%Dy和0.5%Pr的磷钇矿石。The ore containing Nd, Dy and Pr may be, for example, xenotime ore. For example, xenotime ore with a composition of 3.0% Nd, 7.9% Dy and 0.5% Pr.
接着,进行熔融盐中的溶解步骤(S20)。Next, a dissolving step (S20) in molten salt is performed.
在该步骤(S20)中,将矿石和(另一个)电极部件浸没在准备好的熔融盐中;该矿石和电极部件通过电源相连,以控制矿石和电极部件的电位。通过控制矿石的电位,可以选择性地将矿石中的稀土元素(Nd、Dy和Pr)溶解在熔融盐中。使用的熔融盐可以是具有所需组成的熔融盐。In this step (S20), the ore and the (another) electrode part are immersed in the prepared molten salt; the ore and the electrode part are connected through a power source to control the potential of the ore and the electrode part. By controlling the potential of the ore, the rare earth elements (Nd, Dy, and Pr) in the ore can be selectively dissolved in the molten salt. The molten salt used may be one having a desired composition.
例如,熔融盐可以为LiF-NaF-KF;另一个电极部件可以为由玻璃碳形成的电极;并且上述矿石可以用作处理对象物。For example, a molten salt may be LiF-NaF-KF; another electrode member may be an electrode formed of glassy carbon; and the above-mentioned ore may be used as a processing object.
在这种情况下,例如,在700℃下对熔融盐进行加热时,可以选择性地将Nd、Dy和Pr由矿石溶解到熔融盐中。将电位控制为这样的值,使得在该电位值下,除Nd、Dy和Pr以外的其他元素几乎不溶解在熔融盐中,而Nd、Dy和Pr会溶解在熔融盐中。In this case, for example, when the molten salt is heated at 700° C., Nd, Dy, and Pr can be selectively dissolved from the ore into the molten salt. The potential is controlled to a value at which elements other than Nd, Dy, and Pr are hardly dissolved in the molten salt, but Nd, Dy, and Pr are dissolved in the molten salt.
接着,如图1所示,进行分离提取步骤(S30)。Next, as shown in FIG. 1, a separation and extraction step (S30) is performed.
具体而言,在如上所述的其中溶解有Nd、Dy和Pr的熔融盐中插入一对电极,并且将该电极部件的电位控制为预定值。例如,在使用LiCl-KCl熔融盐的情况下,如图2所示,将电位值控制为与针对各稀土金属所确定的沉积电位相对应的电位。因此,通过控制电位,可以选择沉积在电极上的稀土金属。因此,可以逐个元素地选择性回收稀土金属。Specifically, a pair of electrodes is inserted in the molten salt in which Nd, Dy, and Pr are dissolved as described above, and the potential of the electrode parts is controlled to a predetermined value. For example, in the case of using LiCl—KCl molten salt, as shown in FIG. 2 , the potential value is controlled to a potential corresponding to the deposition potential determined for each rare earth metal. Therefore, by controlling the potential, the rare earth metal deposited on the electrode can be selected. Therefore, rare earth metals can be selectively recovered element-by-element.
例如,如图2所示,对于诸如Nd、Dy和Pr之类的稀土元素,每个元素均具有不同的沉积电位值。具体而言,如图2所示,Nd的沉积电位为约0.40V(相对于Li+/Li);Pr和Dy的沉积电位为约0.47V(相对于Li+/Li);而Dy的化合物DyNi2的沉积电位为约0.77V(相对于Li+/Li)。For example, as shown in FIG. 2, for rare earth elements such as Nd, Dy, and Pr, each element has a different deposition potential value. Specifically, as shown in Figure 2, the deposition potential of Nd is about 0.40V (relative to Li + /Li); the deposition potential of Pr and Dy is about 0.47V (relative to Li + /Li); and the compound of Dy The deposition potential of DyNi2 is about 0.77 V (vs. Li + /Li).
对图2中的沉积电位(参照Li)进行说明。在图2中,纵轴表示沉积电位(单位:V)。这些沉积电位是在熔融盐为LiCl-KCl并且熔融盐的温度设为450℃时的值。The deposition potential (refer to Li) in FIG. 2 will be described. In FIG. 2 , the vertical axis represents the deposition potential (unit: V). These deposition potentials are values when the molten salt is LiCl-KCl and the temperature of the molten salt is set to 450°C.
如上所述,元素和化合物具有不同的沉积电位。因此,通过将一对电极浸没在溶解有特定金属的熔融盐中,并且通过控制阴极电位以使其对应于上述的沉积电位,从而能够选择性地将特定稀土元素沉积在阴极上。通过改变阴极的电位值(例如,依次改变电位),可以选择待沉积的特定金属。As mentioned above, elements and compounds have different deposition potentials. Therefore, a specific rare earth element can be selectively deposited on the cathode by immersing a pair of electrodes in a molten salt in which a specific metal is dissolved, and by controlling the potential of the cathode so as to correspond to the above-mentioned deposition potential. By changing the potential value of the cathode (eg, changing the potential sequentially), the particular metal to be deposited can be selected.
例如,如图3所示,在浸没于溶解了Nd、Dy和Pr的熔融盐中的一对电极之间依次施加不同的电压。熔融盐中Nd、Dy和Pr的浓度(离子浓度)均为0.5摩尔%。For example, as shown in FIG. 3 , different voltages are sequentially applied between a pair of electrodes immersed in a molten salt in which Nd, Dy, and Pr are dissolved. The concentrations (ion concentrations) of Nd, Dy and Pr in the molten salt were all 0.5 mol%.
当将图2中所述的数据用作沉积电位值时,例如,将LiCl-KCl用作熔融盐并且将该熔融盐的温度设置为450℃。在图3中,横轴表示处理时间,纵轴表示熔融盐中稀土元素的离子浓度。纵轴的单位是摩尔%。When the data described in FIG. 2 is used as the deposition potential value, for example, LiCl-KCl is used as the molten salt and the temperature of the molten salt is set to 450°C. In FIG. 3 , the horizontal axis represents the treatment time, and the vertical axis represents the ion concentration of the rare earth element in the molten salt. The unit of the vertical axis is mol%.
在步骤1中,当首先将Ni用作阴极材料并且将阴极的电位设为低于0.77V(相对于Li+/Li)且稍高于0.63V(相对于Li+/Li)的值时(例如,将电位差设为0.631V(相对于Li+/Li)),则Dy离子与阴极材料Ni合金化,由此DyNi2沉积在阴极表面上。因此,如图3所示,熔融盐中Dy离子浓度急剧降低。由此可以回收Dy,直至熔融盐中的Dy离子浓度变为约3.6×10-4摩尔%为止。In
接着,在步骤2中,当将另一个电极(例如,Mo电极)用作阴极并且将阴极的电位设为稍高于0.40V(相对于Li+/Li)的值(例如,将电位差设为0.401V(相对于Li+/Li))时,则Pr沉积在电极中的一者(阴极)上。因此,如图3所示,熔融盐中Pr离子浓度急剧降低。这样可以回收Pr,直到熔融盐中的Pr离子浓度变为约0.017摩尔%为止。Next, in
步骤2中使用的电极并不是步骤1中沉积了DyNi2的电极。例如,可以在步骤2开始前将在步骤1中沉积了DyNi2的电极移除,然后可将另一个电极浸入熔融盐中;或者,沉积有DyNi2的电极可以不移出而保留,然后在步骤2中,可以控制另一个电极的电位。The electrode used in
接着,在步骤3中,当将又一个电极(例如,Mo电极)的电位设为0.10V(相对于Li+/Li)时,Nd沉积在该电极(阴极)上。因此,如图3所示,熔融盐中的Nd离子浓度急剧降低。这样可以回收Nd,直到熔融盐中的Nd离子浓度变为(例如)约2.7×10-7摩尔%为止。Next, in
可以在步骤3开始之前将在步骤2中沉积了Pr的电极从熔融盐中移除,然后可将另一个电极浸入熔融盐中;或者,可以将步骤2中沉积了Pr的电极继续浸没在熔融盐中,然后在步骤3中可以使用另一个电极。The electrode deposited with Pr in
在步骤4中处理步骤1中回收的DyNi2:将表面上沉积了DyNi2的电极和另一个电极(例如,Mo电极)浸没在熔融盐中;然后将DyNi2电极的电位设在这样的电位范围内:在该电位范围内,Dy会溶解,但Ni不溶解(0.77V以上2.6V以下(相对于Li+/Li)),从而可以使Dy溶解在熔融盐中,而仅有Dy沉积在另一个电极的表面上。Treat the DyNi recovered in
如上所述,可以从熔融盐中单独回收目标特定金属。As described above, target specific metals can be individually recovered from molten salts.
(用于本实施方案的方法的装置)(apparatus for the method of the present embodiment)
下面,将参照图4和5描述用于图1中的本实施方案的方法的装置。图4所示的回收装置包括容纳熔融盐的容器1,容纳于容器1内的熔融盐2,容纳处理对象物(矿石或粗金属锭)3的篮筐4,电极6至8,用于加热熔融盐2的加热器10,以及通过导线5与篮筐4和电极6至8电连接的控制单元9。控制单元9被构造为用于控制一个电极(即篮筐4)和另一个电极(即电极6至8中的一者)的电位(改变电位)。在控制单元9中,被控制的电位值是可以改变的。布置加热器10使其环绕在容器1周围。电极6至8可以由所需的材料形成。例如,电极6可以由镍(Ni)形成。例如,电极7和8可以由碳(C)形成。容器1可以具有呈环形或多边形的底面。篮筐4可以是上述篮筐。Next, an apparatus used for the method of the present embodiment in FIG. 1 will be described with reference to FIGS. 4 and 5 . The recovery device shown in FIG. 4 includes a
通过控制单元9将篮筐4和电极6至8控制为预定电位值。如下所述,通过将电极6至8控制为不同的电位,可将与所控制的电位值相对应的不同的特定金属沉积在电极6至8的表面上。例如,如下所述,可以调节电极6的设定电位值,从而将DyNi2膜11沉积在电极6的表面上。通过调节电极7的设定电位,可以将Pr膜12沉积在电极7的表面上。通过调节电极8的设定电位,可以将Nd膜13沉积在电极8的表面上。The basket 4 and the
之后将沉积了DyNi2膜11的电极6放置在如图5所示的容纳有熔融盐2的容器1中。此外,将另一个电极放置在熔融盐2中,使之与表面上沉积了DyNi2膜11的电极6相对。电极6和15通过导线5连接至控制单元9。当用布置成环绕容器1的加热器10加热熔融盐2时,使用控制单元9将电极6和15的电位控制为预定值。此时,这样控制电位,使得阴极(电极15)的电位为Dy的沉积电位。The
由此,将Dy从沉积在电极6表面上的DyNi2膜11中溶解到熔融盐2中,并将Dy膜16沉积在电极15的表面上。在使用图4和5中所示的装置的两次处理中,利用加热器10的熔融盐2的加热温度均可为(例如)800℃。这样,可以将特定金属以单质形式沉积在电极7、8和15的表面上。Thus, Dy is dissolved into the
在用图4和5中所示的装置实施本实施方案的方法的情况下,例如,可以通过以下方式实施该方法。In the case of carrying out the method of the present embodiment with the apparatus shown in FIGS. 4 and 5 , for example, the method can be carried out in the following manner.
首先准备作为处理对象物3的矿石(9kg)和作为熔融盐2的LiF-NaF-KF。例如,该矿石可以含有3.0重量%的Nd、0.5重量%的Pr和7.9重量%的Dy。将该矿石研磨并放入篮筐4中。从提高处理效率的角度来看,优选通过研磨从而将作为处理对象物3的矿石的尺寸降至最小。例如,将矿石研磨至最大粒径为2mm以下、优选为1mm以下、更优选为0.2mm以下的颗粒。熔融盐2的量为约16升(质量:25kg)。First, an ore (9 kg) as a
将容纳在篮筐4中的处理对象物3和电极6至8中的一者用作一对电极,然后进行参照图2和3描述的本实施方案的方法中的步骤1至步骤3。具体而言,在上述步骤1中,将容纳在篮筐4中的处理对象物3和电极6用作一对电极,并将电极的电位控制为预定值。由此,将DyNi2沉积在电极6的表面上。在上述步骤2中,将容纳在篮筐4中的处理对象物3和电极7用作一对电极,并将电极的电位控制为预定值。由此,使Pr沉积在电极7的表面上。图4中沉积于电极7的表面上的Pr膜的质量为(例如)约30g至约50g。Using the
在上述步骤3中,将容纳在篮筐4中的处理对象物3和电极8用作一对电极,并将电极的电位控制为预定值。由此,使Nd沉积在电极8的表面上。沉积于电极8的表面上的Nd膜的质量为(例如)约200g至约300g。In the
在上述步骤4中,将电极6和电极15放置在图5所示的装置中,并将熔融盐中的电极电位控制为预定值。由此,将Dy沉积在电极15的表面上。沉积于电极15的表面上的Dy膜16的质量为(例如)600g至800g。In the above step 4, the
如参照图4所述,将目标金属溶解在熔融盐2中的步骤以及将特定金属以单质形式沉积在电极7、8等的表面上的步骤可在相同的装置(容纳有相同的熔融盐2)内进行。另一方面,在与参照图4所描述的将金属溶解于熔融盐2中的步骤中所使用的装置(图4中所示出的装置)不同的装置中,进行步骤4所述的将Dy从DyNi2中分离并提取的步骤。As described with reference to FIG. 4 , the step of dissolving the target metal in the
如上所述,可以从作为处理对象物3的矿石或粗金属锭中回收特定金属(例如,Dy、Pr和Nd)。As described above, specific metals (for example, Dy, Pr, and Nd) can be recovered from ores or crude metal ingots as the
[第一实施方案-2][First Embodiment-2]
将描述本实施方案的一个例子,其为通过熔融盐电解从而由粗金属锭获得钕(Nd)、镝(Dy)和镨(Pr)的方法,其中该粗金属锭是通过对含有Nd、Dy和Pr的矿石进行冶炼而获得的。An example of the present embodiment will be described, which is a method of obtaining neodymium (Nd), dysprosium (Dy) and praseodymium (Pr) from a crude metal ingot by molten salt electrolysis, wherein the crude metal ingot is obtained by treating Obtained by smelting with Pr ore.
含有Nd、Dy和Pr的粗金属锭可以是(例如)混合稀土金属(钕镨混合物)。对获得混合稀土金属的冶炼方法没有特别限制,可以选自公知方法。The crude metal ingot containing Nd, Dy and Pr may be, for example, a misch metal (dydrome). There is no special limitation on the smelting method for obtaining misch metal, and it can be selected from known methods.
如图6所示,首先进行作为处理对象物的粗金属锭的准备步骤(S11)。具体而言,如图7所示,将作为处理对象物3的粗金属锭浸没在容纳于容器1内的熔融盐2中;然后将导线5连接至处理对象物3,导线5用于连接至控制单元9中的电源。使用的盐为LiCl-KCl。As shown in FIG. 6 , first, a preparation step ( S11 ) of a rough metal ingot as an object to be processed is performed. Specifically, as shown in FIG. 7, a crude metal ingot as an
在熔融盐2中,将容纳于篮筐24中并作为另一个电极的电极材料25和篮筐24一同浸入。电极材料25为倾向于与构成熔融盐中的阳离子的碱金属(如Li和Na)形成合金的材料。电极材料25的例子包括铝(Al)、锌(Zn)、镓(Ga)、镉(Cd)、铟(In)、锡(Sn)、锑(Sb)、铅(Pb)和铋(Bi)。In the
接着,如图6所示,进行将Nd、Dy和Pr溶解在熔融盐中的步骤(S21)。Next, as shown in FIG. 6, a step (S21) of dissolving Nd, Dy, and Pr in molten salt is performed.
具体而言,如图7所示,利用控制单元9对处理对象物3和容纳于篮筐24内的电极材料25的电位进行控制,从而将处理对象物3的电位调整为预定值。由此,将诸如Nd、Dy和Pr之类的稀土元素由作为处理对象物3的粗金属锭中溶解至熔融盐2中。Specifically, as shown in FIG. 7 , the potentials of the
接着,如图6所示,通过电解进行沉积DyNi2的步骤(S31)。具体而言,如图8所示,用由镍形成的电极6代替图7中容纳于篮筐24内的电极材料25,并浸没在熔融盐2中。该电极6通过导线5连接至控制单元9。在这种状态下,控制单元9用于将作为一个电极的处理对象物3和作为另一个电极的电极6的电位控制为预定值。Next, as shown in FIG. 6, a step (S31) of depositing DyNi 2 is performed by electrolysis. Specifically, as shown in FIG. 8 , the
由此,将稀土元素(如Dy)由处理对象物3溶解在熔融盐2中,并使DyNi2从熔融盐2中沉积在电极6的表面上。Thereby, the rare earth element (such as Dy) is dissolved in the
接着,如图6所示,通过电解进行回收Pr的步骤(S32)。具体而言,如图9所示,用由碳形成的电极27代替处理对象物3,以作为一个电极浸没在熔融盐2中。另外,用由碳形成的电极7代替图8中的电极6,将电极7放置在面向电极27的位置并浸没在熔融盐2中。电极27和电极7通过导线5电连接至控制单元9。在这种状态下,将一个电极27和另一个电极7的电位控制为预定值。Next, as shown in FIG. 6, a step of recovering Pr by electrolysis (S32) is performed. Specifically, as shown in FIG. 9 , an
由此,使溶解于熔融盐2中的Pr沉积在电极7的表面上。当将氯化物用作熔融盐2时,从围绕电极27的区域中释放出氯气(Cl2)。Thereby, Pr dissolved in the
接着,如图6所示,进行通过电解回收Nd的步骤(S33)。具体而言,如图10所示,用由碳形成的电极8代替电极7,将电极8放置为面向电极27并浸没在熔融盐2中。该电极8通过导线5连接至控制单元9。控制单元9用于将电极8和电极27的电位控制为预定值。由此,使Nd沉积在电极8的表面上。此时,从围绕电极27的区域中释放出氯气。Next, as shown in FIG. 6 , a step of recovering Nd by electrolysis ( S33 ) is performed. Specifically, as shown in FIG. 10 , instead of
接着,通过电解进行从DyNi2中回收Dy的步骤(S34),其中DyNi2是在步骤(S31)回收的。具体而言,如图5所示,将表面上沉积了DyNi2的电极6(参照图8)浸没在熔融盐2中;放置另一个电极15,使其浸没在熔融盐2中;并使用控制单元9将电极6和15的电位控制为预定值。由此,将Dy从沉积于电极6的表面上的DyNi2中暂时溶解在熔融盐2中,然后将Dy膜16沉积在电极15的表面上。由此,可以单独回收稀土金属Nd、Dy和Pr。Next , a step (S34) of recovering Dy from DyNi 2 recovered in the step (S31) is performed by electrolysis. Specifically, as shown in FIG. 5 , the electrode 6 (refer to FIG. 8 ) deposited with DyNi 2 on the surface is immersed in the
上述步骤(S21至S32)可以利用以下装置构造进行。例如,上述步骤(S31)可以利用图11所示的装置构造进行。The above steps (S21 to S32) can be performed with the following device configuration. For example, the above step (S31) can be performed using the device configuration shown in FIG. 11 .
具体而言,用容纳有材料26的篮筐24代替图8的装置构造中的处理对象物3,并将其浸没在熔融盐2中,其中材料26通过图7中所示的步骤而合金化。如图11所示,篮筐24通过导线5电连接至控制单元9。将电极6以及容纳在篮筐24内并通过图7中所示的步骤而合金化的材料26的电位控制为预定值。由此,使溶解于熔融盐2中的Dy以DyNi2的形式沉积在电极6的表面上。通过与图6中步骤(S34)相同的步骤,可以从沉积于电极6表面上的DyNi2中回收单质形式的Dy。Specifically, the
接着,可以通过利用图12所示的装置构造进行处理,从而实施上述步骤(S32)。具体而言,如图12所示,用由碳形成的电极7代替图11中的电极6,将其放置在面对篮筐24的位置并且浸没在熔融盐2中。电极7通过导线5电连接至控制单元9。该控制单元用于将电极7以及容纳于篮筐24中的合金26的电位控制为预定值。由此,使溶解于熔融盐2中的Pr沉积在电极7的表面上。Next, the above step (S32) can be implemented by performing processing using the device configuration shown in FIG. 12 . Specifically, as shown in FIG. 12 , instead of
接着,可以通过利用图13所示的装置构造进行处理,由此实施上述步骤(S33)。具体而言,如图13所示,用由碳形成的电极8代替图12中的电极7,将其放置在面对篮筐24的位置并且浸没在熔融盐2中。电极8通过导线5电连接至控制单元9。控制单元9用于将电极8以及置于篮筐24内的合金26的电位控制为预定值。由此,将Nd沉积在电极8的表面上。Next, the above step (S33) can be carried out by performing processing using the apparatus configuration shown in FIG. 13 . Specifically, as shown in FIG. 13 , instead of
通过使用所述方法,可以依次单独回收包含于粗金属锭中的特定金属。与现有的湿法分离等相比,根据本实施方案的方法可以简化装置构造,并且还可以缩短处理时间。因而,可以降低获取稀土元素等元素所产生的成本。此外,通过适当设定电极的电位,可以使特定金属以单质形式沉积在电极表面上,从而可以获得高纯度金属。可以通过上述计算确定沉积各金属和合金的电位。By using the method, specific metals contained in crude metal ingots can be sequentially and individually recovered. Compared with existing wet separation and the like, the method according to the present embodiment can simplify the device configuration, and can also shorten the processing time. Therefore, the cost incurred in obtaining elements such as rare earth elements can be reduced. In addition, by appropriately setting the potential of the electrode, a specific metal can be deposited on the surface of the electrode as a single substance, so that a high-purity metal can be obtained. The potential for depositing each metal and alloy can be determined by the above calculations.
[第二实施方案][Second Embodiment]
根据本实施方案的通过熔融盐电解制造钨的方法是一种通过熔融盐电解由含钨的处理对象物制造钨的方法,该方法包括:将钨从处理对象物中溶解到熔融盐中的步骤,以及通过将设置于熔融盐中的一对电极部件的电位控制为预定值,从而使存在于熔融盐中的钨沉积于一对电极部件中的一者上的步骤,其中该熔融盐含有溶解的钨。The method of producing tungsten by molten salt electrolysis according to the present embodiment is a method of producing tungsten from a treatment object containing tungsten by molten salt electrolysis, the method including: a step of dissolving tungsten from the treatment object into molten salt , and a step of depositing tungsten present in the molten salt on one of the pair of electrode members by controlling the potential of the pair of electrode members provided in the molten salt to a predetermined value, wherein the molten salt contains dissolved of tungsten.
即,粗略地说,该实施方案包括将包含于处理对象物中的钨溶解在熔融盐中的过程,以及通过熔融盐电解将钨从含有溶解的钨的熔融盐中沉积在电极中的一者(阴极)上的过程。该实施方案的特征在于:通过控制电极的电位,从而选择性地使钨从处理对象物中沉积,以制造高纯度的钨。That is, roughly speaking, this embodiment includes one of dissolving tungsten contained in the object to be processed in a molten salt, and depositing tungsten in an electrode from a molten salt containing dissolved tungsten by molten salt electrolysis (cathode) on the process. This embodiment is characterized in that tungsten is selectively deposited from the object to be processed by controlling the potential of the electrodes to produce high-purity tungsten.
首先将描述将包含于处理对象物中的钨溶解在熔融盐中的过程。First, a process of dissolving tungsten contained in a treatment object in a molten salt will be described.
将包含于处理对象物中的钨溶解在熔融盐中的过程为(例如)化学溶解过程。具体而言,将处理对象物研磨成颗粒或粉末,与盐混合并加热。由此,能够将包含于处理对象物中的钨溶解在熔融盐中。或者,可以将处理对象物置于熔融盐中并使之溶解。The process of dissolving tungsten contained in the object to be processed in molten salt is, for example, a chemical dissolution process. Specifically, the object to be treated is ground into granules or powder, mixed with salt, and heated. Thereby, tungsten contained in the object to be processed can be dissolved in the molten salt. Alternatively, the object to be treated may be dissolved in molten salt.
另一个过程是电化学过程。具体而言,将由含有处理对象物的阳极材料形成的阳极放置在熔融盐中,并且对设置为阳极的处理对象物的电位值加以控制,从而选择性地使包含于处理对象物中的钨溶解。熔融盐电解的特征在于:不同的元素在不同的电位下溶解。可以利用该特征将钨与其它金属分离。这样,通过将处理对象物用作阳极并控制溶解过程中的电位,从而可以选择性地将钨溶解在熔融盐中。Another process is an electrochemical process. Specifically, an anode formed of an anode material containing a treatment object is placed in a molten salt, and the potential value of the treatment object set as the anode is controlled, thereby selectively dissolving tungsten contained in the treatment object . Molten salt electrolysis is characterized in that different elements dissolve at different potentials. This feature can be used to separate tungsten from other metals. In this way, tungsten can be selectively dissolved in the molten salt by using the object to be treated as an anode and controlling the potential during the dissolution process.
在这个步骤中,可以使整个处理对象物溶解,或者可以溶解处理对象物的含钨部分或仅仅使钨溶解。可以采用使包含于处理对象物中的非钨金属溶解的条件;然而,如果可以的话,优选控制电位以仅使钨溶解。即,在将钨溶解在熔融盐的步骤中,优选将阳极和阴极的电位控制为预定值,从而选择性地将钨溶解在熔融盐中。从而,可以减少后续沉积过程中杂质的进入。In this step, the entire object to be treated may be dissolved, or a part of the object containing tungsten or only tungsten may be dissolved. Conditions for dissolving metals other than tungsten contained in the treatment object may be employed; however, it is preferable to control the potential so as to dissolve only tungsten, if possible. That is, in the step of dissolving tungsten in the molten salt, it is preferable to control the potentials of the anode and the cathode to predetermined values, thereby selectively dissolving tungsten in the molten salt. Thus, the entry of impurities in the subsequent deposition process can be reduced.
为此,优选这样选择熔融盐,使得在将钨从处理对象物中溶解到熔融盐中的步骤中,熔融盐中钨的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差为0.05V以上。从而,可以使溶解于熔融盐中的钨与保留在阳极中的金属元素充分分离。标准电极电位之差更优选为0.1V以上,还更优选为0.25V以上。For this reason, it is preferable to select the molten salt so that in the step of dissolving tungsten from the object to be processed into the molten salt, the standard electrode potential of the simple substance or alloy of tungsten in the molten salt is the same as the standard electrode potential of the simple substance or alloy of another metal. The difference between the electrode potentials is 0.05V or more. Thereby, tungsten dissolved in the molten salt can be sufficiently separated from metal elements remaining in the anode. The difference in standard electrode potential is more preferably 0.1 V or more, still more preferably 0.25 V or more.
阳极上所控制的电位值可以通过下述的能斯特方程计算。The controlled potential value on the anode can be calculated by the following Nernst equation.
用于溶解步骤中的阴极由碳或倾向于与构成熔融盐中的阳离子的碱金属(如Li或Na)形成合金的材料形成。例如,可以使用铝(Al)、锌(Zn)、镓(Ga)、镉(Cd)、铟(In)、锡(Sn)、锑(Sb)、铅(Pb)或铋(Bi)。The cathode used in the dissolving step is formed of carbon or a material that tends to form an alloy with an alkali metal (such as Li or Na) constituting cations in the molten salt. For example, aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), or bismuth (Bi) may be used.
当将含钨的处理对象物用作阳极时,例如可以将容纳在由金属等形成的导电性篮筐(阳极材料)中的处理对象物设置在熔融盐中。可以在篮筐的上部形成开口以使处理对象物能够通过该开口插入篮筐内;并且可以在篮筐的侧壁和底壁上形成大量的孔以使熔融盐能够流入篮筐内。篮筐可以由所需材料构成,例如由金属线编织的网状部件或具有大量孔的片状金属板的片材部件。具体而言,由C、Pt、Mo等形成的材料是有效的。When the object to be treated containing tungsten is used as an anode, for example, the object to be treated contained in a conductive basket (anode material) formed of metal or the like can be placed in a molten salt. Openings may be formed in the upper portion of the basket to allow treatment objects to be inserted into the basket through the openings; and a large number of holes may be formed in side and bottom walls of the basket to allow molten salt to flow into the basket. The basket can be constructed of desired material, such as a mesh member woven from wires or a sheet member of sheet metal with a large number of holes. Specifically, a material formed of C, Pt, Mo, or the like is effective.
在对象物为氧化物等并且具有高电阻的情况下,优选增加对象物和导电材料之间的接触面积。例如,通过用金属网部件包裹对象物或者将对象物填充入金属多孔部件内的空间,从而将对象物有效地用作电极。In the case where the object is an oxide or the like and has high electrical resistance, it is preferable to increase the contact area between the object and the conductive material. For example, the target object can be effectively used as an electrode by wrapping the target object with a metal mesh member or filling a space in a metal porous member with the target object.
将阴极和由含有处理对象物的阳极材料形成的阳极(例如,容纳处理对象物的金属篮筐)设置在熔融盐中;连接控制单元,该控制单元被构造为从外部控制电极的电位;并且如上所述控制电位。由此,可以将钨从处理对象物中溶解到熔融盐中。disposing a cathode and an anode formed of an anode material containing the object to be processed (for example, a metal basket containing the object to be processed) in the molten salt; connecting a control unit configured to control the potential of the electrode from outside; and Potentials were controlled as described above. Thereby, tungsten can be dissolved in the molten salt from the object to be processed.
在随后的沉积过程中,利用设置在含有溶解的钨的熔融盐中的一对电极部件进行熔融盐电解,以使钨沉积在电极部件中的一者(阴极)上。在这种情况下,通过控制熔融盐电解时的电位值,可以选择性地将钨以金属或合金形式沉积于阴极上。In the subsequent deposition process, molten salt electrolysis is performed using a pair of electrode members disposed in a molten salt containing dissolved tungsten, so that tungsten is deposited on one of the electrode members (cathode). In this case, by controlling the potential value during molten salt electrolysis, tungsten can be selectively deposited on the cathode in the form of metal or alloy.
与溶解过程相同,在该沉积过程中,利用以下特性将钨与其它金属分离:在熔融盐电解时,不同的元素在不同的电位下以金属或合金形式沉积在阴极上。因而,即使熔融盐中含有除了钨以外的其他金属,也能通过控制电位从而将钨单独沉积在阴极上。因此,能够得到高纯度的钨。As in the dissolution process, in this deposition process tungsten is separated from other metals by virtue of the fact that during molten salt electrolysis, different elements are deposited as metals or alloys on the cathode at different potentials. Therefore, even if other metals other than tungsten are contained in the molten salt, tungsten alone can be deposited on the cathode by controlling the potential. Therefore, high-purity tungsten can be obtained.
在沉积钨时,当钨的溶解-沉积电位与包含于熔融盐中的另一种金属的溶解-沉积电位之差太小以至于难以将钨与该金属分离时,可以选择阴极材料并且可以控制电位,从而沉积该阴极材料与钨的合金。由此,可以将熔融盐中的钨以钨合金的形式与其它杂质金属分离;并且此后,例如,可以在另一种熔融盐中利用与钨合金化的阴极材料进行溶解步骤和沉积步骤,从而制造高纯度的钨。In depositing tungsten, when the difference between the dissolution-deposition potential of tungsten and that of another metal contained in the molten salt is so small that it is difficult to separate the tungsten from the metal, the cathode material can be selected and controlled potential, thereby depositing an alloy of the cathode material and tungsten. Thus, tungsten in the molten salt can be separated from other impurity metals in the form of a tungsten alloy; and thereafter, for example, a dissolution step and a deposition step can be performed in another molten salt using a cathode material alloyed with tungsten, thereby Manufactures high-purity tungsten.
用于沉积步骤中的电极部件可以由(例如)镍(Ni)、钼(Mo)或玻璃碳(C)形成。The electrode member used in the deposition step may be formed of, for example, nickel (Ni), molybdenum (Mo), or glassy carbon (C).
在本实施方案中,使用如上所述两个过程从处理对象物中分离和提取钨。在本实施方案中,由于使用了熔融盐,因此需要对体系加热以使该过程中的体系温度等于或高于熔融盐的熔点。In the present embodiment, tungsten is separated and extracted from the object to be treated using the two processes described above. In this embodiment, since a molten salt is used, it is necessary to heat the system so that the temperature of the system during this process is equal to or higher than the melting point of the molten salt.
或者,可以基于完全相反的想法在该过程中进行冶炼。也就是说,将处理对象物用作阳极并且仅使作为杂质的金属元素溶解在熔融盐中。在这种情况下,同样地通过将阳极的电位控制为预定值,以引发这样的现象:钨保留在阳极中,而杂质元素溶解。从而,在阳极上得到了钨。Alternatively, smelting can be done in the process based on the exact opposite idea. That is, the object to be treated is used as an anode and only metal elements as impurities are dissolved in the molten salt. In this case as well, by controlling the potential of the anode to a predetermined value, a phenomenon in which tungsten remains in the anode and impurity elements dissolve is induced. Thus, tungsten is obtained on the anode.
这两个过程的特征是熔融盐的使用。因而,利用了熔融盐电解中不同的熔融盐对元素具有不同的溶解-沉积电位的特性;并且可这样设计该过程,即:选择熔融盐以使钨的溶解-沉积电位与非钨杂质金属的溶解-沉积间的差值为能够使该过程容易进行的足够大的差值。Both processes are characterized by the use of molten salts. Thus, the characteristic that different molten salts in molten salt electrolysis have different dissolution-deposition potentials to elements is utilized; and the process can be designed in such a way that the dissolution-deposition potential of tungsten is selected to be consistent with that of non-tungsten impurity metals. The difference between dissolution-deposition is large enough to make the process easy.
具体而言,优选这样选择熔融盐,使得在使钨沉积或合金化的步骤中,熔融盐中钨的单质或合金的标准电极电位与另一种杂质金属的单质或合金的标准电极电位之差为0.05V以上。在熔融盐中,钨的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差更优选为0.1V以上,还更优选为0.25V以上。Specifically, it is preferable to select the molten salt such that in the step of depositing or alloying tungsten, the difference between the standard electrode potential of a simple substance or alloy of tungsten in the molten salt and the standard electrode potential of a simple substance or alloy of another impurity metal 0.05V or more. In the molten salt, the difference between the standard electrode potential of the simple substance or alloy of tungsten and the standard electrode potential of the simple substance or alloy of another metal is more preferably 0.1 V or more, still more preferably 0.25 V or more.
这样,在使钨沉积或合金化的步骤中,优选将电极部件的电位控制为预定值,以选择性地使熔融盐中的钨沉积或合金化。Thus, in the step of depositing or alloying tungsten, it is preferable to control the potential of the electrode member to a predetermined value to selectively deposit or alloy tungsten in the molten salt.
待沉积在阴极上的钨的沉积电位可以通过电化学计算来确定。具体而言,通过能斯特方程进行计算。The deposition potential of tungsten to be deposited on the cathode can be determined by electrochemical calculations. Specifically, the calculation is performed by the Nernst equation.
例如,可以通过以下等式确定由二价W离子(以下用W(II)表示)沉积钨(W)单质的电位。For example, the potential at which tungsten (W) simple substance is deposited from divalent W ions (hereinafter represented by W(II)) can be determined by the following equation.
EW=E0 W+RT/3F·ln(aW(II)/aW(0)) 等式(1)E W =E 0 W +RT/3F·ln(a W(II )/a W(0) ) Equation (1)
在等式(1)中,E0 W表示标准电位,R表示气体常数,T表示绝对温度,F表示法拉第常数,aW(II)表示W(II)离子的活度,aW(0)表示W单质的活度。In equation (1), E 0 W represents the standard potential, R represents the gas constant, T represents the absolute temperature, F represents the Faraday constant, a W(II) represents the activity of W(II) ions, a W(0) Indicates the activity of W simple substance.
当考虑到活度系数γW(II)而改写等式(1)时,由于aW(0)=1,从而得到以下等式。When the equation (1) is rewritten in consideration of the activity coefficient γ W(II) , since a W(0) =1, the following equation is obtained.
EWr=E0 W+RT/3F·lnaW(II)=E0 W+RT/3F·ln(γW(II)·CW(II)) 等式(2)E Wr =E 0 W +RT/3F lna W(II) =E 0 W +RT/3F ln(γ W(II) C W(II) ) Equation (2)
EW=E0’W+RT/3F·lnCW(II) 等式(3)E W =E 0 ' W +RT/3F·lnC W(II) Equation (3)
在等式(3)中,CW(II)表示二价W离子的浓度,E0’W表示条件电极电位(这里,等于E0 W+RT/3F·lnγW(II))。In Equation (3), C W(II) represents the concentration of divalent W ions, and E 0 ′ W represents the conditional electrode potential (here, equal to E 0 W +RT/3F·lnγ W(II) ).
类似地,通过使用以上等式,可以确定对应于不同熔融盐的所有沉积物的沉积电位。在使钨沉积为合金的情况也可以进行类似的计算。在使钨在阴极上沉积或合金化的过程中,考虑到钨单质或钨合金的沉积电位值,这样选择熔融盐和阴极材料,以使其相对于另一种金属的单质或合金的沉积电位达到足够高的电位差,并且决定使钨沉积还是使钨合金沉积。Similarly, by using the above equation, the deposition potentials of all deposits corresponding to different molten salts can be determined. Similar calculations can also be performed in the case of depositing tungsten as an alloy. In the process of depositing or alloying tungsten on the cathode, considering the deposition potential value of tungsten elemental substance or tungsten alloy, the molten salt and cathode material are selected so that they are relative to the deposition potential value of elemental substance or alloy of another metal A sufficiently high potential difference is achieved and a decision is made whether to deposit tungsten or a tungsten alloy.
操作过程中的电压和电流根据电极的尺寸或位置关系而改变。因此,基于条件来确定电压和电流的参考值,随后基于由上述方法确定的电位值和顺序来确定每一个步骤中的电压和电流。The voltage and current during operation vary according to the size or positional relationship of the electrodes. Therefore, the reference values of voltage and current are determined based on the conditions, and then the voltage and current in each step are determined based on the potential value and order determined by the above-described method.
如上所述,在根据本实施方案的通过熔融盐电解来制造钨的方法中,对电位值进行控制从而以电化学方式溶解和沉积钨。因此,与(例如)包括反复进行使用酸等的溶解和提取过程的现有湿法处理相比,可以简化步骤;并且可以选择性地分离和回收特定元素。另外,无需调整熔融盐的比重;而且,通过选择对象物能够在其中以固态进行处理的低温熔融盐,可以采用简单的装置构造。此外,操作模式也可以简化。因此,能够以低成本有效地进行这些步骤。As described above, in the method of producing tungsten by molten salt electrolysis according to the present embodiment, the potential value is controlled to electrochemically dissolve and deposit tungsten. Therefore, compared with, for example, existing wet processing including repeatedly performing a dissolution and extraction process using an acid or the like, steps can be simplified; and specific elements can be selectively separated and recovered. In addition, there is no need to adjust the specific gravity of the molten salt; and by selecting a low-temperature molten salt in which an object can be processed in a solid state, a simple device configuration can be employed. Furthermore, the mode of operation can also be simplified. Therefore, these steps can be efficiently performed at low cost.
或者,如上所述,可以基于与将钨在阴极上沉积或合金化的想法完全相反的想法来冶炼钨。Alternatively, as mentioned above, tungsten can be smelted based on the exact opposite idea of depositing or alloying tungsten on the cathode.
也就是说,根据本实施方案的制造金属的方法是通过熔融盐电解从而由含有钨的处理对象物制造钨方法,其中在熔融盐中设置阴极以及由含有处理对象物的阳极材料形成的阳极,并控制阳极的电位,从而使对应于该电位值的金属元素由处理对象物中溶解到熔融盐中,并使钨保留在阳极中。That is, the method of producing metal according to the present embodiment is a method of producing tungsten from an object to be processed containing tungsten by electrolysis of a molten salt in which a cathode and an anode formed of an anode material containing the object to be processed are provided, And control the potential of the anode, so that the metal element corresponding to the potential value is dissolved into the molten salt from the object to be treated, and the tungsten remains in the anode.
在该方法中,将含有处理对象物的阳极材料用作阳极并且将除钨以外的金属元素(即,仅作为杂质的金属元素)溶解在熔融盐中,以使钨保留在阳极中。在这种情况下,同样地通过控制阳极的电位,以引发这样的现象:其中作为冶炼目标的钨保留在阳极中,而杂质元素溶解在熔融盐中。从而,在阳极上得到了冶炼后的钨。In this method, an anode material containing an object to be processed is used as an anode and a metal element other than tungsten (ie, a metal element only as an impurity) is dissolved in a molten salt so that tungsten remains in the anode. In this case as well, by controlling the potential of the anode, a phenomenon in which tungsten targeted for smelting remains in the anode and impurity elements are dissolved in the molten salt is induced. Thus, smelted tungsten is obtained on the anode.
在该方法中,也优选这样选择熔融盐,使得在将金属元素由处理对象物中溶解到熔融盐中的步骤中,熔融盐中钨的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差为0.05V以上。因此,可以将钨与其它金属充分分离并且仅将钨保留在阳极中。标准电极电位之差更优选为0.1V以上,还更优选为0.25V以上。In this method, it is also preferable to select the molten salt so that in the step of dissolving the metal element from the object to be processed into the molten salt, the standard electrode potential of the simple substance or alloy of tungsten in the molten salt is the same as that of the simple substance of another metal. Or the difference between the standard electrode potentials of the alloy is 0.05V or more. Therefore, it is possible to sufficiently separate tungsten from other metals and keep only tungsten in the anode. The difference in standard electrode potential is more preferably 0.1 V or more, still more preferably 0.25 V or more.
阳极上所控制的电位值可以通过上述的能斯特方程计算。The controlled potential value on the anode can be calculated by the Nernst equation mentioned above.
在根据本实施方案的通过熔融盐电解制造钨的方法中,含有钨的处理对象物优选为(例如)含有钨的金属材料。含有钨的金属材料的例子包括钨加热器。In the method of producing tungsten by molten salt electrolysis according to the present embodiment, the object to be processed containing tungsten is preferably, for example, a metal material containing tungsten. Examples of metal materials containing tungsten include tungsten heaters.
本实施方案还适用于处理对象物为含有钨和过渡金属的金属材料的情况。对该过渡金属没有特别限制,可以是周期表的第3族(IIIA族)至第11族(IB族)中的任意元素。含有钨和过渡金属的金属材料的例子包括硬质合金。This embodiment is also applicable to the case where the object to be processed is a metal material containing tungsten and a transition metal. The transition metal is not particularly limited, and may be any element in Group 3 (Group IIIA) to Group 11 (Group IB) of the periodic table. Examples of metallic materials containing tungsten and transition metals include cemented carbide.
处理对象物可以是(例如)硬质合金制品。这里,硬质合金制品总体表示包含硬质合金材料的制品,如包含硬质合金材料的切削工具、夹具、冲模和模具。The object to be processed may be, for example, a cemented carbide product. Here, the cemented carbide product generally refers to a product comprising a cemented carbide material, such as a cutting tool, a jig, a die, and a mold comprising a cemented carbide material.
熔融盐可以选自氯化物熔融盐和氟化物熔融盐。可以使用含有氯化物熔融盐和氟化物熔融盐的熔融盐混合物。The molten salt may be selected from chloride molten salts and fluoride molten salts. A molten salt mixture containing a chloride molten salt and a fluoride molten salt may be used.
氯化物熔融盐的例子包括KCl、NaCl、CaCl2、LiCl、RbCl、CsCl、SrCl2、BaCl2和MgCl2。氟化物熔融盐的例子包括LiF、NaF、KF、RbF、CsF、MgF2、CaF2、SrF2和BaF2。考虑到效率优选使用氯化物熔融盐;具体而言,KCl、NaCl和CaCl2因其廉价和容易获得而是优选使用的。Examples of the chloride molten salt include KCl, NaCl, CaCl 2 , LiCl, RbCl, CsCl, SrCl 2 , BaCl 2 and MgCl 2 . Examples of the fluoride molten salt include LiF, NaF, KF, RbF, CsF, MgF 2 , CaF 2 , SrF 2 and BaF 2 . The use of molten chloride salts is preferred in view of efficiency; specifically, KCl, NaCl, and CaCl 2 are preferably used because of their cheapness and easy availability.
在这些熔融盐中,可以将多种熔融盐组合并用作具有所需组成的熔融盐。例如,可以使用具有诸如KCl-CaCl2、LiCl-KCl或NaCl-KCl之类组成的熔融盐。Among these molten salts, a plurality of molten salts may be combined and used as a molten salt having a desired composition. For example, a molten salt having a composition such as KCl-CaCl 2 , LiCl-KCl, or NaCl-KCl may be used.
在根据本实施方案的通过熔融盐电解制造钨的方法中,可以优选使用以下装置。即,用于根据本实施方案的通过熔融盐电解制造钨的方法的装置包括:容纳有熔融盐的容器;阴极,其浸没在容纳于容器内的熔融盐中;以及阳极,其浸没在容纳于容器内的熔融盐中并且包含处理对象物,该处理对象物含有钨,其中熔融盐可以在阳极内部和外部之间流动,该装置还包括控制单元,该控制单元被构造为将阴极和阳极的电位控制为预定值,并且在该控制单元中,电位的值是可以改变的。用于根据本实施方案的通过熔融盐电解制造钨的方法的装置包括:容纳有熔融盐的容器,该熔融盐含有溶解的钨;以及阴极和阳极,其浸没在容纳于容器内的熔融盐中,其中该装置包括控制单元,该控制单元被构造为将阴极和阳极的电位控制为预定值,并且在该控制单元中电位的值是可以改变的。In the method of producing tungsten by molten salt electrolysis according to the present embodiment, the following devices can be preferably used. That is, the apparatus used in the method for producing tungsten by molten salt electrolysis according to the present embodiment includes: a vessel containing molten salt; a cathode immersed in the molten salt contained in the vessel; and an anode immersed in the molten salt contained in the vessel. In the molten salt in the container and containing the object to be processed, the object to be processed contains tungsten, wherein the molten salt can flow between the inside and the outside of the anode, and the apparatus further includes a control unit configured to connect the cathode and the anode to each other. The potential is controlled to a predetermined value, and in the control unit, the value of the potential is changeable. The apparatus used in the method for producing tungsten by molten salt electrolysis according to the present embodiment includes: a vessel containing molten salt containing dissolved tungsten; and a cathode and an anode immersed in the molten salt contained in the vessel , wherein the device includes a control unit configured to control the potentials of the cathode and the anode to predetermined values, and in which the value of the potential is changeable.
将参照图18和19描述用于本实施方案的装置。图18中所示的装置包括容纳熔融盐的容器1,容纳于容器1内的熔融盐2,容纳含有钨的处理对象物3的篮筐4,电极6,用于加热熔融盐2的加热器10,以及通过导线5与篮筐4和电极6电连接的控制单元9。The device used in this embodiment will be described with reference to FIGS. 18 and 19 . The apparatus shown in FIG. 18 includes a
控制单元9被构造为用于将一个电极(阳极,即篮筐4)和另一个电极(阴极,即电极6)的电位控制为预定值。在控制单元9中,被控制的电位值是可以改变的。设置加热器10以使其环绕在容器1周围。电极6可以由所需的材料形成,例如碳。容器1的底面形状可以为环形或多边形。篮筐4可以是上述篮筐。The
通过控制单元9将篮筐4和电极6的电位控制为预定电位值。由此,将钨从处理对象物3中溶解到熔融盐2中。The potentials of the basket 4 and the
在钨从处理对象物3中充分溶出后,移除篮筐4和电极6并且将另一个电极7(阴极)和另一个电极8(阳极)放置在熔融盐2中。这些电极7和8通过导线5与控制单元9相连。使用控制单元9将电极7和8的电位控制为预定值。此时,这样控制电位,以使得电极7的电位为钨的沉积电位。因此,使溶解于熔融盐2中的钨沉积在电极7(阴极)的表面上。电极7和8可以由诸如玻璃碳(C)之类的材料形成。After tungsten is sufficiently eluted from the
在使用图18和19中所示的装置的两种处理中,利用加热器10的熔融盐2的加热温度均可以为(例如)800℃。这样,可以将钨以单质形式沉积在电极7的表面上。In both processes using the apparatus shown in FIGS. 18 and 19 , the heating temperature of the
可以控制电极7和8的电位以使钨与阴极材料的合金沉积在电极7(阴极)的表面上。在这种情况下,可以利用合金化的电极7进行上述溶解步骤和沉积步骤。即,重新准备图18所示的装置,并且用与钨合金化的电极7来代替上述处理对象物3。The potential of
在用图18和19中所示的装置实施本实施方案的钨制造方法的情况下,例如,可以通过以下方式实施该方法。In the case of carrying out the tungsten manufacturing method of the present embodiment with the apparatus shown in FIGS. 18 and 19 , for example, the method can be carried out in the following manner.
首先准备作为处理对象物3的硬质合金切削工具(9kg)和作为熔融盐2的KCl-NaCl。例如,硬质合金切削工具可以含有90重量%的碳化钨(WC)和10重量%的钴(Co)。将该硬质合金切削工具研磨并放入篮筐4内。从提高处理效率的角度来看,优选通过研磨来将作为处理对象物3的硬质合金切削工具的尺寸减至最小尺寸。例如,将硬质合金切削工具研磨成最大粒径为5mm以下、优选为3mm以下、更优选为1mm以下的颗粒。熔融盐2的量约为16升(质量:25kg)。First, a cemented carbide cutting tool (9 kg) as the
上述溶解步骤可以通过作为电极6的碳电极来进行。随后,可以利用由玻璃碳形成并且用作电极7和8的电极来进行沉积步骤。The above-mentioned dissolving step can be performed by a carbon electrode as
正如已经描述的那样,能够从用作处理对象物3的硬质合金切削工具中回收钨。与现有的湿法分离方法等相比,根据本实施方案的通过熔融盐电解制造钨的方法可以简化装置构造并且也可以缩短处理时间。因而,可以降低所花费的成本。此外,通过适当设定电极的电位,可以使钨以单质形式沉积在电极表面上,从而可以获得高纯度的钨。可以通过上述计算确定沉积钨和钨合金的电位。As already described, tungsten can be recovered from the cemented carbide cutting tool used as the
[第三实施方案][Third Embodiment]
根据本实施方案的通过熔融盐电解制造锂的方法是一种通过熔融盐电解由含锂处理对象物制造锂的方法,该方法包括:将锂从处理对象物中溶解到熔融盐中的步骤,以及通过将设置于熔融盐中的一对电极部件的电位控制为预定值,从而使存在于熔融盐中的锂沉积于这对电极部件中的一者上的步骤,其中该熔融盐含有溶解的锂。The method for producing lithium by molten salt electrolysis according to the present embodiment is a method for producing lithium from a treatment object containing lithium by molten salt electrolysis, the method including the steps of dissolving lithium from the treatment object into the molten salt, and a step of depositing lithium present in the molten salt on one of the pair of electrode members provided in the molten salt containing dissolved lithium.
即,该实施方案的锂制造方法包括将包含于处理对象物中的锂溶解在熔融盐中的过程,以及通过熔融盐电解将锂从含有溶解的锂的熔融盐中沉积在电极中的一者(阴极)上的步骤。该实施方案的特征在于:通过控制溶解锂的步骤中的电极电位,从而可以选择性地从处理对象物中溶解锂;并且通过在沉积锂的步骤中将电极电位控制为预定值,可以选择性地将锂从熔融盐中沉积在阴极上,从而制造高纯度的锂。That is, the lithium production method of this embodiment includes one of dissolving lithium contained in the object to be processed in a molten salt, and depositing lithium in an electrode from the molten salt containing dissolved lithium by molten salt electrolysis (cathode) on the step. This embodiment is characterized in that: by controlling the electrode potential in the step of dissolving lithium, lithium can be selectively dissolved from the object to be treated; and by controlling the electrode potential to a predetermined value in the step of depositing lithium, selective Lithium is deposited on the cathode from a molten salt in a precise manner, thereby producing high-purity lithium.
首先描述将包含于处理对象物中的锂溶解在熔融盐中的步骤。First, the step of dissolving lithium contained in the object to be processed in molten salt will be described.
将包含于处理对象物中的锂溶解在熔融盐中的过程为(例如)化学溶解过程。具体而言,将处理对象物研磨成颗粒或粉末,与盐混合并加热。由此,能够将包含于处理对象物中的锂溶解在熔融盐中。或者,可以将处理对象物置于熔融盐中并使之溶解。The process of dissolving lithium contained in the object to be processed in molten salt is, for example, a chemical dissolution process. Specifically, the object to be treated is ground into granules or powder, mixed with salt, and heated. Thereby, lithium contained in the object to be processed can be dissolved in the molten salt. Alternatively, the object to be treated may be dissolved in molten salt.
另一个过程是电化学过程。具体而言,将由含有处理对象物的阳极材料形成的阳极放置在熔融盐中,并且对放置为阳极的处理对象物的电位值加以控制,从而选择性地使包含于处理对象物中的锂溶解。熔融盐电解的特征在于:不同的元素在不同的电位下溶解。因此,以这种方式通过将处理对象物用作阳极并控制溶解过程中的电位,可以选择性地将锂溶解在熔融盐中,从而将锂与其它金属分离。Another process is an electrochemical process. Specifically, an anode formed of an anode material containing a treatment object is placed in a molten salt, and the potential value of the treatment object placed as the anode is controlled, thereby selectively dissolving lithium contained in the treatment object . Molten salt electrolysis is characterized in that different elements dissolve at different potentials. Therefore, by using the object to be treated as an anode and controlling the potential during dissolution in this way, lithium can be selectively dissolved in molten salt, thereby separating lithium from other metals.
在这个步骤中,可以使整个处理对象物溶解,或者可以溶解处理对象物中的含锂部分或仅仅使锂溶解。也可以将包含于处理对象物中的非锂金属溶解;然而,如果可以的话,优选控制电位而仅使锂溶解。即,在将锂溶解在熔融盐的步骤中,优选将阳极和阴极的电位控制为预定值,从而选择性地将锂溶解在熔融盐中。由此,可以减少后续沉积过程中杂质的进入。In this step, the entire object to be treated may be dissolved, or a portion containing lithium in the object to be treated may be dissolved or only lithium may be dissolved. It is also possible to dissolve non-lithium metals contained in the object to be treated; however, it is preferable to control the potential so as to dissolve only lithium, if possible. That is, in the step of dissolving lithium in the molten salt, it is preferable to control the potentials of the anode and the cathode to predetermined values, thereby selectively dissolving lithium in the molten salt. Thus, the entry of impurities in the subsequent deposition process can be reduced.
为此,优选这样选择熔融盐,使得在将锂从处理对象物中溶解到熔融盐中的步骤中,熔融盐中锂的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差为0.05V以上。从而,可以使溶解于熔融盐中的锂与保留在阳极中的金属元素充分分离。标准电极电位之差更优选为0.1V以上,还更优选为0.25V以上。For this reason, it is preferable to select the molten salt so that in the step of dissolving lithium from the object to be processed into the molten salt, the standard electrode potential of the simple substance or alloy of lithium in the molten salt is the same as the standard electrode potential of the simple substance or alloy of another metal. The difference between the electrode potentials is 0.05V or more. Thereby, lithium dissolved in the molten salt can be sufficiently separated from metal elements remaining in the anode. The difference in standard electrode potential is more preferably 0.1 V or more, still more preferably 0.25 V or more.
阳极上所控制的电位值可以通过下述的能斯特方程计算。The controlled potential value on the anode can be calculated by the following Nernst equation.
用于溶解步骤中的阴极由碳或倾向于与构成熔融盐中阳离子的碱金属(如Li或Na)形成合金的材料形成。例如,可以使用铝(Al)、锌(Zn)、镓(Ga)、镉(Cd)、铟(In)、锡(Sn)、锑(Sb)、铅(Pb)或铋(Bi)。The cathode used in the dissolving step is formed of carbon or a material that tends to form an alloy with an alkali metal (such as Li or Na) constituting cations in the molten salt. For example, aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), or bismuth (Bi) may be used.
当将含锂的处理对象物用作阳极时,例如,可以将容纳在由金属等形成的导电性篮筐(阳极材料)内的处理对象物设置在熔融盐中。可以在篮筐的上部形成开口以使处理对象物能够通过该开口插入篮筐内;并且可以在篮筐的侧壁和底壁上形成大量的孔以使熔融盐能够流入篮筐内。篮筐可以由所需材料构成,例如由金属线编织的网状部件或具有大量孔的片状金属板的片材部件。具体而言,由C、Pt、Mo等形成的材料是有效的。When using a treatment object containing lithium as an anode, for example, the treatment object accommodated in a conductive basket (anode material) formed of metal or the like may be placed in a molten salt. Openings may be formed in the upper portion of the basket to allow treatment objects to be inserted into the basket through the openings; and a large number of holes may be formed in side and bottom walls of the basket to allow molten salt to flow into the basket. The basket can be constructed of desired material, such as a mesh member woven from wires or a sheet member of sheet metal with a large number of holes. Specifically, a material formed of C, Pt, Mo, or the like is effective.
在对象物是氧化物等并且具有高电阻的情况下,优选增加对象物和导电材料之间的接触面积。例如通过用金属网部件包裹对象物或者将对象物填充入金属多孔部件内的空间,从而将对象物有效地用作电极。In the case where the object is an oxide or the like and has high electrical resistance, it is preferable to increase the contact area between the object and the conductive material. For example, by wrapping the object with a metal mesh member or filling the space in the metal porous member with the object, the object can be effectively used as an electrode.
将阴极和由含有处理对象物的阳极材料形成的阳极(例如,容纳处理对象物的金属篮筐)设置在熔融盐中;连接控制单元,该控制单元被构造为从外部控制电极的电位;并且如上所述控制电位。由此,可以将锂从处理对象物中溶解到熔融盐中。disposing a cathode and an anode formed of an anode material containing the object to be processed (for example, a metal basket containing the object to be processed) in the molten salt; connecting a control unit configured to control the potential of the electrode from outside; and Potentials were controlled as described above. Thereby, lithium can be dissolved in the molten salt from the object to be processed.
在随后的沉积步骤中,利用设置在含有溶解的锂的熔融盐中的一对电极部件进行熔融盐电解,以使锂沉积在电极部件中的一者(阴极)上。在这种情况下,通过控制熔融盐电解时的电位值,可以选择性地将锂以金属或合金形式沉积于阴极上。In the subsequent deposition step, molten salt electrolysis is performed using a pair of electrode members disposed in a molten salt containing dissolved lithium, so that lithium is deposited on one of the electrode members (cathode). In this case, lithium can be selectively deposited on the cathode in the form of metal or alloy by controlling the potential value during molten salt electrolysis.
与溶解步骤相同,在该沉积步骤中,利用以下特性将锂与其它金属分离:在熔融盐电解时,不同的元素在不同的电位下以金属或合金形式沉积于阴极上。因而,即使熔融盐中含有除了锂以外的其他金属,也能通过控制电位将锂单独沉积在阴极上。因此,能够得到高纯度的锂。As in the dissolution step, in this deposition step lithium is separated from other metals by virtue of the fact that during molten salt electrolysis, different elements are deposited as metals or alloys on the cathode at different potentials. Thus, even if metals other than lithium are contained in the molten salt, lithium alone can be deposited on the cathode by controlling the potential. Therefore, high-purity lithium can be obtained.
在沉积锂时,当锂的溶解-沉积电位与包含于熔融盐中的另一种金属的溶解-沉积电位之差太小以至于难以将锂与该金属分离时,可以选择阴极材料并且可以控制电位,从而沉积该阴极材料与锂的合金。由此,可以将熔融盐中的锂以锂合金的形式与其它杂质金属分离;并且此后,例如,可以在另一种熔融盐中利用与锂合金化的阴极材料进行溶解步骤和沉积步骤,从而制造高纯度的锂。In depositing lithium, when the difference between the dissolution-deposition potential of lithium and that of another metal contained in the molten salt is so small that it is difficult to separate the lithium from the metal, the cathode material can be selected and controlled potential, thereby depositing an alloy of the cathode material and lithium. Thereby, lithium in the molten salt can be separated from other impurity metals in the form of a lithium alloy; and thereafter, for example, a dissolution step and a deposition step can be performed in another molten salt using a cathode material alloyed with lithium, thereby Manufactures high-purity lithium.
用于沉积步骤的电极部件可以由(例如)镍(Ni)、钼(Mo)或玻璃碳(C)形成。The electrode member used in the deposition step may be formed of, for example, nickel (Ni), molybdenum (Mo), or glassy carbon (C).
在本实施方案中,使用如上所述两个步骤以从处理对象物中分离并回收锂。In this embodiment, the two steps described above are used to separate and recover lithium from the object to be treated.
在本实施方案中,由于使用了熔融盐,因此需要对体系加热以使这些步骤中体系的温度等于或高于熔融盐的熔点。In this embodiment, since a molten salt is used, it is necessary to heat the system so that the temperature of the system in these steps is equal to or higher than the melting point of the molten salt.
这两个步骤的特征是利用了熔融盐作为电解液。因而,利用了熔融盐电解中不同的熔融盐对元素具有不同的溶解-沉积电位的特性;并且可这样设计这些步骤,即:选择熔融盐以使锂的溶解-沉积电位与非锂杂质金属的溶解-沉积间的差值为能够使该步骤容易进行的足够大的差值。These two steps are characterized by the use of molten salt as the electrolyte. Thus, the characteristic that different molten salts have different dissolution-deposition potentials for elements in molten salt electrolysis is utilized; and these steps can be designed in such a way that the molten salts are selected so that the dissolution-deposition potential of lithium is consistent with that of non-lithium impurity metals. The difference between dissolution-deposition is large enough to make this step easy.
具体而言,优选这样选择熔融盐,使得在使锂沉积或合金化的步骤中,熔融盐中锂的单质或合金的标准电极电位与另一种杂质金属的单质或合金的标准电极电位之差为0.05V以上。熔融盐中的锂的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差更优选为0.1V以上,还更优选为0.25V以上。Specifically, it is preferable to select the molten salt such that in the step of depositing or alloying lithium, the difference between the standard electrode potential of a single substance or alloy of lithium in the molten salt and the standard electrode potential of a simple substance or alloy of another impurity metal 0.05V or more. The difference between the standard electrode potential of the single substance or alloy of lithium in the molten salt and the standard electrode potential of the simple substance or alloy of another metal is more preferably 0.1 V or more, still more preferably 0.25 V or more.
这样,在使锂沉积或合金化的步骤中,优选将电极部件的电位控制为预定值,以选择性地使熔融盐中的锂沉积或合金化。Thus, in the step of depositing or alloying lithium, it is preferable to control the potential of the electrode member to a predetermined value to selectively deposit or alloy lithium in the molten salt.
待沉积在阴极上的锂的沉积电位可以通过电化学计算来确定。具体而言,通过能斯特方程进行计算。The deposition potential of lithium to be deposited on the cathode can be determined by electrochemical calculations. Specifically, the calculation is performed by the Nernst equation.
例如,可以通过以下等式确定由Li离子(Li+)沉积的Li单质的电位。For example, the potential of Li simple substance deposited from Li ions (Li + ) can be determined by the following equation.
ELi=E0 Li+RT/3F·ln(aLi(I)/aLi(0)) 等式(1)E Li =E 0 Li +RT/3F·ln(a Li(I) /a Li(0) ) Equation (1)
在等式(1)中,E0 Li表示标准电位,R表示气体常数,T表示绝对温度,F表示法拉第常数,aLi(I)表示Li离子的活度,aLi(0)表示Li单质的活度。In equation (1), E 0 Li represents the standard potential, R represents the gas constant, T represents the absolute temperature, F represents the Faraday constant, a Li(I) represents the activity of Li ions, and a Li(0) represents Li simple substance activity.
当考虑到活度系数γLi(I)而改写等式(1)时,由于aLi(0)=1,从而得到以下等式。When the equation (1) is rewritten in consideration of the activity coefficient γ Li(I) , since a Li(0) =1, the following equation is obtained.
ELi=E0 Li+RT/3F·lnaLi(I)=E0 Li+RT/3F·ln(γLi(I)·CLi(I)) 等式(2)E Li = E 0 Li +RT/3F·lna Li(I) =E 0 Li +RT/3F·ln(γ Li(I) ·C Li(I) ) Equation (2)
ELi=E0’Li+RT/3F·lnCLi(I) 等式(3)E Li =E 0 ' Li +RT/3F·lnC Li(I) Equation (3)
在等式(3)中,CLi(I)表示Li离子的浓度,E0’Li表示条件电极电位(这里,等于E0 Li+RT/3F·lnγLi(I))。In Equation (3), C Li(I) represents the concentration of Li ions, and E 0 ' Li represents the conditional electrode potential (here, equal to E 0 Li +RT/3F·lnγ Li(I) ).
类似地,在LiM合金(M表示合金化的金属)沉积在电极表面上的情况下,该电位(沉积电位:ELiM)可以通过以下等式确定。Similarly, in the case where a LiM alloy (M represents an alloyed metal) is deposited on the electrode surface, the potential (deposition potential: E LiM ) can be determined by the following equation.
ELi·M=E0’Li·M+RT/3F·lnCLi(I) 等式(4)E Li·M =E 0 ' Li·M +RT/3F·lnC Li(I) equation (4)
在等式(4)中,E0’Li·M表示条件电极电位(这里,等于E0’Li·M+RT/3F·lnγLi(I))。In Equation (4), E 0 ′ Li·M represents the conditional electrode potential (here, equal to E 0 ′ Li·M +RT/3F·lnγ Li(I) ).
类似地,通过使用上述等式,可以确定对应于不同熔融盐的所有沉积物的沉积电位。在将锂在阴极上沉积或合金化的步骤中,考虑到锂单质和锂合金的沉积电位值,这样选择熔融盐和阴极材料,以使其相对于另一种金属的单质或合金的沉积电位达到足够高的电位差,并且决定使锂沉积还是使锂合金沉积。Similarly, by using the above equation, the deposition potentials of all deposits corresponding to different molten salts can be determined. In the step of depositing or alloying lithium on the cathode, the molten salt and the cathode material are selected such that they are relative to the deposition potential of a simple substance or alloy of another metal in consideration of the deposition potential values of a simple substance of lithium and a lithium alloy A sufficiently high potential difference is reached and a decision is made whether to deposit lithium or a lithium alloy.
操作过程中的电压和电流根据电极的尺寸或位置关系而变化。因此,基于条件来确定电压和电流的参考值,随后基于由上述方法确定的电位值和顺序来确定每一个步骤中的电压和电流。The voltage and current during operation vary according to the size or positional relationship of the electrodes. Therefore, the reference values of voltage and current are determined based on the conditions, and then the voltage and current in each step are determined based on the potential value and order determined by the above-described method.
如上所述,在根据本实施方案的通过熔融盐电解制造锂的方法中,对电位值进行控制从而以电化学方式溶解并沉积锂。因此,与(例如)包括反复进行使用酸等的溶解和提取过程的现有湿法处理相比,可以简化步骤;并且可以选择性地分离和回收特定元素。另外,无需调整熔融盐的比重;而且,通过选择锂能够在其中以固态进行处理的低温熔融盐,可以采用简单的装置构造。此外,操作模式也可以简化。因此,能够以低成本有效地进行这些步骤。As described above, in the method of producing lithium by molten salt electrolysis according to the present embodiment, the potential value is controlled to electrochemically dissolve and deposit lithium. Therefore, compared with, for example, existing wet processing including repeatedly performing a dissolution and extraction process using an acid or the like, steps can be simplified; and specific elements can be selectively separated and recovered. In addition, there is no need to adjust the specific gravity of the molten salt; moreover, by selecting a low-temperature molten salt in which lithium can be processed in a solid state, a simple device configuration can be employed. Furthermore, the mode of operation can also be simplified. Therefore, these steps can be efficiently performed at low cost.
在根据本实施方案的通过熔融盐电解制造锂的方法中,对处理对象物没有限制,只要其是含锂的材料即可。处理对象物优选的例子包括锂原电池的负极材料和锂离子二次电池的正极材料。In the method of producing lithium by molten salt electrolysis according to the present embodiment, there is no limitation on the object to be processed as long as it is a lithium-containing material. Preferable examples of objects to be processed include negative electrode materials for lithium primary batteries and positive electrode materials for lithium ion secondary batteries.
锂离子二次电池中正极材料的正极活性材料的例子包括钴酸锂(LiCoO2)、镍酸锂(LiNiO2)、镍钴酸锂(LiCo0.3Ni0.7O2)、锰酸锂(LiMn2O4)、钛酸锂(Li4Ti5O12)、锂锰复合氧化物((LiMyMn2-yO4);M=Cr、Co、Ni)以及锂酸(lithium acid)。Examples of positive electrode active materials for positive electrode materials in lithium ion secondary batteries include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium nickel cobaltate (LiCo 0.3 Ni 0.7 O 2 ), lithium manganate (LiMn 2 O 4 ), lithium titanate (Li 4 Ti 5 O 12 ), lithium manganese composite oxide ((LiM y Mn 2-y O 4 ); M=Cr, Co, Ni), and lithium acid.
熔融盐可以选自氯化物熔融盐和氟化物熔融盐。可以使用含有氯化物熔融盐和氟化物熔融盐的熔融盐混合物。The molten salt may be selected from chloride molten salts and fluoride molten salts. A molten salt mixture containing a chloride molten salt and a fluoride molten salt may be used.
氯化物熔融盐的例子包括KCl、NaCl、CaCl2、LiCl、RbCl、CsCl、SrCl2、BaCl2和MgCl2。氟化物熔融盐的例子包括LiF、NaF、KF、RbF、CsF、MgF2、CaF2、SrF2和BaF2。考虑到效率优选使用氯化物熔融盐;具体而言,KCl、NaCl和CaCl2由于其廉价和容易获得而优选使用。Examples of the chloride molten salt include KCl, NaCl, CaCl 2 , LiCl, RbCl, CsCl, SrCl 2 , BaCl 2 and MgCl 2 . Examples of the fluoride molten salt include LiF, NaF, KF, RbF, CsF, MgF 2 , CaF 2 , SrF 2 and BaF 2 . Chloride molten salts are preferably used in view of efficiency; specifically, KCl, NaCl, and CaCl 2 are preferably used because of their cheapness and easy availability.
在这些熔融盐中,可以将多种熔融盐组合并用作具有所需组成的熔融盐。例如,可以使用具有诸如KCl-CaCl2、LiCl-KCl或NaCl-KCl之类组成的熔融盐。Among these molten salts, a plurality of molten salts may be combined and used as a molten salt having a desired composition. For example, a molten salt having a composition such as KCl-CaCl 2 , LiCl-KCl, or NaCl-KCl may be used.
在根据本实施方案的通过熔融盐电解制造锂的方法中,可以优选使用以下装置。即,用于根据本实施方案的通过熔融盐电解制造锂的方法的装置包括:容纳有熔融盐的容器;阴极,其浸没在容纳于容器内的熔融盐中;以及阳极,其浸没在容纳于容器内的熔融盐中并且包含导电性处理对象物,该导电性处理对象物含有锂,其中熔融盐可以在阳极内部和外部之间流动,该装置还包括控制单元,该控制单元被构造为将阴极和阳极的电位控制为预定值,并且在该控制单元中,电位的值是可以改变的。In the method of producing lithium by molten salt electrolysis according to the present embodiment, the following devices can be preferably used. That is, the apparatus used in the method for producing lithium by molten salt electrolysis according to the present embodiment includes: a vessel containing molten salt; a cathode immersed in the molten salt contained in the vessel; and an anode immersed in the molten salt contained in the vessel. In the molten salt in the container and containing the conductive processing object containing lithium, wherein the molten salt can flow between the inside and the outside of the anode, the apparatus further includes a control unit configured to Potentials of the cathode and anode are controlled to predetermined values, and in the control unit, the value of the potential is changeable.
用于根据本实施方案的通过熔融盐电解制造锂的方法的装置包括:容纳有熔融盐的容器,该熔融盐含有溶解的锂;以及阴极和阳极,其浸没在容纳于容器内的熔融盐中,其中该装置包括控制单元,该控制单元被构造为将阴极和阳极的电位控制为预定值,并且该控制单元中的电位值是可以改变的。The apparatus used in the method for producing lithium by molten salt electrolysis according to the present embodiment includes: a container containing molten salt containing dissolved lithium; and a cathode and an anode immersed in the molten salt contained in the container , wherein the device includes a control unit configured to control the potentials of the cathode and the anode to predetermined values, and the potential values in the control unit are changeable.
将参照图18和19描述用于本实施方案的装置。图18中所示的装置包括容纳熔融盐的容器1,容纳于容器1内的熔融盐2,容纳含有锂的处理对象物3的篮筐4,电极6,用于加热熔融盐2的加热器10,以及通过导线5与篮筐4和电极6电连接的控制单元9。The device used in this embodiment will be described with reference to FIGS. 18 and 19 . The apparatus shown in FIG. 18 includes a
控制单元9被构造为用于将一个电极(阳极,即篮筐4)和另一个电极(阴极,即电极6)的电位控制为预定值。在控制单元9中,被控制的电位值是可以改变的。设置加热器10以使其环绕在容器1周围。电极6可以由所需的材料形成,例如铝。容器1的底面可以呈环形或多边形。篮筐4可以是上述篮筐。The
通过控制单元9将篮筐4和电极6的电位控制为预定电位值。因此,将锂从处理对象物3中溶解到熔融盐2中。The potentials of the basket 4 and the
在锂从处理对象物3中充分溶出后,移除篮筐4和电极6并且如图19所示,将另一个电极7(阴极)和另一个电极8(阳极)放置在熔融盐2中。这些电极7和8通过导线5与控制单元9相连。使用控制单元9将电极7和8的电位控制为预定值。此时,控制电位以使得电极7的电位为锂的沉积电位。因此,将溶解于熔融盐2中的锂沉积在电极7(阴极)的表面上。电极7和8可以由诸如玻璃碳(C)之类的材料形成。After lithium was sufficiently eluted from the
在使用图18和19中所示的装置的两种处理中,利用加热器10的熔融盐2的加热温度都可以为(例如)800℃。这样,可以将锂以单质形式沉积在电极7的表面上。In both processes using the apparatus shown in FIGS. 18 and 19 , the heating temperature of the
可以控制电极7和8的电位以使锂与阴极材料的合金沉积在电极7(阴极)的表面上。在这种情况下,可以利用合金化的电极7进行上述溶解步骤和沉积步骤。即,重新准备图18所示的装置,并且用与锂合金化的电极7来代替上述处理对象物3。The potential of
在用图18和19中所示的装置实施本实施方案的锂制造方法的情况下,例如,可以通过以下方式实施该方法。In the case of carrying out the lithium production method of the present embodiment with the apparatus shown in FIGS. 18 and 19 , for example, the method can be carried out in the following manner.
首先准备作为处理对象物3的锂离子电池中的含锂正极材料,并准备作为熔融盐2的KCl-NaCl。例如,正极材料是含钴酸锂(LiCoO2)或锰酸锂的粉末。将该硬质合金切削工具研磨并放入篮筐4内。从提高处理效率的角度来看,优选通过研磨来将作为处理对象物3的正极材料的尺寸减至最小尺寸。例如,将正极材料研磨至最大粒径为5mm以下、优选为3mm以下、更优选为1mm以下的颗粒。可以利用作为电极6的碳电极进行上述溶解步骤。随后,可以利用由玻璃碳形成并且作为电极7和8的电极来进行沉积步骤。First, a lithium-containing positive electrode material in a lithium ion battery as a
正如已经描述的那样,能够从用作处理对象物3的正极材料中回收锂。As already described, lithium can be recovered from the positive electrode material used as the
与现有的湿法分离方法等相比,根据本实施方案的通过熔融盐电解制造锂的方法可以简化装置构造并且也可以缩短处理时间。因而,可以降低所花费的成本。此外,通过适当设定电极的电位,可以使锂以单质形式沉积在电极表面上,从而可以获得高纯度的锂。Compared with the existing wet separation method and the like, the method of producing lithium by molten salt electrolysis according to the present embodiment can simplify the device configuration and can also shorten the processing time. Thus, the cost incurred can be reduced. In addition, by appropriately setting the potential of the electrode, lithium can be deposited on the surface of the electrode as a single substance, so that high-purity lithium can be obtained.
[第四实施方案][Fourth Embodiment]
本实施方案是通过熔融盐电解制造金属的方法,该方法包括:将包含于处理对象物中的金属元素溶解在熔融盐中的步骤,其中该处理对象物含有两种以上的金属元素;以及通过将设置于熔融盐中的一对电极部件的电位控制为预定值,从而使存在于熔融盐中的特定金属在这对电极部件中的一者上沉积或合金化的步骤,其中该熔融盐含有溶解的金属元素。The present embodiment is a method of producing metal by molten salt electrolysis, the method including: a step of dissolving in molten salt a metal element contained in an object to be processed, wherein the object to be processed contains two or more metal elements; A step of controlling the potential of a pair of electrode members provided in a molten salt to a predetermined value, thereby depositing or alloying a specific metal present in the molten salt on one of the pair of electrode members, wherein the molten salt contains dissolved metal elements.
粗略地说,该实施方案包括将包含于处理对象物中的特定金属溶解在熔融盐中的过程,以及通过熔融盐电解将特定金属从含有溶解的特定金属的熔融盐中沉积在电极中的一者(阴极)上的过程。该实施方案的特征在于:通过将电极的电位控制为预定值,可以选择性地将特定金属从处理对象物中沉积,从而获得高纯度的特定金属。Roughly speaking, this embodiment includes a process of dissolving a specific metal contained in an object to be processed in a molten salt, and a process of depositing the specific metal in an electrode from the molten salt containing the dissolved specific metal by molten salt electrolysis. or (cathode) on the process. This embodiment is characterized in that a specific metal can be selectively deposited from an object to be treated by controlling the potential of the electrode to a predetermined value, thereby obtaining a high-purity specific metal.
首先将描述将包含于处理对象物中的特定金属溶解在熔融盐中的过程。First, a process of dissolving a specific metal contained in a treatment object in molten salt will be described.
将包含于处理对象物中的特定金属溶解在熔融盐中的过程为(例如)化学溶解过程。具体而言,将处理对象物研磨成颗粒或粉末,与盐混合并加热。由此,能够将包含于处理对象物中的特定金属溶解在熔融盐中。或者,可以将处理对象物置于熔融盐中并使之溶解。The process of dissolving the specific metal contained in the object to be processed in the molten salt is, for example, a chemical dissolution process. Specifically, the object to be treated is ground into granules or powder, mixed with salt, and heated. Thereby, the specific metal contained in the object to be processed can be dissolved in the molten salt. Alternatively, the object to be treated may be dissolved in molten salt.
另一个过程是电化学过程。具体而言,将阴极和由含有处理对象物的阳极材料形成的阳极放置在熔融盐中;并且控制阳极的电位为预定值,从而将对应于控制的电位值的特定金属从处理对象物中溶解到熔融盐中。熔融盐电解特征在于:不同的元素在不同的电位下溶解;并且利用该特征将特定金属与其他金属分离。这样,通过将处理对象物用作阳极并控制溶解过程中的电位,从而可以选择性地将特定金属溶解在熔融盐中。Another process is an electrochemical process. Specifically, a cathode and an anode formed of an anode material containing an object to be processed are placed in a molten salt; and the potential of the anode is controlled to a predetermined value, thereby dissolving a specific metal corresponding to the controlled potential value from the object to be processed into the molten salt. Molten salt electrolysis is characterized in that different elements dissolve at different potentials; and this characteristic is used to separate specific metals from other metals. In this way, a specific metal can be selectively dissolved in the molten salt by using the object to be treated as an anode and controlling the potential during the dissolution process.
在这个步骤中,可以使包含于处理对象物中的全部金属溶解。或者,可以使包含于处理对象物中的特定金属和其他金属溶解。优选仅使包含于处理对象物中的特定金属溶解。可以采用使包含于处理对象物中的特定金属和其他种金属溶解的条件;然而,如果可以的话,优选控制电位而仅使特定金属溶解。即,在将特定金属溶解在熔融盐的步骤中,优选将阳极的电位控制为预定值,从而选择性地将特定金属溶解在熔融盐中。由此,可以减少后续沉积过程中杂质的进入。In this step, all the metals contained in the object to be treated can be dissolved. Alternatively, specific metals and other metals contained in the object to be treated may be dissolved. It is preferable to dissolve only specific metals contained in the object to be treated. Conditions for dissolving specific metals and other kinds of metals contained in the object to be treated may be employed; however, if possible, it is preferable to control the potential so as to dissolve only specific metals. That is, in the step of dissolving the specific metal in the molten salt, it is preferable to control the potential of the anode to a predetermined value so as to selectively dissolve the specific metal in the molten salt. Thus, the entry of impurities in the subsequent deposition process can be reduced.
为此,优选这样选择熔融盐,使得在将特定金属从处理对象物中溶解到熔融盐中的步骤中,熔融盐中特定金属的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差为0.05V以上。从而,可以使溶解于熔融盐中的特定金属与保留在阳极中的金属元素充分分离。标准电极电位之差更优选为0.1V以上,还更优选为0.25V以上。For this reason, it is preferable to select the molten salt so that in the step of dissolving the specific metal from the object to be processed into the molten salt, the standard electrode potential of the single substance or alloy of the specific metal in the molten salt is equal to that of the simple substance or alloy of another metal. The difference between the standard electrode potentials is more than 0.05V. Thereby, the specific metal dissolved in the molten salt can be sufficiently separated from the metal element remaining in the anode. The difference in standard electrode potential is more preferably 0.1 V or more, still more preferably 0.25 V or more.
阳极上所控制的电位值可以通过下述的能斯特方程计算。The controlled potential value on the anode can be calculated by the following Nernst equation.
当处理对象物中含有一种以上的目标特定金属时,在溶解步骤中,将一种以上的特定金属溶解在熔融盐中。When the object to be processed contains one or more target specific metals, in the dissolving step, one or more specific metals are dissolved in molten salt.
当处理对象物仅含一种特定金属时,如上所述,将该特定金属溶解然后进行沉积步骤,以制造目标金属。当处理对象物含有两种以上目标特定金属时,可仅将这些金属中的一者溶于熔融盐中;随后进行沉积步骤;之后,可以进行另一个溶解步骤,以使剩余的特定金属溶解于该熔融盐中。在这种情况下,可以将在首次溶解步骤中使用过的处理对象物从用于该溶解步骤的熔融盐中移动到另一个熔融盐中,并且进行溶解步骤,从而将剩余的特定金属溶解。When the object to be treated contains only one specific metal, as described above, the specific metal is dissolved and then deposited to produce the target metal. When the object to be treated contains two or more target specific metals, only one of these metals may be dissolved in the molten salt; followed by a deposition step; after that, another dissolution step may be performed so that the remaining specific metals are dissolved in the molten salt. in the molten salt. In this case, the object to be treated used in the first dissolving step may be moved from the molten salt used for this dissolving step to another molten salt, and the dissolving step may be performed, thereby dissolving the remaining specific metal.
当将包含于处理对象物中的两种以上特定金属溶解在熔融盐中时,可以进行随后的沉积步骤,以使存在于熔融盐中的特定金属逐一在电极材料上沉积或合金化,从而能够制造所需的特定金属。在这种情况下,在一种特定金属在电极材料上沉积或合金化后,可以用另一种电极材料取代该电极材料,并且可将溶解于熔融盐中的另一种特定金属在该电极材料上沉积或合金化。When two or more specific metals contained in the object to be treated are dissolved in the molten salt, a subsequent deposition step may be performed so that the specific metals present in the molten salt are deposited or alloyed on the electrode material one by one, thereby enabling The specific metal needed for fabrication. In this case, after a specific metal is deposited or alloyed on the electrode material, the electrode material can be replaced with another electrode material, and another specific metal dissolved in molten salt can be deposited on the electrode material. deposited or alloyed on the material.
用于溶解步骤中的阴极由碳或倾向于与构成熔融盐中阳离子的碱金属(如Li或Na)形成合金的材料形成。例如,可以使用铝(Al)、锌(Zn)、镓(Ga)、镉(Cd)、铟(In)、锡(Sn)、锑(Sb)、铅(Pb)或铋(Bi)。The cathode used in the dissolving step is formed of carbon or a material that tends to form an alloy with an alkali metal (such as Li or Na) constituting cations in the molten salt. For example, aluminum (Al), zinc (Zn), gallium (Ga), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), or bismuth (Bi) may be used.
当将含特定金属的处理对象物用作阳极时,例如可以将容纳在由金属等形成的导电性篮筐(阳极材料)内的处理对象物设置在熔融盐中。可以在篮筐的上部形成开口以使处理对象物能够通过该开口插入篮筐内;并且可以在篮筐的侧壁和底壁上形成大量的孔以使熔融盐能够流入篮筐内。篮筐可以由所需材料构成,例如由金属线编织的网状部件或具有大量孔的片状金属板的片材部件。具体而言,由C、Pt、Mo等形成的材料是有效的。When an object to be treated containing a specific metal is used as an anode, for example, the object to be treated contained in a conductive basket (anode material) formed of metal or the like may be placed in a molten salt. Openings may be formed in the upper portion of the basket to allow treatment objects to be inserted into the basket through the openings; and a large number of holes may be formed in side and bottom walls of the basket to allow molten salt to flow into the basket. The basket can be constructed of desired material, such as a mesh member woven from wires or a sheet member of sheet metal with a large number of holes. Specifically, a material formed of C, Pt, Mo, or the like is effective.
在对象物是氧化物等并且具有高电阻的情况下,优选增加对象物和导电材料之间的接触面积。例如通过用金属网部件包裹对象物或者将对象物填充入金属多孔部件内的空间,从而将对象物有效地用作电极。In the case where the object is an oxide or the like and has high electrical resistance, it is preferable to increase the contact area between the object and the conductive material. For example, by wrapping the object with a metal mesh member or filling the space in the metal porous member with the object, the object can be effectively used as an electrode.
将阴极和由含有处理对象物的阳极材料形成的阳极(例如,容纳处理对象物的金属篮筐)设置在熔融盐中;并且控制阳极的电位为预定值。因此,可以将特定金属从处理对象物中溶解到熔融盐中。A cathode and an anode formed of an anode material containing an object to be processed (for example, a metal basket accommodating the object to be processed) are disposed in molten salt; and the potential of the anode is controlled to be a predetermined value. Therefore, a specific metal can be dissolved in the molten salt from the object to be processed.
在随后的沉积过程中,利用设置在含有溶解的特定金属的熔融盐中的一对电极部件进行熔融盐电解,以使特定金属沉积在电极部件中的一者(阴极)上。在这种情况下,通过控制熔融盐电解时的电位值,可以选择性地将特定金属以金属或合金的形式沉积于阴极上。In the subsequent deposition process, molten salt electrolysis is performed using a pair of electrode members disposed in a molten salt containing dissolved specific metal, so that the specific metal is deposited on one of the electrode members (cathode). In this case, by controlling the potential value during molten salt electrolysis, a specific metal can be selectively deposited on the cathode in the form of metal or alloy.
与溶解步骤相同,在该沉积步骤中,利用以下特性将特定金属与其它金属分离:在熔融盐电解时,不同的元素在不同的电位下以金属或合金形式沉积于阴极上。因而,即使熔融盐中含有除了特定金属以外的其他金属,也能通过控制电位选择性地将特定金属在阴极上沉积或合金化。因此,能够得到高纯度的特定金属。As in the dissolution step, in this deposition step specific metals are separated from other metals by virtue of the property that different elements are deposited on the cathode as metals or alloys at different potentials during molten salt electrolysis. Thus, even if other metals other than the specific metal are contained in the molten salt, the specific metal can be selectively deposited or alloyed on the cathode by controlling the potential. Therefore, a high-purity specific metal can be obtained.
在沉积特定金属时,当特定金属的溶解-沉积电位与包含于熔融盐中的另一种金属的溶解-沉积电位之差太小以至于难以将特定金属与其他金属分离时,可以选择阴极材料并且可以控制电位,从而沉积该阴极材料与特定金属的合金。由此,可以将熔融盐中的特定金属以合金的形式与其它杂质金属分离;并且此后,例如,可以在另一种熔融盐中利用与特定金属合金化的阴极材料进行溶解步骤和沉积步骤,从而制造高纯度的特定金属。When depositing a specific metal, the cathode material can be selected when the difference between the dissolution-deposition potential of the specific metal and that of another metal contained in the molten salt is so small that it is difficult to separate the specific metal from the other metals And the potential can be controlled to deposit alloys of the cathode material with specific metals. Thereby, the specific metal in the molten salt can be separated in the form of an alloy from other impurity metals; and thereafter, for example, the dissolution step and the deposition step can be performed in another molten salt using a cathode material alloyed with the specific metal, Thereby producing high-purity specific metals.
用于沉积步骤的电极部件可以由(例如)镍(Ni)、钼(Mo)或玻璃碳(C)形成。The electrode member used in the deposition step may be formed of, for example, nickel (Ni), molybdenum (Mo), or glassy carbon (C).
在本实施方案中,使用如上所述两个过程从处理对象物中分离和提取特定金属。在本实施方案中,由于使用了熔融盐,因此需要对体系加热以使该过程中体系的温度等于或高于熔融盐的熔点。In this embodiment, the specific metal is separated and extracted from the object to be treated using the two processes described above. In this embodiment, since molten salt is used, it is necessary to heat the system so that the temperature of the system during this process is equal to or higher than the melting point of the molten salt.
或者,如下所述,可以基于与该过程完全相反的想法进行冶炼。也就是说,将处理对象物用作阳极并且仅将作为杂质的金属元素溶解在熔融盐中。在这种情况下,同样地通过控制阳极的电位,以引发这样的现象:特定金属保留在阳极中,而杂质元素溶解。从而,在阳极上得到了特定金属。Alternatively, as described below, smelting can be based on the exact opposite idea of the process. That is, the object to be treated is used as an anode and only metal elements as impurities are dissolved in molten salt. In this case as well, by controlling the potential of the anode, a phenomenon in which a specific metal remains in the anode and impurity elements dissolve is induced. Thus, a specific metal is obtained on the anode.
这两个过程的特征是熔融盐的使用。因而,利用了熔融盐电解中不同的熔融盐对元素具有不同的溶解-沉积电位的特性;并且可这样设计该过程,即:选择熔融盐以使特定金属的溶解-沉积电位与除特定金属外的其他杂质金属的溶解-沉积间的差值为能够使该过程容易进行的足够大的差值。Both processes are characterized by the use of molten salts. Thus, the characteristic that different molten salts have different dissolution-deposition potentials for elements in molten salt electrolysis is utilized; and the process can be designed in such a way that molten salts are selected so that the dissolution-deposition potential of a specific metal is the same as that of other than specific metals. The difference between dissolution-deposition of other impurity metals is large enough to make the process easy.
具体而言,优选这样选择熔融盐,使得在使特定金属沉积或合金化的步骤中,熔融盐中特定金属的单质或合金的标准电极电位与另一种杂质金属的单质或合金的标准电极电位之差为0.05V以上。Specifically, it is preferable to select the molten salt such that in the step of depositing or alloying the specific metal, the standard electrode potential of the single substance or alloy of the specific metal in the molten salt is equal to the standard electrode potential of the simple substance or alloy of another impurity metal. The difference is more than 0.05V.
在熔融盐中,特定金属的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差更优选为0.1V以上,还更优选为0.25V以上。In the molten salt, the difference between the standard electrode potential of a single substance or alloy of a specific metal and that of another metal is more preferably 0.1 V or more, still more preferably 0.25 V or more.
这样,在使特定金属沉积或合金化的步骤中,优选将电极部件的电位控制为预定值,以选择性地使熔融盐中的特定金属元素沉积或合金化。Thus, in the step of depositing or alloying the specific metal, it is preferable to control the potential of the electrode member to a predetermined value to selectively deposit or alloy the specific metal element in the molten salt.
待沉积在阴极上的特定金属的沉积电位可以通过电化学计算来确定。具体而言,通过能斯特方程进行计算。The deposition potential of a particular metal to be deposited on the cathode can be determined by electrochemical calculations. Specifically, the calculation is performed by the Nernst equation.
例如,作为特定金属的钼(Mo)单质从熔融盐中沉积的电位可以用以下等式确定,在该熔融盐中,钼溶解为四价Mo离子(以下用Mo(IV)表示)。For example, the potential at which molybdenum (Mo) simple substance as a specific metal is deposited from a molten salt in which molybdenum dissolves as tetravalent Mo ions (hereinafter represented by Mo(IV)) can be determined by the following equation.
EMo=E0 Mo+RT/3F·ln(aMo(IV)/aMo(0)) 等式(1)E Mo = E 0 Mo +RT/3F·ln(a Mo(IV) /a Mo(0) ) Equation (1)
在等式(1)中,E0 Mo表示标准电位,R表示气体常数,T表示绝对温度,F表示法拉第常数,aMo(IV)表示Mo(IV)离子的活度,aMo(0)表示Mo单质的活度。In equation (1), E 0 Mo represents the standard potential, R represents the gas constant, T represents the absolute temperature, F represents the Faraday constant, a Mo(IV) represents the activity of Mo(IV) ions, a Mo(0) Indicates the activity of Mo simple substance.
当考虑到活度系数γMo(IV)而改写等式(1)时,由于aMo(0)=1,从而得到以下等式。When the equation (1) is rewritten in consideration of the activity coefficient γ Mo(IV) , since a Mo(0) =1, the following equation is obtained.
EMo=E0 Mo+RT/3F·lnaMo(IV)=E0 Mo+RT/3F·ln(γMo(IV)·CMo(IV)) 等式(2)E Mo = E 0 Mo +RT/3F·lna Mo(IV) =E 0 Mo +RT/3F·ln(γ Mo(IV) ·C Mo(IV) ) Equation (2)
EMo=E0’Mo+RT/3F·lnCMo(IV) 等式(3)E Mo = E 0 ' Mo +RT/3F·lnC Mo(IV) Equation (3)
在等式(3)中,CMo(IV)表示四价Mo离子的浓度,E0’Mo表示条件电极电位(这里,等于E0 Mo+RT/3F·lnγMo(IV))。In Equation (3), C Mo(IV) represents the concentration of tetravalent Mo ions, and E 0 ' Mo represents the conditional electrode potential (here, equal to E 0 Mo +RT/3F·lnγ Mo(IV) ).
类似地,通过使用以上等式,可以确定对应于不同熔融盐的所有沉积物的沉积电位。Similarly, by using the above equation, the deposition potentials of all deposits corresponding to different molten salts can be determined.
在以合金形式沉积钼的情况下也可以进行类似计算。Similar calculations can also be performed in the case of depositing molybdenum in alloy form.
在将钼在阴极上沉积或合金化的过程中,考虑钼单质和钼合金的沉积电位值,这样选择熔融盐和阴极材料,以使其相对于另一种金属的单质或合金的沉积电位达到充分高的电位差,并且决定使钼单质沉积还是使钼合金沉积。In the process of depositing or alloying molybdenum on the cathode, considering the deposition potential value of molybdenum elemental substance and molybdenum alloy, the molten salt and cathode material are selected so that the deposition potential of the elemental substance or alloy of another metal reaches Sufficiently high potential difference, and decide whether to deposit molybdenum simple substance or molybdenum alloy.
操作过程中的电压和电流根据电极的尺寸或位置关系而变化。因此,基于条件确定电压和电流的参考值,随后基于由上述方法确定的电位值和顺序确定在每一个步骤中的电压和电流。The voltage and current during operation vary according to the size or positional relationship of the electrodes. Therefore, the reference values of voltage and current are determined based on the conditions, and then the voltage and current in each step are determined based on the potential value and sequence determined by the above-mentioned method.
如上所述,在根据本实施方案的通过熔融盐电解制造特定金属的方法中,对电位值进行控制从而以电化学方式溶解并沉积特定金属。因此,与(例如)包括反复进行使用酸等的溶解和提取过程的现有湿法处理相比,可以简化步骤;并且可以选择性地分离和回收特定金属。另外,无需调整熔融盐的比重;而且,通过选择特定金属能够在其中以固态进行处理的低温熔融盐,可以采用简单的装置构造。此外,操作模式也可以简化。因此,能够以低成本有效地进行这些步骤。As described above, in the method of producing a specific metal by molten salt electrolysis according to the present embodiment, the potential value is controlled to electrochemically dissolve and deposit the specific metal. Therefore, compared with, for example, existing wet processing including repeatedly performing a dissolution and extraction process using an acid or the like, steps can be simplified; and specific metals can be selectively separated and recovered. In addition, there is no need to adjust the specific gravity of the molten salt; moreover, by selecting a low-temperature molten salt in which a specific metal can be processed in a solid state, a simple device configuration can be employed. Furthermore, the mode of operation can also be simplified. Therefore, these steps can be efficiently performed at low cost.
或者,如上所述,可以基于与将特定金属在阴极上沉积或合金化的想法完全相反的想法熔炼特定金属。Alternatively, as mentioned above, specific metals can be smelted based on the exact opposite idea of depositing or alloying specific metals on the cathode.
也就是说,根据本实施方案的通过熔融盐电解制造金属的方法是通过熔融盐电解从含有两种以上金属元素的处理对象物制造特定金属的方法,其中在熔融盐中设置阴极和由包含处理对象物的阳极材料形成的阳极,并且将该阳极的电位控制为预定值,从而使对应于该电位的金属元素从处理对象物溶解到熔融盐中,并使特定金属保留在阳极中。That is, the method of producing a metal by molten salt electrolysis according to the present embodiment is a method of producing a specific metal from an object to be treated containing two or more metal elements by molten salt electrolysis in which a cathode is provided in the molten salt and treated by containing An anode formed from the anode material of the object, and the potential of the anode is controlled to a predetermined value, so that the metal element corresponding to the potential is dissolved from the object to be processed into the molten salt, and the specific metal remains in the anode.
在这种制造方法中,将含有处理对象物的阳极材料用作阳极并且将除特定金属元素以外的其他金属元素(即,仅作为杂质的金属元素)溶解在熔融盐中,以使特定金属保留在阳极中。在这种情况下,同样地通过控制阳极的电位,以引起这样的现象:作为冶炼目标的金属元素保留在阳极中,而杂质元素溶解在熔融盐中。从而,在阳极上得到了冶炼后的特定金属。In this manufacturing method, an anode material containing an object to be processed is used as an anode and metal elements other than a specific metal element (that is, metal elements that are only impurities) are dissolved in a molten salt so that the specific metal remains in the anode. In this case as well, by controlling the potential of the anode, such a phenomenon is caused that the metal element targeted for smelting remains in the anode while the impurity element dissolves in the molten salt. Thus, the specific metal after smelting is obtained on the anode.
在这种方法中,也优选这样选择熔融盐,使得在将金属元素从处理对象溶解到熔融盐中的步骤中,熔融盐中该特定金属的单质或合金的标准电极电位与另一种金属的单质或合金的标准电极电位之差为0.05V以上。因此,可以将特定金属与其它金属充分分离并且仅将特定金属保留在阳极中。标准电极电位之差更优选为0.1V以上,还更优选为0.25V以上。In this method, it is also preferable to select the molten salt so that in the step of dissolving the metal element from the processing object into the molten salt, the standard electrode potential of the elemental substance or alloy of the specific metal in the molten salt is different from that of another metal. The difference between the standard electrode potentials of simple substances or alloys is more than 0.05V. Therefore, it is possible to sufficiently separate a specific metal from other metals and retain only the specific metal in the anode. The difference in standard electrode potential is more preferably 0.1 V or more, still more preferably 0.25 V or more.
阳极上所控制的电位值可以通过上述能斯特方程计算。The controlled potential value on the anode can be calculated by the above-mentioned Nernst equation.
在根据本实施方案的通过熔融盐电解制造金属的方法中,对含有两种以上金属元素的处理对象物没有限制,只要其是含有目标特定金属的金属材料即可。例如,可以从收集的电池材料中获得Mn、Co、Sb等;可以从金属超导材料中获得Nb等;可以从氧化物超导材料中获得Bi、Sr等;可以从钒铁合金中获得V;可以从Mo-Cu散热器中获得Mo等;以及可以从光纤材料中获得Ge等。In the method of producing metal by molten salt electrolysis according to the present embodiment, there is no limitation on the object to be processed containing two or more metal elements as long as it is a metal material containing the target specific metal. For example, Mn, Co, Sb, etc. can be obtained from collected battery materials; Nb, etc. can be obtained from metal superconducting materials; Bi, Sr, etc. can be obtained from oxide superconducting materials; V can be obtained from vanadium-iron alloys; Mo, etc. can be obtained from Mo-Cu heat sinks; and Ge, etc. can be obtained from fiber optic materials.
本实施方案也适用于处理对象物为含有过渡金属或稀土金属的金属材料的情况。对该过渡金属没有特别限制,可以是周期表的第3族(IIIA族)至第11族(IB族)中的任意元素。本实施方案也适用于处理对象物含有选自由V、Nb、Mo、Ti、Ta、Zr和Hf构成的组中的一种或多种金属作为过渡金属的情况。This embodiment is also applicable when the object to be treated is a metal material containing a transition metal or a rare earth metal. The transition metal is not particularly limited, and may be any element in Group 3 (Group IIIA) to Group 11 (Group IB) of the periodic table. This embodiment is also applicable to the case where the object to be treated contains one or more metals selected from the group consisting of V, Nb, Mo, Ti, Ta, Zr, and Hf as transition metals.
此外,本实施方案也适用于处理对象物含有Sr和Ba中的一种或同时含有这两种金属的情况。而且,本实施方案也适用于处理对象物含有选自由Zn、Cd、Ga、In、Ge、Sn、Pb、Sb和Bi构成的组中的一种或多种金属的情况。In addition, this embodiment is also applicable to the case where the object to be treated contains one or both of Sr and Ba. Furthermore, this embodiment is also applicable to the case where the object to be treated contains one or more metals selected from the group consisting of Zn, Cd, Ga, In, Ge, Sn, Pb, Sb, and Bi.
在本实施方案的通过熔融盐电解制造金属的方法中,通过选择过渡金属或稀土金属作为待沉积或合金化的特定金属,可以得到过渡金属或稀土金属。对该过渡金属没有特别限制,可以是周期表的第3族(IIIA族)至第11族(IB族)中的任意元素。In the method of producing a metal by molten salt electrolysis of the present embodiment, by selecting a transition metal or a rare earth metal as a specific metal to be deposited or alloyed, a transition metal or a rare earth metal can be obtained. The transition metal is not particularly limited, and may be any element in Group 3 (Group IIIA) to Group 11 (Group IB) of the periodic table.
类似地,通过从V、Nb、Mo、Ti、Ta、Zr和Hf,或者Sr和Ba,或者Zn、Cd、Ga、In、Ge、Sn、Pb、Sb和Bi中选择待沉积或合金化的特定金属,可以得到这些金属。Similarly, by selecting from among V, Nb, Mo, Ti, Ta, Zr and Hf, or Sr and Ba, or Zn, Cd, Ga, In, Ge, Sn, Pb, Sb and Bi specific metals, these metals can be obtained.
如上所述,在溶解步骤中,可以将包含于处理对象物中的这些金属中的一种或多种溶解在熔融盐中,并且可以依次使特定金属从熔融盐中沉积或合金化于电极部件上。As described above, in the dissolving step, one or more of these metals contained in the object to be processed may be dissolved in the molten salt, and specific metals may be sequentially deposited or alloyed to the electrode parts from the molten salt superior.
处理对象物优选呈颗粒状或粉末状。当准备处理对象物以使其呈颗粒状或粉末状时,增加其表面积从而能够提高处理效率。The object to be treated is preferably granular or powdery. When the object to be processed is prepared to be in the form of granules or powder, the surface area thereof can be increased to improve the processing efficiency.
另外,可以对准备的呈颗粒或粉末状的处理对象物进行挤压并用作阳极。在这种情况下,颗粒之间存在熔融盐能够容易进入的有利空间。In addition, the prepared object to be processed in the form of granules or powder may be pressed and used as an anode. In this case, there are favorable spaces between the particles into which the molten salt can easily enter.
熔融盐可以选自氯化物熔融盐和氟化物熔融盐。可以使用含有氯化物熔融盐和氟化物熔融盐的熔融盐混合物。The molten salt may be selected from chloride molten salts and fluoride molten salts. A molten salt mixture containing a chloride molten salt and a fluoride molten salt may be used.
氯化物熔融盐的例子包括KCl、NaCl、CaCl2、LiCl、RbCl、CsCl、SrCl2、BaCl2和MgCl2。氟化物熔融盐的例子包括LiF、NaF、KF、RbF、CsF、MgF2、CaF2、SrF2和BaF2。考虑到效率优选使用氯化物熔融盐;具体而言,KCl、NaCl和CaCl2由于其廉价和容易获得而优选使用。Examples of the chloride molten salt include KCl, NaCl, CaCl 2 , LiCl, RbCl, CsCl, SrCl 2 , BaCl 2 and MgCl 2 . Examples of the fluoride molten salt include LiF, NaF, KF, RbF, CsF, MgF 2 , CaF 2 , SrF 2 and BaF 2 . Chloride molten salts are preferably used in view of efficiency; specifically, KCl, NaCl, and CaCl 2 are preferably used because of their cheapness and easy availability.
在这些熔融盐中,可以将多种熔融盐组合并用作具有所需组成的熔融盐。例如,可以使用具有诸如KCl-CaCl2、LiCl-KCl或NaCl-KCl之类组成的熔融盐。Among these molten salts, a plurality of molten salts may be combined and used as a molten salt having a desired composition. For example, a molten salt having a composition such as KCl-CaCl 2 , LiCl-KCl, or NaCl-KCl may be used.
在根据本实施方案的通过熔融盐电解制造金属的方法中,可以优选使用以下装置。即,该装置优选包括:容纳有熔融盐的容器;阴极,其浸没在容纳于容器内的熔融盐中;以及阳极,其浸没在容纳于容器内的熔融盐中并且包含处理对象物,该处理对象物含有两种以上金属元素,其中熔融盐可以在阳极内部和外部之间流动,该装置还包括控制单元,该控制单元被构造为将阴极和阳极的电位控制为预定值,并且在该控制单元中,电位的值是可以改变的。用于根据本实施方案的通过熔融盐电解制造金属的方法的装置优选为包括以下部分的装置:容纳有熔融盐的容器,该熔融盐包含溶解的特定金属;以及阴极和阳极,其浸没在容纳于容器内的熔融盐中,其中该装置包括控制单元,该控制单元被构造为将阴极和阳极的电位控制为预定值,并且在该控制单元中电位的值是可以改变的。In the method of producing metal by molten salt electrolysis according to the present embodiment, the following devices can be preferably used. That is, the device preferably includes: a container containing molten salt; a cathode, which is immersed in the molten salt contained in the container; The object contains two or more metal elements, wherein the molten salt can flow between the inside and outside of the anode, the device further includes a control unit configured to control the potentials of the cathode and the anode to a predetermined value, and in the control In the unit, the value of the potential can be changed. The apparatus used in the method for producing metal by molten salt electrolysis according to the present embodiment is preferably an apparatus including: a vessel containing molten salt containing dissolved specific metal; and a cathode and an anode submerged in the container containing In the molten salt in the container, wherein the device includes a control unit configured to control the potential of the cathode and the anode to a predetermined value, and the value of the potential can be changed in the control unit.
将参照图18和19描述该装置。图18中所示的装置包括容纳熔融盐的容器1,容纳于容器1内的熔融盐2,容纳含有两种以上金属元素的处理对象物3的篮筐4,电极6,用于加热熔融盐2的加热器10,以及通过导线5与篮筐4和电极6电连接的控制单元9。This device will be described with reference to FIGS. 18 and 19 . The apparatus shown in FIG. 18 includes a
控制单元9被构造为用于将一个电极(阳极,即篮筐4)和另一个电极(阴极,即电极6)的电位控制为预定值。在控制单元9中,被控制的电位值是可以改变的。布置加热器10使其环绕于容器1的周围。电极6可以由所需的材料形成,例如碳。容器1的底面可以为环形或多边形。篮筐4可以是上述篮筐。The
通过控制单元9将篮筐4和电极6的电位控制位预定电位值。因此,将特定金属从处理对象物3中溶解到熔融盐2中。The potential of the basket 4 and the
在将特定金属从处理对象物3中充分溶解后,移除篮筐4和电极6并且将另一个电极7(阴极)和另一个电极8(阳极)放置在熔融盐2中。这些电极7和8通过导线5与控制单元9相连。使用控制单元9将电极7和8的电位控制为预定值。此时,控制电位以使得电极7的电位为特定金属的沉积电位。因此,将溶解于熔融盐2中的特定金属沉积在电极7(阴极)的表面上。电极7和8可以由诸如玻璃碳(C)之类的材料形成。After the specific metal is sufficiently dissolved from the
在使用图18和19中所示的装置的两种处理中,利用加热器10的熔融盐2的加热温度都可以为(例如)800℃。这样,可以将特定金属以单质形式沉积在电极7的表面上。In both processes using the apparatus shown in FIGS. 18 and 19 , the heating temperature of the
可以控制电极7和8的电位,以使特定金属与阴极材料的合金沉积在电极7(阴极)的表面上。在这种情况下,可以利用合金化的电极7进行上述溶解步骤和沉积步骤。即,重新准备图18所示的装置,并且利用与特定金属合金化的电极7来代替上述处理对象物3。The potential of the
在用图18和19中所示的装置实施本实施方案的制造金属的方法的情况下,例如,可以通过以下方式实施该方法。下面,将描述关于钒、钼、锶和锗的例子。In the case of carrying out the method of producing metal of the present embodiment with the apparatus shown in FIGS. 18 and 19 , for example, the method can be carried out in the following manner. Next, examples regarding vanadium, molybdenum, strontium and germanium will be described.
(钒)(vanadium)
例如,使用本实施方案的金属制造方法来获得钒。首先准备作为处理对象物3的钒铁合金(1kg),并准备作为熔融盐2的NaCl-KCl。例如,钒铁合金含有75重量%的钒(V)和25重量%的铁(Fe)。将钒铁合金研磨并置于篮筐4中。熔融盐2的量约为15升。For example, vanadium is obtained using the metal manufacturing method of the present embodiment. First, vanadium-iron alloy (1 kg) was prepared as the
可以利用碳电极作为电极6来进行上述溶解步骤。接着,可以利用由玻璃碳形成且用作电极7和8的电极来进行沉积步骤。The above-mentioned dissolving step may be performed using a carbon electrode as the
(钼)(molybdenum)
使用本实施方案的制造金属的方法来获得钼。首先准备作为处理对象物3的Mo-Cu散热器(1kg),并准备作为熔融盐2的LiCl-KCl。例如,Mo-Cu散热器含有50重量%的钼(Mo)和50重量%的铜(Cu)。将Mo-Cu散热器研磨并置于篮筐4中。熔融盐2的量约为5升。Molybdenum is obtained using the method of producing metal of the present embodiment. First, a Mo—Cu radiator (1 kg) was prepared as the
可以利用作为电极6的碳电极来进行上述溶解步骤。接着,可以通过由玻璃碳形成且用作电极7和8的电极来进行沉积步骤。The above-mentioned dissolving step can be performed using a carbon electrode as
(锶)(strontium)
使用本实施方案的制造金属的方法来获得钼。首先准备作为处理对象物3的氧化物超导材料(1kg),并准备作为熔融盐2的LiF-CaF2。例如,氧化物超导材料含有17重量%的锶(Sr)和8重量%的钙(Ca)。将氧化物超导材料研磨并置于篮筐4中。熔融盐2的量约为4升。Molybdenum is obtained using the method of producing metal of the present embodiment. First, an oxide superconducting material (1 kg) was prepared as the
可以利用作为电极6的碳电极来进行上述溶解步骤。接着,可以通过由玻璃碳形成且用作电极7和8的电极来进行沉积步骤。The above-mentioned dissolving step can be performed using a carbon electrode as
(锗)(germanium)
使用本实施方案的制造金属的方法来获得锗。首先准备作为处理对象物3的光纤材料(1kg),并准备作为熔融盐2的LiF-CaF2。例如,光纤材料含有3重量%的锗(Ge)。将光纤材料研磨并置于篮筐4中。熔融盐2的量约为4升。Germanium is obtained using the method of producing metal of this embodiment. First, an optical fiber material (1 kg) was prepared as the
可以利用作为电极6的碳电极来进行上述溶解步骤。接着,可以通过由玻璃碳形成且用作电极7和8的电极来进行沉积步骤。The above-mentioned dissolving step can be performed using a carbon electrode as
正如已经描述的那样,通过使用钒铁合金、Mo-Cu散热器、氧化物超导材料、以及光纤材料作为处理对象物3,可以分别得到钒、钼、锶和锗。从提高处理效率的角度来看,优选通过研磨从而将作为处理对象物3的钒铁合金、Mo-Cu散热器、氧化物超导材料、以及光纤材料的尺寸减至最小尺寸:例如,优选将处理对象物3研磨成最大粒径为5mm以下、更优选为3mm以下、还更优选为1mm以下的颗粒。As already described, vanadium, molybdenum, strontium, and germanium can be respectively obtained by using vanadium-iron alloy, Mo-Cu heat sink, oxide superconducting material, and optical fiber material as the
与现有的回收方法等相比,根据本实施方案的通过熔融盐电解制造金属的方法可以简化装置构造,并且也可以缩短处理时间。因而,可以降低所花费的成本。此外,通过适当设定电极的电位,可以使特定金属以单质形式沉积在电极的表面上,从而可以获得高纯度的金属。Compared with existing recovery methods and the like, the method of producing metal by molten salt electrolysis according to the present embodiment can simplify the device configuration, and can also shorten the processing time. Thus, the cost incurred can be reduced. In addition, by appropriately setting the potential of the electrode, a specific metal can be deposited on the surface of the electrode as a single substance, so that a high-purity metal can be obtained.
可以通过上述计算确定用于沉积钒、钒合金、钼、钼合金、锶、锶合金、锗以及锗合金的电位。Potentials for depositing vanadium, vanadium alloys, molybdenum, molybdenum alloys, strontium, strontium alloys, germanium, and germanium alloys can be determined by the above calculations.
目前为止已经各自描述了第一至第四实施方案。然而,例如,为了获得第二至第四实施方案中的钨、锂、过渡金属以及稀土金属,可以全部或部分采用其它实施方案中的方法。The first to fourth embodiments have each been described so far. However, for example, in order to obtain tungsten, lithium, transition metals, and rare earth metals in the second to fourth embodiments, the methods in other embodiments may be used in whole or in part.
实施例Example
[第一实施方案(实施例)][First Embodiment (Example)]
通过熔融盐电解由含稀土金属的矿石制造Nd、Dy和Pr。Nd, Dy and Pr are produced from ores containing rare earth metals by molten salt electrolysis.
(样品)(sample)
作为处理对象物的矿石是磷钇矿石。用压碎机或球磨机研磨磷钇矿石以使其粒径约为2mm。将研磨后的样品(磷钇矿石)用钼(Mo)网(50目)包裹。The ore to be processed is xenotime ore. The xenotime ore is ground with a crusher or a ball mill to have a particle size of about 2 mm. The ground sample (xenotime ore) was wrapped with a molybdenum (Mo) mesh (50 mesh).
如图14所示,将容纳于网中的样品粉末用作阳极(阳极电极)。(实验细节)As shown in FIG. 14 , the sample powder contained in the mesh was used as an anode (anode electrode). (experiment details)
采用LiF-NaF-KF共晶熔融盐作为熔融盐。此盐在700℃下加热可完全熔融。将上述阳极和阴极用电线连接并浸没在该熔融盐中。阴极由玻璃碳形成。LiF-NaF-KF eutectic molten salt was used as the molten salt. This salt can be completely melted when heated at 700°C. The above-mentioned anode and cathode were connected with wires and immersed in the molten salt. The cathode is formed of glassy carbon.
溶解步骤:Dissolving steps:
当将阳极和阴极如此浸没在熔融盐中时,将阳极维持在预定电位。经过约4小时后,将样品从熔融盐中取出并且利用电感耦合等离子体-原子发射光谱(ICP-AES)对样品进行组成分析。When the anode and the cathode are thus immersed in the molten salt, the anode is maintained at a predetermined potential. After about 4 hours, the sample was taken out from the molten salt and subjected to compositional analysis using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES).
电解步骤:Electrolysis steps:
溶解步骤后,将由Ni形成的阴极和由玻璃碳形成的阳极浸没在熔融盐中。将阴极电位维持在预定电位。具体而言,这样维持电位以使得在LiF-NaF-KF熔融盐中形成Dy-Ni合金。经过预定时间后,观察阴极的表面状态。After the dissolution step, the cathode formed of Ni and the anode formed of glassy carbon were immersed in molten salt. The cathode potential is maintained at a predetermined potential. Specifically, the potential was maintained such that a Dy-Ni alloy was formed in the LiF-NaF-KF molten salt. After a predetermined time elapsed, the surface state of the cathode was observed.
(结果)(result)
关于溶解步骤:Regarding the dissolution step:
观察到溶解步骤中阳极电流随时间的变化如图15所示。The observed change of anodic current with time in the dissolution step is shown in Fig. 15 .
在图15中,横轴表示时间(单位:分钟),纵轴表示阳极电流值(单位:mA)。如图15所示,电流值随时间的延长而减小。电流值相对于时间的变化率呈以下趋势:在测量开始时(开始施加电流时)变化率最高,之后,该变化率逐渐降低。In FIG. 15 , the horizontal axis represents the time (unit: minute), and the vertical axis represents the anode current value (unit: mA). As shown in Figure 15, the current value decreases with time. The rate of change of the current value with respect to time has a tendency that the rate of change is highest at the beginning of the measurement (when the current application is started), and thereafter, the rate of change gradually decreases.
通过ICP-AES对从熔融盐中取出的样品进行组成分析。结果证实,Nd和Dy在熔融盐中溶解。Composition analysis of samples taken from the molten salt was performed by ICP-AES. The results confirmed that Nd and Dy were dissolved in the molten salt.
关于电解步骤:About the electrolysis step:
图16和17示出了利用扫描电子显微镜(SEM)对阴极表面层的截面的观察结果。如图16和17所示,Dy-Ni合金32沉积在电极本体部31的表面上,电极本体部31构成阴极并由Ni形成。该Dy-Ni合金32可能是通过存在于熔融盐中的Dy与构成阴极的Ni之间的反应而形成的,并且沉积在阴极的表面上。这样,可以将包含于磷钇矿石中的Dy以Dy-Ni合金的形式从该矿石中分离和提取出来。16 and 17 show the observation results of the cross-section of the surface layer of the cathode using a scanning electron microscope (SEM). As shown in FIGS. 16 and 17, a Dy-
图16示出了通过SEM观察到的背散射电子图象。图17示出了在图16所示的进行了X射线分析的区域中的Dy原子分布。如图17所示,在对应于电极本体部31的区域33中几乎检测不到Dy;然而,在对应于Dy-Ni合金32的区域34中检测到了Dy。Figure 16 shows the backscattered electron image observed by SEM. FIG. 17 shows the distribution of Dy atoms in the X-ray analyzed region shown in FIG. 16 . As shown in FIG. 17 , Dy was hardly detected in the
[第二实施方案(实施例)][Second Embodiment (Example)]
将硬质合金工具用作含钨的金属材料并且通过熔融盐电解制造钨。Cemented carbide tools are used as tungsten-containing metal material and tungsten is produced by molten salt electrolysis.
(样品)(sample)
作为处理对象物的硬质合金工具是含有90重量%的碳化钨和10重量%的钴(其用作粘结剂)的切削工具。用珠磨机或磨碎机研磨切削工具以使其粒径约为2mm。将研磨后的样品(切削工具)用钼(Mo)网(50目)包裹。如图14所示,将容纳于Mo网中的样品粉末(处理对象物)用作阳极(阳极电极)。A cemented carbide tool as a processing object is a cutting tool containing 90% by weight of tungsten carbide and 10% by weight of cobalt, which is used as a binder. The cutting tool is ground with a bead mill or an attritor to have a particle size of about 2 mm. The ground sample (cutting tool) was wrapped with a molybdenum (Mo) mesh (50 mesh). As shown in FIG. 14 , the sample powder (object to be processed) accommodated in the Mo mesh was used as an anode (anode electrode).
(实验细节)(experiment details)
采用NaCl-KCl共晶熔融盐作为熔融盐。此盐在700℃下加热可完全熔融。将上述阳极和阴极用电线连接并浸没在该熔融盐中。阴极由玻璃碳形成。NaCl-KCl eutectic molten salt is used as the molten salt. This salt can be completely melted when heated at 700°C. The above-mentioned anode and cathode were connected with wires and immersed in the molten salt. The cathode is formed of glassy carbon.
溶解步骤:Dissolving steps:
当将阳极和阴极如此浸没在熔融盐中时,将阳极维持在预定电位。经过预定时间后,将样品从熔融盐中取出并通过ICP-AES对样品进行组成分析。When the anode and the cathode are thus immersed in the molten salt, the anode is maintained at a predetermined potential. After a predetermined time elapses, the sample is taken out from the molten salt and subjected to compositional analysis by ICP-AES.
电解步骤:Electrolysis steps:
溶解步骤后,将由玻璃碳形成的阴极和由玻璃碳形成的阳极浸没在熔融盐中。将阴极电位维持在预定电位。具体而言,这样维持电位以使钨在NaCl-KCl熔融盐中沉积。经过预定时间后,观察阴极的表面状态。After the dissolving step, the cathode formed of glassy carbon and the anode formed of glassy carbon were immersed in molten salt. The cathode potential is maintained at a predetermined potential. Specifically, the potential is maintained such that tungsten is deposited in the NaCl-KCl molten salt. After a predetermined time elapsed, the surface state of the cathode was observed.
(结果)(result)
关于溶解步骤:Regarding the dissolution step:
所观察到的溶解步骤中阳极电流随时间的变化与第一实施方案(实施例)中相同(图15)。在图15中,横轴表示时间(单位:分钟),纵轴表示阳极电流值(单位:mA)。如图15所示,电流值随时间减小。电流值相对于时间的变化率呈以下趋势:在测量开始时(开始施加电流时)变化率最高,之后,该变化率逐渐降低。The observed change in anodic current with time in the dissolution step was the same as in the first embodiment (Example) ( FIG. 15 ). In FIG. 15 , the horizontal axis represents the time (unit: minute), and the vertical axis represents the anode current value (unit: mA). As shown in Fig. 15, the current value decreases with time. The rate of change of the current value with respect to time has a tendency that the rate of change is highest at the beginning of the measurement (when the current application is started), and thereafter, the rate of change gradually decreases.
通过ICP-AES对从熔融盐中取出的样品进行组成分析。结果证实了钨在熔融盐中的溶解。Composition analysis of samples taken from the molten salt was performed by ICP-AES. The results confirmed the dissolution of tungsten in the molten salt.
关于电解(沉积)步骤:Regarding the electrolysis (deposition) step:
通过扫描电子显微镜(SEM)对阴极表面层的截面的观察显示:钨沉积在电极本体部的表面上,该电极本体部构成阴极并由玻璃碳形成。Observation of a section of the surface layer of the cathode by a scanning electron microscope (SEM) revealed that tungsten was deposited on the surface of the electrode body portion constituting the cathode and formed of glassy carbon.
这样,可以从含钨的硬质合金切削工具中得到高纯度的钨。In this way, high-purity tungsten can be obtained from tungsten-containing cemented carbide cutting tools.
[第三实施方案(实施例)][Third Embodiment (Example)]
将可商购的锂离子二次电池用作含锂处理对象物,并且通过熔融盐电解制造锂。A commercially available lithium ion secondary battery was used as a lithium-containing treatment object, and lithium was produced by molten salt electrolysis.
(样品)(sample)
可商购的锂离子二次电池(正极由钴酸锂形成并且负极由石墨形成,钴酸锂含量:质量%)。A commercially available lithium ion secondary battery (the positive electrode is formed of lithium cobaltate and the negative electrode is formed of graphite, lithium cobaltate content: mass %).
(锂电池正极材料的分离)(Separation of cathode materials for lithium batteries)
将锂离子二次电池浸没在电解液(5%NaCl)中并放电直到电压变为0.1mV。然后,通过手工拆卸将正极材料取出,并且用切割式研磨机研磨以得到平均粒径为0.1mm的正极材料粉末。该粉末的组成描述于表I中。分析结果证实,通过分离得到的粉末是钴酸锂。The lithium ion secondary battery was immersed in an electrolytic solution (5% NaCl) and discharged until the voltage became 0.1 mV. Then, the positive electrode material was taken out by manual disassembly, and ground with a cutting mill to obtain a positive electrode material powder with an average particle diameter of 0.1 mm. The composition of this powder is described in Table I. As a result of the analysis, it was confirmed that the powder obtained by separation was lithium cobalt oxide.
[表I][Table I]
将该粉末用钼(Mo)网(200目)包裹。如图14所示,将容纳于Mo网中的样品粉末用作阳极(阳电极)。The powder was wrapped with molybdenum (Mo) mesh (200 mesh). As shown in FIG. 14 , the sample powder accommodated in the Mo mesh was used as an anode (anode electrode).
(电解装置的准备)(Preparation of the electrolysis device)
采用NaCl-KCl共晶熔融盐作为熔融盐。此盐在700℃下加热可完全熔融。将上述阳极和阴极用电线连接并浸没在该熔融盐中。阴极(阴极电极)由碳形成。NaCl-KCl eutectic molten salt is used as the molten salt. This salt can be completely melted when heated at 700°C. The above-mentioned anode and cathode were connected with wires and immersed in the molten salt. The cathode (cathode electrode) is formed of carbon.
(电解溶解步骤)(Electrolytic dissolution step)
当将阳极和阴极如此浸没在熔融盐中时,将阳极维持在预定电位。经过预定时间后,将样品从熔融盐中取出并且通过ICP-AES对样品进行组成分析。When the anode and the cathode are thus immersed in the molten salt, the anode is maintained at a predetermined potential. After a predetermined time elapses, the sample is taken out from the molten salt and the sample is subjected to compositional analysis by ICP-AES.
所观察到的溶解步骤中阳极电流随时间的变化与第一实施方案(实施例)中相同(图15)。在图15中,横轴表示时间(单位:分钟),纵轴表示阳极电流值(单位:mA)。如图15所示,电流值随时间减小。电流值相对于时间的变化率呈以下趋势:在测量开始时(开始施加电流时)变化率最高,之后,该变化率逐渐降低。The observed change in anodic current with time in the dissolution step was the same as in the first embodiment (Example) ( FIG. 15 ). In FIG. 15 , the horizontal axis represents the time (unit: minute), and the vertical axis represents the anode current value (unit: mA). As shown in Fig. 15, the current value decreases with time. The rate of change of the current value with respect to time has a tendency that the rate of change is highest at the beginning of the measurement (when the current application is started), and thereafter, the rate of change gradually decreases.
通过ICP-AES对从熔融盐中取出的样品进行组成分析。结果证实了锂在熔融盐中的溶解。Composition analysis of samples taken from the molten salt was performed by ICP-AES. The results confirmed the dissolution of lithium in the molten salt.
(电解沉积步骤)(Electrowinning step)
溶解步骤后,将由玻璃碳形成的阴极和由玻璃碳形成的阳极浸没在熔融盐中。将阴极电位维持在预定电位。具体而言,这样维持电位以使锂在NaCl-KCl熔融盐中沉积。经过预定时间后,通过扫描电子显微镜(SEM)观察阴极表面层的截面。After the dissolving step, the cathode formed of glassy carbon and the anode formed of glassy carbon were immersed in molten salt. The cathode potential is maintained at a predetermined potential. Specifically, the potential is maintained such that lithium is deposited in the NaCl-KCl molten salt. After a predetermined time elapsed, the cross section of the surface layer of the cathode was observed by a scanning electron microscope (SEM).
观察显示了锂在电极本体部的表面上的沉积,其中该电极本体部构成了阴极并由玻璃碳形成。Observations showed deposition of lithium on the surface of the electrode body part constituting the cathode and formed of glassy carbon.
这样,可以从含锂的正极材料中回收锂。In this way, lithium can be recovered from lithium-containing cathode materials.
[第四实施方案(实施例)-1][Fourth Embodiment (Example)-1]
将钒铁合金用作含钒的金属材料并且通过熔融盐电解制造钒。Vanadium-iron alloy is used as a vanadium-containing metal material and vanadium is produced by molten salt electrolysis.
(样品)(sample)
作为处理对象物的钒铁合金含有75重量%的钒和25重量%的铁。用珠磨机或磨碎机研磨钒铁合金以使其粒径约为2mm。将研磨后的样品(钒铁合金)用钼(Mo)网(50目)包裹。如图14所示,将容纳于Mo网中的样品粉末(处理对象物)用作阳极(阳极电极)。(实验细节)The vanadium-iron alloy to be treated contains 75% by weight of vanadium and 25% by weight of iron. Grind the ferrovanadium with a bead mill or an attritor so that its particle size is about 2mm. The ground sample (vanadium-iron alloy) was wrapped with a molybdenum (Mo) mesh (50 mesh). As shown in FIG. 14 , the sample powder (object to be processed) accommodated in the Mo mesh was used as an anode (anode electrode). (experiment details)
采用NaCl-KCl共晶熔融盐作为熔融盐。此盐在700℃下加热可完全熔融。将上述阳极和阴极用电线连接并浸没在该熔融盐中。阴极由玻璃碳形成。NaCl-KCl eutectic molten salt is used as the molten salt. This salt can be completely melted when heated at 700°C. The above-mentioned anode and cathode were connected with wires and immersed in the molten salt. The cathode is formed of glassy carbon.
溶解步骤:Dissolving steps:
当将阳极和阴极如此浸没在熔融盐中时,将阳极维持在预定电位。此时,设置电位以使得铁不溶解而只选择性地使钒溶解。经过预定时间后,将样品从熔融盐中取出并且通过ICP-AES对样品进行组成分析。When the anode and the cathode are thus immersed in the molten salt, the anode is maintained at a predetermined potential. At this time, the potential is set so that iron does not dissolve and only vanadium is selectively dissolved. After a predetermined time elapses, the sample is taken out from the molten salt and the sample is subjected to compositional analysis by ICP-AES.
电解步骤:Electrolysis steps:
溶解步骤后,将由玻璃碳形成的阴极和由玻璃碳形成的阳极浸没在熔融盐中。将阴极电位维持在预定电位。具体而言,这样维持电位以使钒在NaCl-KCl熔融盐中沉积。经过预定时间后,观察阴极的表面状态。After the dissolving step, the cathode formed of glassy carbon and the anode formed of glassy carbon were immersed in molten salt. The cathode potential is maintained at a predetermined potential. Specifically, the potential is maintained such that vanadium is deposited in the NaCl-KCl molten salt. After a predetermined time elapsed, the surface state of the cathode was observed.
(结果)(result)
关于溶解步骤:Regarding the dissolution step:
所观察到的溶解步骤中阳极电流随时间的变化与第一实施方案(实施例)中相同(图15)。在图15中,横轴表示时间(单位:分钟),纵轴表示阳极电流值。如图15所示,电流值随时间减小。电流值相对于时间的变化率呈以下趋势:在测量开始时(开始施加电流时)变化率最高,之后,该变化率逐渐降低。The observed change in anodic current with time in the dissolution step was the same as in the first embodiment (Example) ( FIG. 15 ). In FIG. 15 , the horizontal axis represents time (unit: minute), and the vertical axis represents the anode current value. As shown in Fig. 15, the current value decreases with time. The rate of change of the current value with respect to time has a tendency that the rate of change is highest at the beginning of the measurement (when the current application is started), and thereafter, the rate of change gradually decreases.
通过ICP-AES对从熔融盐中取出的样品进行组成分析。结果证实了钒在熔融盐中的溶解。Composition analysis of samples taken from the molten salt was performed by ICP-AES. The results confirmed the dissolution of vanadium in the molten salt.
关于电解(沉积)步骤:Regarding the electrolysis (deposition) step:
通过扫描电子显微镜(SEM)对阴极表面层的截面的观察显示:钒沉积在电极本体部的表面上,其中该电极本体部构成为阴极并由玻璃碳形成。Observation of the cross-section of the cathode surface layer by a scanning electron microscope (SEM) revealed that vanadium was deposited on the surface of the electrode body part constituting the cathode and formed of glassy carbon.
这样,可以从含钒的钒铁合金中得到高纯度的钒。In this way, high-purity vanadium can be obtained from the vanadium-containing iron-vanadium alloy.
[第四实施方案(实施例)-2][Fourth Embodiment (Example)-2]
将Mo-Cu散热器用作含钼的金属材料并且通过熔融盐电解制造钼。A Mo-Cu heat sink is used as a molybdenum-containing metal material and molybdenum is produced by molten salt electrolysis.
(样品)(sample)
作为处理对象物的Mo-Cu散热器含有50重量%的钼和50重量%的铜。用珠磨机或磨碎机研磨该散热器以使其粒径约为2mm。将研磨后的样品(散热器)用铂(Pt)网(50目)包裹。将容纳于Pt网中的样品粉末(处理对象物)用作阳极(阳电极)。The Mo-Cu heat spreader which is the object to be processed contains 50% by weight of molybdenum and 50% by weight of copper. The radiator is ground with a bead mill or an attritor to have a particle size of about 2 mm. The ground sample (heat sink) was wrapped with a platinum (Pt) mesh (50 mesh). The sample powder (object to be processed) accommodated in the Pt mesh was used as an anode (anode electrode).
(实验细节)(experiment details)
采用LiCl-KCl共晶熔融盐作为熔融盐。此盐在450℃下加热可完全熔融。将上述阳极和阴极用电线连接并浸没在该熔融盐中。阴极由玻璃碳形成。A LiCl-KCl eutectic molten salt is used as the molten salt. This salt can be completely melted when heated at 450°C. The above-mentioned anode and cathode were connected with wires and immersed in the molten salt. The cathode is formed of glassy carbon.
溶解步骤:Dissolving steps:
当将阳极和阴极如此浸没在熔融盐中时,将阳极维持在预定电位。此时,这样设置电位以使得铜不溶解而只选择性地使钼溶解。经过预定时间后,将样品从熔融盐中取出并通过ICP-AES对样品进行组成分析。When the anode and the cathode are thus immersed in the molten salt, the anode is maintained at a predetermined potential. At this time, the potential is set such that copper is not dissolved and only molybdenum is selectively dissolved. After a predetermined time elapses, the sample is taken out from the molten salt and subjected to compositional analysis by ICP-AES.
电解步骤:Electrolysis steps:
溶解步骤后,将由玻璃碳形成的阴极和由玻璃碳形成的阳极浸没在熔融盐中。将阴极电位维持在预定电位。具体而言,这样维持电位以使钼在LiCl-KCl熔融盐中沉积。经过预定时间后,观察阴极的表面状态。After the dissolving step, the cathode formed of glassy carbon and the anode formed of glassy carbon were immersed in molten salt. The cathode potential is maintained at a predetermined potential. Specifically, the potential is maintained such that molybdenum is deposited in the LiCl-KCl molten salt. After a predetermined time elapsed, the surface state of the cathode was observed.
(结果)(result)
关于溶解步骤:Regarding the dissolution step:
所观察到的在溶解步骤中阳极电流值随时间的减小与上述钒的情况相同。电流值相对于时间的变化率呈以下趋势:在测量开始时(开始施加电流时)变化率最高,之后,该变化率逐渐降低。The observed decrease in the anodic current value over time during the dissolution step is the same as described above for vanadium. The rate of change of the current value with respect to time has a tendency that the rate of change is highest at the beginning of the measurement (when the current application is started), and thereafter, the rate of change gradually decreases.
通过ICP-AES对从熔融盐中取出的样品进行组成分析。结果证实了钼在熔融盐中的溶解。Composition analysis of samples taken from the molten salt was performed by ICP-AES. The results confirmed the dissolution of molybdenum in the molten salt.
关于电解(沉积)步骤:Regarding the electrolysis (deposition) step:
通过扫描电子显微镜(SEM)对阴极表面层截面的观察显示:钼沉积在电极本体部的表面上,其中该电极本体部构成为阴极并由玻璃碳形成。Observation of a section of the surface layer of the cathode by a scanning electron microscope (SEM) revealed that molybdenum was deposited on the surface of the electrode body portion constituting the cathode and formed of glassy carbon.
这样,可以从含钼的散热器中得到高纯度的钼。In this way, high-purity molybdenum can be obtained from molybdenum-containing radiators.
[第四实施方案(实施例)-3][Fourth Embodiment (Example)-3]
将氧化物超导材料用作含锶的金属材料并且通过熔融盐电解制造锶。An oxide superconducting material is used as a strontium-containing metal material and strontium is produced by molten salt electrolysis.
(样品)(sample)
作为处理对象物的氧化物超导材料含有17重量%的锶和8重量%的钙。用珠磨机或磨碎机研磨氧化物超导材料以使其粒径约为2mm。将研磨后的样品(氧化物超导材料)用铂(Pt)网(50目)包裹。将容纳于Pt网中的样品粉末(处理对象物)用作阳极(阳极电极)。The oxide superconducting material to be treated contained 17% by weight of strontium and 8% by weight of calcium. The oxide superconducting material is ground with a bead mill or an attritor so that its particle size is about 2 mm. The ground sample (oxide superconducting material) was wrapped with a platinum (Pt) mesh (50 mesh). The sample powder (object to be processed) accommodated in the Pt mesh was used as an anode (anode electrode).
(实验细节)(experiment details)
采用LiF-CaF2共晶熔融盐作为熔融盐。此盐在850℃下加热可完全熔融。将上述阳极和阴极用电线连接并浸没在该熔融盐中。阴极由玻璃碳形成。LiF-CaF2 eutectic molten salt is used as the molten salt. This salt can be completely melted when heated at 850°C. The above-mentioned anode and cathode were connected with wires and immersed in the molten salt. The cathode is formed of glassy carbon.
溶解步骤:Dissolving steps:
当将阳极和阴极如此浸没在熔融盐中时,将阳极维持在预定电位。此时,这样设置电位以使得仅选择性地使锶和钙溶解,而所含的其他元素不溶解。经过预定时间后,将样品从熔融盐中取出并通过ICP-AES对样品进行组成分析。When the anode and the cathode are thus immersed in the molten salt, the anode is maintained at a predetermined potential. At this time, the potential is set such that only strontium and calcium are selectively dissolved, and other contained elements are not dissolved. After a predetermined time elapses, the sample is taken out from the molten salt and subjected to compositional analysis by ICP-AES.
电解步骤:Electrolysis steps:
溶解步骤后,将由玻璃碳形成的阴极和由玻璃碳形成的阳极浸没在熔融盐中。将阴极电位维持在预定电位。具体而言,这样维持电位以使锶在LiF-CaF2熔融盐中沉积。经过预定时间后,观察阴极的表面状态。After the dissolving step, the cathode formed of glassy carbon and the anode formed of glassy carbon were immersed in molten salt. The cathode potential is maintained at a predetermined potential. Specifically, the potential is maintained such that strontium is deposited in the LiF-CaF2 molten salt. After a predetermined time elapsed, the surface state of the cathode was observed.
(结果)(result)
关于溶解步骤:Regarding the dissolution step:
所观察到的溶解步骤中阳极电流值随时间的减小与上述钒的情况相同。电流值相对于时间的变化率呈以下趋势:在测量开始时(开始施加电流时)变化率最高,之后,该变化率逐渐降低。The observed decrease in the anodic current value over time during the dissolution step is the same as described above for vanadium. The rate of change of the current value with respect to time has a tendency that the rate of change is highest at the beginning of the measurement (when the current application is started), and thereafter, the rate of change gradually decreases.
通过ICP-AES对从熔融盐中取出的样品进行组成分析。结果证实了锶在熔融盐中的溶解。Composition analysis of samples taken from the molten salt was performed by ICP-AES. The results confirmed the dissolution of strontium in the molten salt.
关于电解(沉积)步骤:Regarding the electrolysis (deposition) step:
通过扫描电子显微镜(SEM)对阴极表面层的截面的观察显示:锶沉积在电极本体部的表面上,该电极本体部构成为阴极并由玻璃碳形成。由于锶的熔点为768℃,因此锶为液态。当附着于电极本体上的锶的量变大时,由于相对于熔融盐的比重差,锶上浮到表面上。因此,在电极的上侧设置用于收集上浮至表面的锶的夹具。Observation of the cross-section of the cathode surface layer by a scanning electron microscope (SEM) revealed that strontium was deposited on the surface of the electrode body portion constituting the cathode and formed of glassy carbon. Since the melting point of strontium is 768°C, strontium is liquid. When the amount of strontium attached to the electrode body becomes large, the strontium floats up to the surface due to the difference in specific gravity with respect to the molten salt. Therefore, a jig for collecting strontium floating to the surface is provided on the upper side of the electrode.
这样,可以从含锶的氧化物超导材料中得到高纯度的锶。In this way, high-purity strontium can be obtained from the strontium-containing oxide superconducting material.
[第四实施方案(实施例)-4][Fourth Embodiment (Example)-4]
将光纤材料用作含锗的金属材料并且通过熔融盐电解制造锗。An optical fiber material is used as a germanium-containing metal material and germanium is produced by molten salt electrolysis.
(样品)(sample)
作为处理对象物的光纤材料含有3重量%的锗。用珠磨机或磨碎机研磨光纤材料以使其粒径约为2mm。将研磨后的样品(光纤材料)用铂(Pt)网(50目)包裹。将容纳于Pt网中的样品粉末(处理对象物)用作阳极(阳极电极)。The optical fiber material to be processed contains 3% by weight of germanium. The fiber material is ground with a bead mill or an attritor to have a particle size of about 2 mm. The polished sample (optical fiber material) was wrapped with a platinum (Pt) mesh (50 mesh). The sample powder (object to be processed) accommodated in the Pt mesh was used as an anode (anode electrode).
(实验细节)(experiment details)
采用LiF-CaF2共晶熔融盐作为熔融盐。此盐在850℃下加热可完全熔融。上述阳极和阴极用电线连接并浸没在该熔融盐中。阴极由玻璃碳形成。LiF-CaF2 eutectic molten salt is used as the molten salt. This salt can be completely melted when heated at 850°C. The above-mentioned anode and cathode are connected with wires and immersed in the molten salt. The cathode is formed of glassy carbon.
溶解步骤:Dissolving steps:
当将阳极和阴极如此浸没在熔融盐中时,将阳极维持在预定电位。此时,设置电位以使得仅选择性地使锗溶解,而所含的其他元素不溶解。经过预定时间后,将样品从熔融盐中取出并通过ICP-AES对样品进行组成分析。When the anode and the cathode are thus immersed in the molten salt, the anode is maintained at a predetermined potential. At this time, the potential is set so that only germanium is selectively dissolved and other contained elements are not dissolved. After a predetermined time elapses, the sample is taken out from the molten salt and subjected to compositional analysis by ICP-AES.
电解步骤:Electrolysis steps:
溶解步骤后,将由玻璃碳形成的阴极和由玻璃碳形成的阳极浸没在熔融盐中。将阴极电位维持在预定电位。具体而言,这样维持电位以使锗在LiF-CaF2熔融盐中沉积。经过预定时间后,观察阴极的表面状态。After the dissolving step, the cathode formed of glassy carbon and the anode formed of glassy carbon were immersed in molten salt. The cathode potential is maintained at a predetermined potential. Specifically, the potential is maintained such that germanium is deposited in the LiF-CaF2 molten salt. After a predetermined time elapsed, the surface state of the cathode was observed.
(结果)(result)
关于溶解步骤:Regarding the dissolution step:
所观察到的溶解步骤中的阳极电流随时间的减小与上述钒的情况相同。电流值相对于时间的变化率呈以下趋势:在测量开始时(开始施加电流时)变化率最高,之后,该变化率逐渐降低。The observed decrease in anodic current over time during the dissolution step is the same as for vanadium above. The rate of change of the current value with respect to time has a tendency that the rate of change is highest at the beginning of the measurement (when the current application is started), and thereafter, the rate of change gradually decreases.
通过ICP-AES对从熔融盐中取出的样品进行组成分析。结果证实了锗在熔融盐中的溶解。Composition analysis of samples taken from the molten salt was performed by ICP-AES. The results confirmed the dissolution of germanium in the molten salt.
关于电解(沉积)步骤:Regarding the electrolysis (deposition) step:
通过扫描电子显微镜(SEM)对阴极表面层的截面的观察显示:锗沉积在电极本体部的表面上,其中该电极本体部构成为阴极并由玻璃碳形成。Observation of the cross-section of the cathode surface layer by a scanning electron microscope (SEM) revealed that germanium was deposited on the surface of the electrode body portion constituting the cathode and formed of glassy carbon.
这样,可以从含锗的光纤材料中得到高纯度的锗。In this way, high-purity germanium can be obtained from the germanium-containing fiber material.
以上公开的实施方案和实施例在每个方面都是说明性的,并且应当理解为非限制性的。本发明的范围由权利要求书而不是由以上的说明来限定,并且意图包括在与权利要求书的含义和等同范围内的所有变型。The embodiments and examples disclosed above are illustrative in every respect and should be understood as non-restrictive. The scope of the present invention is defined by the claims rather than the above description, and is intended to include all modifications within the meaning and range equivalent to the claims.
工业实用性Industrial Applicability
本发明适用于从含有两种以上金属元素的处理对象物中获得高纯度的特定金属的方法。本发明还适用于从矿石或粗金属锭中获得所需金属的方法。本发明也适用于从含有钨和锂中至少一种的处理对象物中获得高纯度的钨的方法。The present invention is applicable to a method for obtaining a high-purity specific metal from an object to be processed containing two or more metal elements. The invention is also applicable to methods of obtaining desired metals from ores or crude metal ingots. The present invention is also applicable to a method for obtaining high-purity tungsten from an object to be processed containing at least one of tungsten and lithium.
参考符号列表List of reference symbols
1容器;2熔融盐;3处理对象物;4、24篮筐;5导线;6至8、15、27电极;9控制单元;10加热器;11DyNi2膜;12Pr膜;13Nd膜;16Dy膜;25电极材料;26合金;31电极本体部;32Dy-Ni合金;33、34区域1 container; 2 molten salt; 3 object to be processed; 4, 24 basket; 5 wire; 6 to 8, 15, 27 electrodes; 9 control unit; 10 heater; 11DyNi2 film; 12Pr film; 13Nd film; 25 electrode material; 26 alloy; 31 electrode body; 32Dy-Ni alloy; 33, 34 area
Claims (36)
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011242473 | 2011-11-04 | ||
JP2011242381 | 2011-11-04 | ||
JP2011-242381 | 2011-11-04 | ||
JP2011-242473 | 2011-11-04 | ||
JP2011-242457 | 2011-11-04 | ||
JP2011242457 | 2011-11-04 | ||
JP2011281477 | 2011-12-22 | ||
JP2011-281477 | 2011-12-22 | ||
PCT/JP2012/077223 WO2013065511A1 (en) | 2011-11-04 | 2012-10-22 | Molten salt electrolysis metal fabrication method and apparatus for use in same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103906861A true CN103906861A (en) | 2014-07-02 |
Family
ID=48191866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280054132.1A Pending CN103906861A (en) | 2011-11-04 | 2012-10-22 | Molten salt electrolysis metal fabrication method and apparatus for use in same |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140291161A1 (en) |
CN (1) | CN103906861A (en) |
WO (1) | WO2013065511A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106222703A (en) * | 2016-08-25 | 2016-12-14 | 北京工业大学 | Multistep selective electrolysis reclaims the method for metal in hard alloy scraps |
CN106435648A (en) * | 2016-10-13 | 2017-02-22 | 北京科技大学 | Method for preparing molybdenum through high temperature electrolysis fusion of molybdenum concentrate |
JP2017053016A (en) * | 2015-09-11 | 2017-03-16 | 住友電気工業株式会社 | Method for producing rare earth metal |
CN106544701A (en) * | 2016-10-11 | 2017-03-29 | 北京工业大学 | With the method for the metal in electrolysis of fluorides recovered WC waste material |
CN106574384A (en) * | 2014-08-20 | 2017-04-19 | 首尔大学校产学协力团 | Method for preparing titanium by using electrowinning |
CN107385484A (en) * | 2017-07-14 | 2017-11-24 | 南京信息工程大学 | A kind of method of single connection line tungsten electrodeposition coating |
CN109868489A (en) * | 2019-04-02 | 2019-06-11 | 柳州光华科技有限公司 | A kind of refinement of tin and recovery method |
CN110415842A (en) * | 2019-08-08 | 2019-11-05 | 中国核动力研究设计院 | A kind of Bath Heat-Transfer simulated behavior material, preparation method and applications |
CN111926188A (en) * | 2020-08-26 | 2020-11-13 | 中国华能集团清洁能源技术研究院有限公司 | System and method for recycling metal resources in waste SCR denitration catalyst |
CN114945692A (en) * | 2020-01-15 | 2022-08-26 | 丰田通商株式会社 | Metal removing method and metal recovering method |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5993374B2 (en) * | 2011-08-10 | 2016-09-14 | 住友電気工業株式会社 | Element recovery method |
JP6114651B2 (en) * | 2013-07-05 | 2017-04-12 | 株式会社東芝 | Metal separation and recovery method and metal separation and recovery system |
JP2015024347A (en) * | 2013-07-24 | 2015-02-05 | 株式会社東芝 | Recovery method of valuable metal contained in waste magnet, and recovery device therefor |
CN104018190B (en) * | 2014-06-17 | 2016-06-08 | 北京工业大学 | A kind of method that reclaims hard alloy scraps |
US9725788B2 (en) * | 2014-07-21 | 2017-08-08 | Iowa State University Research Foundation, Inc. | Recovering heavy rare earth metals from magnet scrap |
RU2576409C1 (en) * | 2014-10-31 | 2016-03-10 | Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук | Method of thin wall electrolytic production of lead |
US10323299B2 (en) * | 2015-07-15 | 2019-06-18 | Iowa State University Research Foundation, Inc. | Recovering rare earth metals from magnet scrap |
WO2017127950A1 (en) * | 2016-01-27 | 2017-08-03 | 王娜 | Molten salt chemical method for recovering waste hard alloy |
US10106902B1 (en) | 2016-03-22 | 2018-10-23 | Plasma Processes, Llc | Zirconium coating of a substrate |
US11434576B2 (en) * | 2016-12-08 | 2022-09-06 | Clean Resources Pte. Ltd | Recovery of gold and silver from precious metals-containing solids |
US10844501B2 (en) * | 2018-03-08 | 2020-11-24 | Uchicago Argonne, Llc | Carbon supported single atom carbon dioxide reduction electro catalysts |
US20200399772A1 (en) * | 2019-06-21 | 2020-12-24 | Xerion Advanced Battery Corp. | Methods for extracting lithium from spodumene |
CN110611136B (en) * | 2019-09-09 | 2022-10-21 | 华北理工大学 | A method for recovering and preparing cobalt element from waste lithium batteries by using molten salt method |
US11554363B2 (en) | 2020-09-01 | 2023-01-17 | Uchicago Argonne, Llc | Method of preparing electrocatalysts for converting carbon dioxide to chemicals |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4790917A (en) * | 1986-11-07 | 1988-12-13 | Alcan International Limited | Refining of lithium-containing aluminum scrap |
US5336378A (en) * | 1989-02-15 | 1994-08-09 | Japan Energy Corporation | Method and apparatus for producing a high-purity titanium |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3297554A (en) * | 1963-05-28 | 1967-01-10 | Timax Associates | Electrolytic production of tungsten and molybdenum |
JP2711476B2 (en) * | 1989-12-06 | 1998-02-10 | 株式会社 ジャパンエナジー | High purity titanium manufacturing equipment |
JPH06173064A (en) * | 1992-12-09 | 1994-06-21 | Japan Energy Corp | Method for purifying Ti |
US7482072B2 (en) * | 2002-07-09 | 2009-01-27 | Grintellectual Reserve, Llc | Optimizing reactions in fuel cells and electrochemical reactions |
US7410562B2 (en) * | 2003-08-20 | 2008-08-12 | Materials & Electrochemical Research Corp. | Thermal and electrochemical process for metal production |
JP4831594B2 (en) * | 2003-10-07 | 2011-12-07 | Jx日鉱日石金属株式会社 | Manufacturing method of high purity vanadium sputtering target |
JP4688796B2 (en) * | 2004-04-06 | 2011-05-25 | 株式会社イオックス | Method for producing fine particles by plasma-induced electrolysis |
US8097142B2 (en) * | 2008-02-29 | 2012-01-17 | Uchicago Argonne, Llc. | High-throughput electrorefiner for recovery of U and U/TRU product from spent fuel |
-
2012
- 2012-10-22 CN CN201280054132.1A patent/CN103906861A/en active Pending
- 2012-10-22 WO PCT/JP2012/077223 patent/WO2013065511A1/en active Application Filing
- 2012-10-22 US US14/355,943 patent/US20140291161A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4790917A (en) * | 1986-11-07 | 1988-12-13 | Alcan International Limited | Refining of lithium-containing aluminum scrap |
US5336378A (en) * | 1989-02-15 | 1994-08-09 | Japan Energy Corporation | Method and apparatus for producing a high-purity titanium |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10465306B2 (en) | 2014-08-20 | 2019-11-05 | Snu R&Db Foundation | Method for preparing titanium by using electrowinning |
CN106574384A (en) * | 2014-08-20 | 2017-04-19 | 首尔大学校产学协力团 | Method for preparing titanium by using electrowinning |
CN106574384B (en) * | 2014-08-20 | 2018-07-13 | 首尔大学校产学协力团 | The method for manufacturing titanium using strike |
JP2017053016A (en) * | 2015-09-11 | 2017-03-16 | 住友電気工業株式会社 | Method for producing rare earth metal |
CN106222703A (en) * | 2016-08-25 | 2016-12-14 | 北京工业大学 | Multistep selective electrolysis reclaims the method for metal in hard alloy scraps |
CN106544701A (en) * | 2016-10-11 | 2017-03-29 | 北京工业大学 | With the method for the metal in electrolysis of fluorides recovered WC waste material |
CN106544701B (en) * | 2016-10-11 | 2018-08-24 | 北京工业大学 | With the method for the metal in electrolysis of fluorides recovered WC waste material |
CN106435648A (en) * | 2016-10-13 | 2017-02-22 | 北京科技大学 | Method for preparing molybdenum through high temperature electrolysis fusion of molybdenum concentrate |
CN107385484A (en) * | 2017-07-14 | 2017-11-24 | 南京信息工程大学 | A kind of method of single connection line tungsten electrodeposition coating |
CN107385484B (en) * | 2017-07-14 | 2020-03-31 | 南京信息工程大学 | Method for electrodepositing tungsten coating on single connecting wire |
CN109868489A (en) * | 2019-04-02 | 2019-06-11 | 柳州光华科技有限公司 | A kind of refinement of tin and recovery method |
CN110415842A (en) * | 2019-08-08 | 2019-11-05 | 中国核动力研究设计院 | A kind of Bath Heat-Transfer simulated behavior material, preparation method and applications |
CN110415842B (en) * | 2019-08-08 | 2021-01-22 | 中国核动力研究设计院 | Molten pool heat transfer characteristic simulation material, preparation method and application thereof |
CN114945692A (en) * | 2020-01-15 | 2022-08-26 | 丰田通商株式会社 | Metal removing method and metal recovering method |
CN114945692B (en) * | 2020-01-15 | 2024-04-30 | 丰田通商株式会社 | Metal removal method and metal recovery method |
CN111926188A (en) * | 2020-08-26 | 2020-11-13 | 中国华能集团清洁能源技术研究院有限公司 | System and method for recycling metal resources in waste SCR denitration catalyst |
Also Published As
Publication number | Publication date |
---|---|
US20140291161A1 (en) | 2014-10-02 |
WO2013065511A1 (en) | 2013-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103906861A (en) | Molten salt electrolysis metal fabrication method and apparatus for use in same | |
AU2020259139B2 (en) | Process for the recovery of metals from a Li-containing starting material | |
CA3143966C (en) | Methods for extracting lithium from spodumene | |
Takeda et al. | Rare earth, titanium group metals, and reactive metals production | |
CN108138343B (en) | Metal refining method using electrolytic reduction and electrolytic refining process | |
Zhang et al. | Recycling and upcycling spent LIB cathodes: a comprehensive review | |
Hazotte et al. | Direct recovery of cadmium and nickel from Ni-Cd spent batteries by electroassisted leaching and electrodeposition in a single-cell process | |
JP5993374B2 (en) | Element recovery method | |
CA2703400C (en) | Production of tungsten and tungsten alloys from tungsten bearing compounds by electrochemical methods | |
KR101878652B1 (en) | Refining Method of Metal Using Integrated Electroreduction and Electrorefining process | |
JP2013117064A (en) | Method of producing tungsten by molten salt electrolysis, and device for use in the production method | |
JP2013147731A (en) | Molten salt electrolysis metal fabrication method | |
JP2013117063A (en) | Method of producing metal by molten salt electrolysis | |
Shamsuddin | Electrometallurgy | |
JP2013117065A (en) | Method of producing lithium by molten salt electrolysis, and device for use in the production method | |
KR102211986B1 (en) | Method for recovering metal from scrap | |
TWI873147B (en) | Methods for extracting lithium from spodumene | |
JP2002080988A (en) | Method of recovering mixed rare earth metal from scrap | |
Engmann | Low Temperature Electrolysis of Rare Earth Elements: Immobilization of Rare Earth Elements in Novel Cathodes | |
JP6518404B2 (en) | Method of melting scrap and method of metal recovery using this melting method | |
JP2018100452A (en) | Method for melting scrap and metal recovery method using this melting method | |
KR20190035329A (en) | Recovering method of rare earth metal from rare earth compound and apparatus for recovering the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140702 |