CN105897211A - Film bulk acoustic resonator having multiple resonance modes and preparation method thereof and filter - Google Patents
Film bulk acoustic resonator having multiple resonance modes and preparation method thereof and filter Download PDFInfo
- Publication number
- CN105897211A CN105897211A CN201610329169.0A CN201610329169A CN105897211A CN 105897211 A CN105897211 A CN 105897211A CN 201610329169 A CN201610329169 A CN 201610329169A CN 105897211 A CN105897211 A CN 105897211A
- Authority
- CN
- China
- Prior art keywords
- layer
- fbar
- piezoelectric
- cavity
- bulk acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims description 8
- 239000010408 film Substances 0.000 claims abstract description 42
- 239000010409 thin film Substances 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims 5
- 238000006243 chemical reaction Methods 0.000 claims 2
- 238000001259 photo etching Methods 0.000 claims 2
- 238000003475 lamination Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 52
- 238000000206 photolithography Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000010897 surface acoustic wave method Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- IGELFKKMDLGCJO-UHFFFAOYSA-N xenon difluoride Chemical compound F[Xe]F IGELFKKMDLGCJO-UHFFFAOYSA-N 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02086—Means for compensation or elimination of undesirable effects
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
- H03H9/56—Monolithic crystal filters
- H03H9/564—Monolithic crystal filters implemented with thin-film techniques
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
- H03H9/58—Multiple crystal filters
- H03H9/582—Multiple crystal filters implemented with thin-film techniques
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H2003/023—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
本发明公开了多谐振模式的薄膜体声波谐振器,依次包括硅衬底和压电堆叠结构,所述压电堆叠结构之间的空腔形成薄膜体声波谐振器的谐振腔;所述压电堆叠结构由下至上依次包括底电极、两层以上的压电薄膜、顶电极。本发明的薄膜体声波谐振器,具有多个谐振点,可通过级联、桥接等方式设计出多通带滤波器,大大减少无线终端上的FBAR滤波器数量。
The invention discloses a thin film bulk acoustic resonator with multi-resonant modes, which sequentially includes a silicon substrate and a piezoelectric stack structure, and the cavity between the piezoelectric stack structures forms a resonant cavity of the thin film bulk acoustic resonator; the piezoelectric The stacked structure includes a bottom electrode, more than two layers of piezoelectric films, and a top electrode in order from bottom to top. The film bulk acoustic resonator of the present invention has multiple resonance points, and multi-passband filters can be designed through cascading, bridging, etc., greatly reducing the number of FBAR filters on the wireless terminal.
Description
技术领域technical field
本发明涉及体声波谐振器,特别涉及一种多谐振模式的薄膜体声波谐振器及其制备方法和滤波器。The invention relates to a bulk acoustic wave resonator, in particular to a multi-resonance mode film bulk acoustic wave resonator, a preparation method thereof and a filter.
背景技术Background technique
微型化、集成化、高性能是无线终端对频率器件的要求。传统射频/微波频段频率器件的解决方案为介质滤波器和声表面波滤波器。前者具有较好的性能,但体积太大后者虽然体积小,但存在工作频率低、插入损耗大、功率容量低的缺点。薄膜体声波谐振器(film bulk acoustic resonator,FBAR)技术是目前唯一有望集成的射频滤波器技术,综合了介质滤波器性能优越和声表面波(surfaceacoustic wave,SAW)滤波器体积小的优势,同时克服了两者的缺点。它具有工作频率高、功率容量大、损耗低、体积小、温度稳定性好以及可与射频集成电路(radio frequency integrated circuit,RFIC)或微波单片电路(microwave monolithicintegrated circuit,MMIC)集成的优点。Miniaturization, integration, and high performance are the requirements of wireless terminals for frequency devices. The solutions for traditional RF/microwave frequency devices are dielectric filters and surface acoustic wave filters. The former has better performance, but the size is too large. Although the latter is small in size, it has the disadvantages of low operating frequency, large insertion loss, and low power capacity. Film bulk acoustic resonator (FBAR) technology is currently the only RF filter technology that is expected to be integrated. It combines the superior performance of dielectric filters and the small size of surface acoustic wave (SAW) filters. At the same time Overcome the shortcomings of both. It has the advantages of high operating frequency, large power capacity, low loss, small size, good temperature stability, and can be integrated with radio frequency integrated circuit (RFIC) or microwave monolithic integrated circuit (MMIC).
薄膜体声波谐振器采用金属电极-压电薄膜-金属电极的三明治结构,其工作原理为:当在两电极上施加一交变电压时,在压电薄膜内会形成交变电场,压电薄膜由于逆压电效应而发生机械形变,压电薄膜随着所施加电场的变化而膨胀或收缩,从而产生振荡,将电信号转换为声信号。这时在薄膜内会激励出沿薄膜厚度方向传播的体声波,并在两电极之间来回反射,当体声波在压电薄膜中的传播距离正好是半波长的奇数倍时就会产生谐振。其中谐振频率处的声波损耗最小,使得该频率的声信号能通过压电薄膜层,而其他不满足谐振条件的声信号就会衰减,与谐振频率相差越远的声信号衰减得越快。单个薄膜体声波谐振器只是在某个频点产生谐振,不能称之为滤波器。将多个薄膜体声波谐振器通过某种方式级联、桥接或耦合在一起就可以构成满足一定需求的带通滤波器,其中级联方式最为常用。The film bulk acoustic resonator adopts the sandwich structure of metal electrode-piezoelectric film-metal electrode. Its working principle is: when an alternating voltage is applied to the two electrodes, an alternating electric field will be formed in the piezoelectric film, and the piezoelectric film will Mechanically deformed due to the inverse piezoelectric effect, the piezoelectric film expands or contracts in response to changes in the applied electric field, creating oscillations that convert electrical signals into acoustic signals. At this time, the bulk acoustic wave propagating along the thickness direction of the film will be excited in the film and reflected back and forth between the two electrodes. When the propagation distance of the bulk acoustic wave in the piezoelectric film is exactly an odd multiple of the half wavelength, resonance will occur. Among them, the acoustic wave loss at the resonant frequency is the smallest, so that the acoustic signal at this frequency can pass through the piezoelectric film layer, while other acoustic signals that do not meet the resonance conditions will attenuate, and the farther the difference from the resonant frequency, the faster the attenuation of the acoustic signal. A single thin-film bulk acoustic resonator only resonates at a certain frequency point and cannot be called a filter. By cascading, bridging or coupling multiple thin film bulk acoustic resonators together in a certain way, a bandpass filter meeting certain requirements can be formed, among which the cascading method is the most commonly used.
当今的无线移动产品除了对体积省电要求越来越高之外,更朝着多功能,多频段,多系统,多协议的融合与集成的方向发展。通常情况下,每一个滤波器具有一个特定的通带频率响应特性。有时系统可能需要同时处理两个或多个不同频率范围内的信号。目前的方法需要将多个滤波器进行并联来实现多个频率通带滤波功能。理论上,将多个滤波器并联在一起可获得单个滤波器特性相加的多通带综合特性。在使用FBAR滤波器的情况下,因为FBAR滤波器的指标与外接电路的阻抗特性相关,多个滤波器的并联增加了滤波器外接阻抗的复杂性,使得综合特性变差,整机调试困难。此外,实现多个频率通带滤波功能需要多个FBAR带通滤波器,这必然不利于射频前端向微型化、集成化方向的发展。Today's wireless mobile products not only have higher and higher requirements for volume and power saving, but also develop in the direction of multi-function, multi-band, multi-system, and multi-protocol fusion and integration. Typically, each filter has a specific passband frequency response characteristic. Sometimes a system may need to process signals in two or more different frequency ranges simultaneously. The current method needs to connect multiple filters in parallel to realize multiple frequency passband filtering functions. In theory, multiple filters can be connected in parallel to obtain the multi-passband synthesis characteristics of the sum of the characteristics of a single filter. In the case of using an FBAR filter, because the index of the FBAR filter is related to the impedance characteristics of the external circuit, the parallel connection of multiple filters increases the complexity of the external impedance of the filter, making the overall characteristics worse and making it difficult to debug the whole machine. In addition, multiple FBAR bandpass filters are required to realize multiple frequency passband filtering functions, which is bound to be detrimental to the development of the RF front-end in the direction of miniaturization and integration.
发明内容Contents of the invention
为了克服现有技术的上述缺点与不足,本发明的目的之一在于提供一种多谐振模式的薄膜体声波谐振器,具有多个谐振点,可通过级联、桥接等方式设计出多通带滤波器,大大减少无线终端上的FBAR滤波器数量。In order to overcome the above-mentioned shortcomings and deficiencies of the prior art, one of the purposes of the present invention is to provide a multi-resonant mode film bulk acoustic resonator, which has multiple resonance points and can be designed with multiple passbands by cascading, bridging, etc. filter, greatly reducing the number of FBAR filters on the wireless terminal.
本发明的目的之二在于提供上述多谐振模式的薄膜体声波谐振器的制备方法。The second object of the present invention is to provide a method for preparing the above multi-resonance mode film bulk acoustic resonator.
本发明的目的之三在于提供一种滤波器。The third object of the present invention is to provide a filter.
本发明的目的通过以下技术方案实现:The object of the present invention is achieved through the following technical solutions:
多谐振模式的薄膜体声波谐振器,依次包括硅衬底和压电堆叠结构,所述压电堆叠结构之间的空腔形成薄膜体声波谐振器的谐振腔;所述压电堆叠结构由下至上依次包括底电极、两层以上的压电薄膜、顶电极;各层压电薄膜的面积不同。The thin film bulk acoustic resonator of multi-resonance mode comprises a silicon substrate and a piezoelectric stack structure in turn, and the cavity between the piezoelectric stack structures forms a resonant cavity of the thin film bulk acoustic resonator; the piezoelectric stack structure consists of the following The top includes bottom electrodes, more than two layers of piezoelectric films, and top electrodes in sequence; the areas of the piezoelectric films of each layer are different.
所述空腔为上凸或下凹的空腔。The cavity is convex or concave.
当所述空腔为上凸的空腔时,所述压电堆叠结构还包括位于底电极之下的支撑层,所述支撑层与硅衬底之间的空腔形成薄膜体声波谐振器的谐振腔。When the cavity is an upwardly convex cavity, the piezoelectric stack structure further includes a support layer located under the bottom electrode, and the cavity between the support layer and the silicon substrate forms a bulk acoustic wave resonator. resonant cavity.
所述压电薄膜为C轴择优取向的AlN压电薄膜。The piezoelectric thin film is an AlN piezoelectric thin film with C-axis preferential orientation.
所述的多谐振模式的薄膜体声波谐振器的制备方法,包括以下步骤:The preparation method of the thin film bulk acoustic resonator of described multi-resonant mode, comprises the following steps:
(1)利用刻蚀技术在硅衬底的顶表面制备一个凹槽;(1) Utilize etching technique to prepare a groove on the top surface of silicon substrate;
(2)在凹槽中填满牺牲层材料;(2) filling the sacrificial layer material in the groove;
(3)在牺牲层材料之上沉积一层金属底电极,并进行图形化;(3) Depositing a layer of metal bottom electrode on the sacrificial layer material and patterning it;
(4)采用射频磁控溅射沉积一层压电膜,对压电膜进行光刻、ICP刻蚀,得到多层压电薄膜,每层压电薄膜的面积不同;(4) Deposit a layer of piezoelectric film by radio frequency magnetron sputtering, and carry out photolithography and ICP etching to the piezoelectric film to obtain a multilayer piezoelectric film, the area of each layer of piezoelectric film is different;
(5)在压电薄膜之上沉积一层金属顶电极,并进行图像化;所述底电极、多层压电薄膜、顶电极形成压电堆叠结构;(5) Deposit a layer of metal top electrode on the piezoelectric film and image it; the bottom electrode, multi-layer piezoelectric film and top electrode form a piezoelectric stack structure;
(6)在压电堆叠结构上刻蚀出牺牲层释放通孔,通过牺牲层释放通孔释放牺牲层,得到多谐振模式的薄膜体声波谐振器。(6) A sacrificial layer release via hole is etched on the piezoelectric stack structure, and the sacrificial layer is released through the sacrificial layer release via hole to obtain a thin film bulk acoustic resonator with multiple resonant modes.
所述的多谐振模式的薄膜体声波谐振器的制备方法,包括以下步骤:The preparation method of the thin film bulk acoustic resonator of described multi-resonant mode, comprises the following steps:
(1)在硅衬底沉积一层牺牲层,并刻蚀形成牺牲层凸起;(1) Deposit a sacrificial layer on the silicon substrate, and etch to form sacrificial layer protrusions;
(2)在牺牲层之上制备一层支撑层;(2) preparing a support layer on the sacrificial layer;
(3)在支撑层之上沉积一层金属底电极,并进行图形化;(3) Depositing a layer of metal bottom electrode on the support layer and patterning it;
(4)采用射频磁控溅射沉积一层压电膜,通过光刻、ICP刻蚀出多层压电薄膜;(4) A layer of piezoelectric film is deposited by radio frequency magnetron sputtering, and a multilayer piezoelectric film is etched by photolithography and ICP;
(5)在压电薄膜之上沉积一层金属顶电极,并进行图像化;所述支撑层、底电极、多层压电薄膜、顶电极形成压电堆叠结构;(5) Deposit a layer of metal top electrode on the piezoelectric film and image it; the support layer, bottom electrode, multilayer piezoelectric film and top electrode form a piezoelectric stack structure;
(6)在压电堆叠结构上刻蚀出牺牲层释放通孔,通过牺牲层释放通孔释放牺牲层,得到多谐振模式的薄膜体声波谐振器。(6) A sacrificial layer release via hole is etched on the piezoelectric stack structure, and the sacrificial layer is released through the sacrificial layer release via hole to obtain a thin film bulk acoustic resonator with multiple resonant modes.
滤波器,包含所述的多谐振模式的薄膜体声波谐振器。The filter includes the film bulk acoustic wave resonator with multiple resonance modes.
与现有技术相比,本发明具有以下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
(1)本发明的薄膜体声波谐振器,单个薄膜体声波谐振器可具有多个谐振点,从而大大减少了制备多通带滤波器所需的薄膜体声波谐振器数量,有利于射频前端微型化的发展。(1) In the thin film bulk acoustic resonator of the present invention, a single thin film bulk acoustic resonator can have multiple resonance points, thereby greatly reducing the number of thin film bulk acoustic resonators required for preparing a multi-passband filter, which is beneficial to the radio frequency front-end miniature development of culture.
(2)本发明的薄膜体声波谐振器的制备方法,与常规的CMOS生产工艺兼容,降低了实际制作难度,有利于射频前端的集成化。(2) The preparation method of the thin film bulk acoustic resonator of the present invention is compatible with the conventional CMOS production process, reduces the difficulty of actual production, and is beneficial to the integration of the radio frequency front end.
(3)使用本发明提出的薄膜体声波谐振器设计滤波器时,能降低外接阻抗的复杂性,方便整机调试。(3) When using the thin film bulk acoustic resonator proposed by the present invention to design a filter, the complexity of the external impedance can be reduced and the debugging of the whole machine can be facilitated.
附图说明Description of drawings
图1为本发明的实施例1的多谐振模式的薄膜体声波谐振器的剖视图。FIG. 1 is a cross-sectional view of a multi-resonance mode thin-film bulk acoustic resonator according to Embodiment 1 of the present invention.
图2为本发明的实施例1的多谐振模式的薄膜体声波谐振器的电学阻抗幅频特性图。FIG. 2 is a diagram of the electrical impedance amplitude-frequency characteristics of the multi-resonance mode thin-film bulk acoustic resonator according to Embodiment 1 of the present invention.
图3为本发明的实施例2的多谐振模式的薄膜体声波谐振器的光刻、刻蚀牺牲层后的剖视图。3 is a cross-sectional view of the multi-resonance mode thin-film bulk acoustic resonator according to Embodiment 2 of the present invention after photolithography and sacrificial layer etching.
图4为本发明的实施例2的多谐振模式的薄膜体声波谐振器的剖视图。4 is a cross-sectional view of a multi-resonance mode thin-film bulk acoustic resonator according to Example 2 of the present invention.
图5本发明的实施例2的多谐振模式的薄膜体声波谐振器的电学阻抗幅频特性图。FIG. 5 is a diagram of amplitude-frequency characteristics of electrical impedance of the multi-resonance mode thin-film bulk acoustic resonator of Embodiment 2 of the present invention.
具体实施方式detailed description
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。The present invention will be described in further detail below in conjunction with the examples, but the embodiments of the present invention are not limited thereto.
实施例1Example 1
本实施例的多谐振模式的薄膜体声波谐振器,通过以下制备方法制备:The thin film bulk acoustic resonator of the multi-resonance mode of this embodiment is prepared by the following preparation method:
1、在硅衬底1表面刻蚀一个凹槽,槽深30μm,然后PECVD沉积Si3N4衬底保护层2,厚度为200nm,以保护硅衬底。如图1所示。1. Etching a groove on the surface of the silicon substrate 1 with a depth of 30 μm, and then depositing a Si 3 N 4 substrate protective layer 2 with a thickness of 200 nm by PECVD to protect the silicon substrate. As shown in Figure 1.
2、在Si3N4之上PECVD沉积一层PSG(磷石英玻璃)作为牺牲层。2. A layer of PSG (phosphorus quartz glass) is deposited by PECVD on Si 3 N 4 as a sacrificial layer.
3、通过CMP工艺对牺牲层进行表面抛光。3. The surface of the sacrificial layer is polished by a CMP process.
4、在抛光后的表面通过直流磁控溅射沉积一层Mo底电极4,厚度为200nm,并通过光刻进行图形化。4. A layer of Mo bottom electrode 4 with a thickness of 200 nm is deposited on the polished surface by DC magnetron sputtering, and patterned by photolithography.
5、采用射频磁控溅射沉积C轴择优取向AlN压电膜。并通过光刻、ICP刻蚀出多叠层结构。本实施例为3层AlN压电薄膜,AlN压电薄膜的面积大小由下至上依次递减;各层厚度自下而上分别为1μm、0.5μm、0.3μm。5. Using radio frequency magnetron sputtering to deposit C-axis preferred orientation AlN piezoelectric film. And a multi-layer structure is etched by photolithography and ICP. This embodiment is a 3-layer AlN piezoelectric film, and the area size of the AlN piezoelectric film decreases sequentially from bottom to top; the thickness of each layer is 1 μm, 0.5 μm, and 0.3 μm from bottom to top.
6、通过光刻、电子束蒸发图形化一层厚度为100nm厚的Mo顶电极6;所述底电极4、多层压电薄膜5、顶电极6形成压电堆叠结构。6. Pattern a layer of Mo top electrode 6 with a thickness of 100 nm by photolithography and electron beam evaporation; the bottom electrode 4 , multi-layer piezoelectric film 5 and top electrode 6 form a piezoelectric stack structure.
7、在压电堆叠结构上刻蚀出牺牲层释放通孔,用XeF2(氟化氙)气体通过牺牲层释放通孔,获得空腔3。最终得到多谐振模式的薄膜体声波谐振器,如图1所示。7. Etch a sacrificial layer release hole on the piezoelectric stack structure, and use XeF 2 (xenon fluoride) gas to pass through the sacrificial layer release hole to obtain a cavity 3 . Finally, a film bulk acoustic resonator with multiple resonance modes is obtained, as shown in Fig. 1 .
图2为本实施例制备的薄膜体声波谐振器电学阻抗幅频特性图。由图可知,该谐振器在1.9GHz,2.2GHz,2.8GHz附近均产生了谐振。FIG. 2 is a diagram of the amplitude-frequency characteristics of the electrical impedance of the thin film bulk acoustic resonator prepared in this embodiment. It can be seen from the figure that the resonator resonates around 1.9GHz, 2.2GHz, and 2.8GHz.
本实施例的滤波器,包括本实施例的薄膜体声波谐振器。由两个串联薄膜体声波谐振器及一个并联薄膜体声波谐振器级联成梯形拓扑结构。其中,并联薄膜体声波谐振器的顶电极厚度比串联薄膜体声波谐振器厚10nm。从而构成一个三通带滤波器。The filter of this embodiment includes the thin film bulk acoustic resonator of this embodiment. Two serial thin film bulk acoustic resonators and one parallel thin film bulk acoustic resonator are cascaded into a trapezoidal topology. Wherein, the thickness of the top electrode of the parallel thin film bulk acoustic resonator is 10nm thicker than that of the series thin film bulk acoustic resonator. Thus forming a three-pass band filter.
实施例2Example 2
1、在硅衬底1表面PECVD沉积一层PSG(磷石英玻璃)作为牺牲层7,并光刻出牺牲层图形。如图3所示。1. A layer of PSG (phosphorus quartz glass) is deposited by PECVD on the surface of the silicon substrate 1 as the sacrificial layer 7, and a pattern of the sacrificial layer is photoetched. As shown in Figure 3.
2、用PECVD沉积一层Si3N4支撑层8,厚度为300nm。2. A layer of Si 3 N 4 supporting layer 8 is deposited by PECVD with a thickness of 300 nm.
3、通过光刻、磁控溅射图形化一层厚度为150nm厚的Mo底电极4。3. A layer of Mo bottom electrode 4 with a thickness of 150 nm is patterned by photolithography and magnetron sputtering.
4、采用射频磁控溅射沉积C轴择优取向AlN压电膜。并通过光刻、ICP刻蚀出多叠层结构。本实施例为3层AlN压电薄膜,AlN压电薄膜的面积大小由下至上依次递减;各层厚度自下而上分别为2μm、0.8μm、0.5μm。4. Using radio frequency magnetron sputtering to deposit C-axis preferred orientation AlN piezoelectric film. And a multi-layer structure is etched by photolithography and ICP. This embodiment is a three-layer AlN piezoelectric film, and the area size of the AlN piezoelectric film decreases successively from bottom to top; the thickness of each layer is 2 μm, 0.8 μm, and 0.5 μm from bottom to top.
5、通过光刻、电子束蒸发图形化一层厚度为150nm厚的Mo顶电极6。所述支撑层8、底电极4、多层压电薄膜5、顶电极6形成压电堆叠结构。5. A layer of Mo top electrode 6 with a thickness of 150 nm is patterned by photolithography and electron beam evaporation. The support layer 8 , the bottom electrode 4 , the multilayer piezoelectric film 5 and the top electrode 6 form a piezoelectric stack structure.
6、刻蚀出牺牲层释放通孔,用XeF2(氟化氙)气体通过牺牲层释放通孔,获得空腔3。最终得到多谐振模式的薄膜体声波谐振器,如图4所示。6. Etch the sacrificial layer release via hole, and use XeF 2 (xenon fluoride) gas to pass through the sacrificial layer release via hole to obtain the cavity 3 . Finally, a film bulk acoustic resonator with multiple resonance modes is obtained, as shown in Fig. 4 .
如图5所示,本实施例制备的薄膜体声波谐振器电学阻抗幅频特性图。由图可知,该谐振器在1.12GHz,1.25GHz,1.55GHz附近均产生了谐振。As shown in FIG. 5 , the electrical impedance amplitude-frequency characteristic diagram of the film bulk acoustic resonator prepared in this embodiment. It can be seen from the figure that the resonator resonates around 1.12GHz, 1.25GHz, and 1.55GHz.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the embodiment, and any other changes, modifications, substitutions and combinations made without departing from the spirit and principle of the present invention , simplification, all should be equivalent replacement methods, and are all included in the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610329169.0A CN105897211B (en) | 2016-05-18 | 2016-05-18 | Film bulk acoustic resonator with multiple resonant modes, preparation method thereof and filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610329169.0A CN105897211B (en) | 2016-05-18 | 2016-05-18 | Film bulk acoustic resonator with multiple resonant modes, preparation method thereof and filter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105897211A true CN105897211A (en) | 2016-08-24 |
CN105897211B CN105897211B (en) | 2020-01-14 |
Family
ID=56716303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610329169.0A Active CN105897211B (en) | 2016-05-18 | 2016-05-18 | Film bulk acoustic resonator with multiple resonant modes, preparation method thereof and filter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105897211B (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107026627A (en) * | 2016-12-12 | 2017-08-08 | 佛山市艾佛光通科技有限公司 | Orthogonal array nano-pillar FBAR and preparation method thereof and wave filter |
CN107196618A (en) * | 2017-02-16 | 2017-09-22 | 杭州左蓝微电子技术有限公司 | FBAR and preparation method thereof |
CN107332561A (en) * | 2017-07-18 | 2017-11-07 | 上海示方科技有限公司 | A kind of signal inquires after device, Hydrogen Atom Frequency Standard |
CN107342768A (en) * | 2017-07-18 | 2017-11-10 | 上海示方科技有限公司 | A kind of Hydrogen Atom Frequency Standard |
CN108259017A (en) * | 2017-03-24 | 2018-07-06 | 珠海晶讯聚震科技有限公司 | The manufacturing method of rf-resonator and wave filter |
CN108259020A (en) * | 2017-03-24 | 2018-07-06 | 珠海晶讯聚震科技有限公司 | The method for manufacturing rf-resonator and wave filter |
CN108512520A (en) * | 2018-02-27 | 2018-09-07 | 贵州中科汉天下微电子有限公司 | The monolithic integrated structure and its manufacturing method of bulk acoustic wave resonator and capacitor, filter, duplexer and radio-frequency communication module |
CN108631748A (en) * | 2017-03-23 | 2018-10-09 | 三星电机株式会社 | Acoustic resonator and filter including the same |
CN109474255A (en) * | 2018-11-14 | 2019-03-15 | 开元通信技术(厦门)有限公司 | Thin film bulk acoustic wave resonator and preparation method thereof, filter |
CN109561876A (en) * | 2018-10-24 | 2019-04-02 | 深圳市汇顶科技股份有限公司 | Ultrasonic transducer and its manufacturing method |
CN109905098A (en) * | 2019-03-11 | 2019-06-18 | 重庆邮电大学 | Film bulk acoustic resonator and preparation method thereof |
CN110224685A (en) * | 2019-05-13 | 2019-09-10 | 电子科技大学 | A kind of monocrystal thin films bulk accoustic wave filter and its fine machining method |
CN110829998A (en) * | 2018-08-09 | 2020-02-21 | 三星电机株式会社 | Bulk acoustic wave resonator |
CN110896302A (en) * | 2018-09-12 | 2020-03-20 | 天工全球私人有限公司 | Recessed Frame Structures for Bulk Acoustic Wave Resonators |
CN111030628A (en) * | 2019-11-25 | 2020-04-17 | 南方科技大学 | A kind of preparation method of bulk acoustic wave resonator |
WO2020097829A1 (en) * | 2018-11-14 | 2020-05-22 | 开元通信技术(厦门)有限公司 | Film bulk acoustic wave resonator and manufacturing method therefor, and filter |
CN111430318A (en) * | 2020-04-10 | 2020-07-17 | 昆山鸿永微波科技有限公司 | Low-loss silicon-based filter chip for improving reuse rate and manufacturing method thereof |
WO2020176766A1 (en) * | 2019-02-28 | 2020-09-03 | Exo Imaging, Inc. | High density multi-poled thin film piezoelectric devices and methods of making the same |
CN111682101A (en) * | 2020-05-20 | 2020-09-18 | 华南理工大学 | A kind of manufacturing method of flexible FBAR filter |
CN112543010A (en) * | 2020-12-24 | 2021-03-23 | 华南理工大学 | Frequency-adjustable film bulk acoustic resonator and preparation method thereof |
CN112582780A (en) * | 2020-11-18 | 2021-03-30 | 电子科技大学 | Bulk acoustic wave magnetoelectric array antenna and preparation method thereof |
WO2021114556A1 (en) * | 2019-12-09 | 2021-06-17 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator having gap layer on electrode and manufacturing method therefor, filter, and electronic device |
CN113612463A (en) * | 2021-06-30 | 2021-11-05 | 中国电子科技集团公司第十三研究所 | Step type film bulk acoustic resonator filter and filter assembly |
CN113644893A (en) * | 2021-06-30 | 2021-11-12 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave filter and filter assembly |
CN113972901A (en) * | 2020-07-24 | 2022-01-25 | 华为技术有限公司 | A filter and method of making the same |
CN113992183A (en) * | 2021-11-02 | 2022-01-28 | 清华大学 | A bulk acoustic wave resonator |
CN114006594A (en) * | 2021-11-02 | 2022-02-01 | 清华大学 | A kind of bulk acoustic wave resonator and preparation method thereof |
CN114128139A (en) * | 2019-09-05 | 2022-03-01 | 常州承芯半导体有限公司 | A bulk acoustic wave resonance device and a bulk acoustic wave filter |
CN114303318A (en) * | 2019-09-05 | 2022-04-08 | 常州承芯半导体有限公司 | A bulk acoustic wave resonance device and a bulk acoustic wave filter |
CN114531126A (en) * | 2021-12-31 | 2022-05-24 | 河源市艾佛光通科技有限公司 | Preparation method of broadband film bulk acoustic resonator |
WO2023125757A1 (en) * | 2021-12-31 | 2023-07-06 | 河源市艾佛光通科技有限公司 | High-bandwidth cavity type film bulk acoustic resonator and preparation method therefor |
WO2023143005A1 (en) * | 2022-01-27 | 2023-08-03 | 河源市艾佛光通科技有限公司 | High-bandwidth silicon back face etching type film bulk acoustic resonator, and preparation method therefor |
CN117478100A (en) * | 2023-12-25 | 2024-01-30 | 深圳新声半导体有限公司 | Multiplexer with resonant cavity acoustic wave filter and preparation method thereof |
CN117639713A (en) * | 2023-02-02 | 2024-03-01 | 北京芯溪半导体科技有限公司 | Bulk acoustic wave resonator, method of manufacturing the same, filter, and electronic apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1736034A (en) * | 2002-11-12 | 2006-02-15 | 诺基亚有限公司 | Transceiver without Crystal Oscillator |
CN101465628A (en) * | 2009-01-15 | 2009-06-24 | 电子科技大学 | A kind of film bulk acoustic resonator and its preparation method |
CN102946236A (en) * | 2012-10-22 | 2013-02-27 | 华中科技大学 | Adjustable film bulk acoustic wave resonator and preparation method thereof |
US20130271238A1 (en) * | 2012-04-13 | 2013-10-17 | Taiyo Yuden Co., Ltd. | Filter device, manufacturing method for filter device, and duplexer |
CN204392205U (en) * | 2015-01-30 | 2015-06-10 | 国家电网公司 | A kind of multi-layer piezoelectric thin film bulk acoustic resonator for wireless communication system |
CN205657657U (en) * | 2016-05-18 | 2016-10-19 | 华南理工大学 | Film bulk acoustic wave syntonizer and wave filter of many mode of resonances |
-
2016
- 2016-05-18 CN CN201610329169.0A patent/CN105897211B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1736034A (en) * | 2002-11-12 | 2006-02-15 | 诺基亚有限公司 | Transceiver without Crystal Oscillator |
CN101465628A (en) * | 2009-01-15 | 2009-06-24 | 电子科技大学 | A kind of film bulk acoustic resonator and its preparation method |
US20130271238A1 (en) * | 2012-04-13 | 2013-10-17 | Taiyo Yuden Co., Ltd. | Filter device, manufacturing method for filter device, and duplexer |
CN102946236A (en) * | 2012-10-22 | 2013-02-27 | 华中科技大学 | Adjustable film bulk acoustic wave resonator and preparation method thereof |
CN204392205U (en) * | 2015-01-30 | 2015-06-10 | 国家电网公司 | A kind of multi-layer piezoelectric thin film bulk acoustic resonator for wireless communication system |
CN205657657U (en) * | 2016-05-18 | 2016-10-19 | 华南理工大学 | Film bulk acoustic wave syntonizer and wave filter of many mode of resonances |
Non-Patent Citations (3)
Title |
---|
A.VOROBIEV ET AL: "Intrinsically switchable bulk acoustic wave resonators based on paraelectric films", 《PROCEEDINGS OF THE 44TH EUROPEAN MICROWAVE CONFERENCE》 * |
ANDREI VOROBIEV ET AL: "Composite Ferroelectric FBARs That Are Switchable Between the First and Second Harmonics: Experimental Demonstration", 《IEEE TRANSACTIONS ON ULTRASONICS,FERROELECTRICS,AND FREQUENCY CONTROL》 * |
韩东等: "Si基薄膜体声波谐振器技术研究", 《半导体先进制造技术》 * |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107026627A (en) * | 2016-12-12 | 2017-08-08 | 佛山市艾佛光通科技有限公司 | Orthogonal array nano-pillar FBAR and preparation method thereof and wave filter |
CN107196618A (en) * | 2017-02-16 | 2017-09-22 | 杭州左蓝微电子技术有限公司 | FBAR and preparation method thereof |
US11323088B2 (en) | 2017-03-23 | 2022-05-03 | Samsung Electro-Mechanics Co., Ltd. | Acoustic wave resonator |
US11595015B2 (en) | 2017-03-23 | 2023-02-28 | Samsung Electro-Mechanics Co., Ltd. | Acoustic wave resonator |
CN108631748A (en) * | 2017-03-23 | 2018-10-09 | 三星电机株式会社 | Acoustic resonator and filter including the same |
CN108631748B (en) * | 2017-03-23 | 2022-03-15 | 三星电机株式会社 | Acoustic resonator and filter including the same |
CN108259017B (en) * | 2017-03-24 | 2021-03-23 | 珠海晶讯聚震科技有限公司 | Method for manufacturing radio frequency resonator and filter |
CN108259017A (en) * | 2017-03-24 | 2018-07-06 | 珠海晶讯聚震科技有限公司 | The manufacturing method of rf-resonator and wave filter |
CN108259020A (en) * | 2017-03-24 | 2018-07-06 | 珠海晶讯聚震科技有限公司 | The method for manufacturing rf-resonator and wave filter |
CN107342768A (en) * | 2017-07-18 | 2017-11-10 | 上海示方科技有限公司 | A kind of Hydrogen Atom Frequency Standard |
CN107342768B (en) * | 2017-07-18 | 2020-08-11 | 上海新示方科技有限公司 | Hydrogen atom frequency scale |
CN107332561A (en) * | 2017-07-18 | 2017-11-07 | 上海示方科技有限公司 | A kind of signal inquires after device, Hydrogen Atom Frequency Standard |
CN107332561B (en) * | 2017-07-18 | 2021-02-26 | 上海示方科技有限公司 | Signal inquiry device and hydrogen atom frequency standard |
CN108512520A (en) * | 2018-02-27 | 2018-09-07 | 贵州中科汉天下微电子有限公司 | The monolithic integrated structure and its manufacturing method of bulk acoustic wave resonator and capacitor, filter, duplexer and radio-frequency communication module |
CN110829998A (en) * | 2018-08-09 | 2020-02-21 | 三星电机株式会社 | Bulk acoustic wave resonator |
CN110896302B (en) * | 2018-09-12 | 2024-05-17 | 天工全球私人有限公司 | Recessed frame structure for bulk acoustic wave resonators |
CN110896302A (en) * | 2018-09-12 | 2020-03-20 | 天工全球私人有限公司 | Recessed Frame Structures for Bulk Acoustic Wave Resonators |
CN109561876A (en) * | 2018-10-24 | 2019-04-02 | 深圳市汇顶科技股份有限公司 | Ultrasonic transducer and its manufacturing method |
WO2020097829A1 (en) * | 2018-11-14 | 2020-05-22 | 开元通信技术(厦门)有限公司 | Film bulk acoustic wave resonator and manufacturing method therefor, and filter |
CN109474255A (en) * | 2018-11-14 | 2019-03-15 | 开元通信技术(厦门)有限公司 | Thin film bulk acoustic wave resonator and preparation method thereof, filter |
WO2020176766A1 (en) * | 2019-02-28 | 2020-09-03 | Exo Imaging, Inc. | High density multi-poled thin film piezoelectric devices and methods of making the same |
CN113747982A (en) * | 2019-02-28 | 2021-12-03 | 艾科索成像公司 | High density multi-polarization thin film piezoelectric device and method of manufacturing the same |
CN113747982B (en) * | 2019-02-28 | 2023-07-07 | 艾科索成像公司 | High-density multi-polarization thin film piezoelectric device and manufacturing method thereof |
CN109905098A (en) * | 2019-03-11 | 2019-06-18 | 重庆邮电大学 | Film bulk acoustic resonator and preparation method thereof |
CN110224685A (en) * | 2019-05-13 | 2019-09-10 | 电子科技大学 | A kind of monocrystal thin films bulk accoustic wave filter and its fine machining method |
CN114303318B (en) * | 2019-09-05 | 2025-01-14 | 常州承芯半导体有限公司 | Bulk acoustic wave resonator, bulk acoustic wave filter |
CN114128139A (en) * | 2019-09-05 | 2022-03-01 | 常州承芯半导体有限公司 | A bulk acoustic wave resonance device and a bulk acoustic wave filter |
CN114303318A (en) * | 2019-09-05 | 2022-04-08 | 常州承芯半导体有限公司 | A bulk acoustic wave resonance device and a bulk acoustic wave filter |
CN114128139B (en) * | 2019-09-05 | 2025-01-14 | 常州承芯半导体有限公司 | Bulk acoustic wave resonator, bulk acoustic wave filter |
CN111030628A (en) * | 2019-11-25 | 2020-04-17 | 南方科技大学 | A kind of preparation method of bulk acoustic wave resonator |
WO2021114556A1 (en) * | 2019-12-09 | 2021-06-17 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator having gap layer on electrode and manufacturing method therefor, filter, and electronic device |
CN111430318B (en) * | 2020-04-10 | 2023-06-06 | 昆山鸿永微波科技有限公司 | Low-loss silicon-based filter chip capable of improving reuse rate and manufacturing method thereof |
CN111430318A (en) * | 2020-04-10 | 2020-07-17 | 昆山鸿永微波科技有限公司 | Low-loss silicon-based filter chip for improving reuse rate and manufacturing method thereof |
CN111682101B (en) * | 2020-05-20 | 2022-03-29 | 华南理工大学 | Manufacturing method of flexible FBAR filter |
CN111682101A (en) * | 2020-05-20 | 2020-09-18 | 华南理工大学 | A kind of manufacturing method of flexible FBAR filter |
CN113972901A (en) * | 2020-07-24 | 2022-01-25 | 华为技术有限公司 | A filter and method of making the same |
CN112582780A (en) * | 2020-11-18 | 2021-03-30 | 电子科技大学 | Bulk acoustic wave magnetoelectric array antenna and preparation method thereof |
CN112543010A (en) * | 2020-12-24 | 2021-03-23 | 华南理工大学 | Frequency-adjustable film bulk acoustic resonator and preparation method thereof |
CN113644893A (en) * | 2021-06-30 | 2021-11-12 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave filter and filter assembly |
CN113644893B (en) * | 2021-06-30 | 2023-07-25 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave filter and filter assembly |
CN113612463A (en) * | 2021-06-30 | 2021-11-05 | 中国电子科技集团公司第十三研究所 | Step type film bulk acoustic resonator filter and filter assembly |
CN113612463B (en) * | 2021-06-30 | 2023-07-21 | 中国电子科技集团公司第十三研究所 | Ladder type thin film bulk acoustic resonator filter and filter assembly |
CN114006594B (en) * | 2021-11-02 | 2024-08-13 | 清华大学 | Bulk acoustic wave resonator and preparation method thereof |
CN114006594A (en) * | 2021-11-02 | 2022-02-01 | 清华大学 | A kind of bulk acoustic wave resonator and preparation method thereof |
CN113992183B (en) * | 2021-11-02 | 2024-08-13 | 清华大学 | Bulk acoustic wave resonator |
CN113992183A (en) * | 2021-11-02 | 2022-01-28 | 清华大学 | A bulk acoustic wave resonator |
WO2023125757A1 (en) * | 2021-12-31 | 2023-07-06 | 河源市艾佛光通科技有限公司 | High-bandwidth cavity type film bulk acoustic resonator and preparation method therefor |
CN114531126A (en) * | 2021-12-31 | 2022-05-24 | 河源市艾佛光通科技有限公司 | Preparation method of broadband film bulk acoustic resonator |
WO2023143005A1 (en) * | 2022-01-27 | 2023-08-03 | 河源市艾佛光通科技有限公司 | High-bandwidth silicon back face etching type film bulk acoustic resonator, and preparation method therefor |
CN117639713A (en) * | 2023-02-02 | 2024-03-01 | 北京芯溪半导体科技有限公司 | Bulk acoustic wave resonator, method of manufacturing the same, filter, and electronic apparatus |
CN117478100A (en) * | 2023-12-25 | 2024-01-30 | 深圳新声半导体有限公司 | Multiplexer with resonant cavity acoustic wave filter and preparation method thereof |
CN117478100B (en) * | 2023-12-25 | 2024-04-16 | 深圳新声半导体有限公司 | Multiplexer with resonant cavity acoustic wave filter and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105897211B (en) | 2020-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105897211B (en) | Film bulk acoustic resonator with multiple resonant modes, preparation method thereof and filter | |
JP4426748B2 (en) | Bulk acoustic wave filter having different center frequencies on a single substrate and method for providing the same | |
US7281304B2 (en) | Method for fabricating a film bulk acoustic resonator | |
EP1469599B1 (en) | Air gap type FBAR, duplexer using the FBAR, and fabricating methods thereof | |
US7893793B2 (en) | Film bulk acoustic wave resonator and method for manufacturing the same | |
US6977563B2 (en) | Thin-film piezoelectric resonator and method for fabricating the same | |
JP4181525B2 (en) | Method for manufacturing thin film bulk acoustic resonator having support base | |
CN205657657U (en) | Film bulk acoustic wave syntonizer and wave filter of many mode of resonances | |
WO2021102640A1 (en) | Acoustic wave device and fabrication method therefor | |
JPWO2007026637A1 (en) | Piezoelectric resonator and method for manufacturing the same | |
CN113497596A (en) | Bulk acoustic wave resonator, method of manufacturing bulk acoustic wave resonator, bulk acoustic wave resonator assembly, filter, and electronic apparatus | |
CN113541636B (en) | Acoustic wave resonator and preparation method thereof | |
JP4147817B2 (en) | Piezoelectric filter and electronic component having the same | |
JP2005333644A (en) | Filter with built-in inductor, duplexer, and manufacturing method thereof | |
CN114006600A (en) | Film bulk acoustic resonator, preparation method and film bulk acoustic filter | |
KR100555762B1 (en) | Air gap type thin film bulk acoustic resonator and its manufacturing method, filter and duplexer using same | |
TW202224221A (en) | Piezoelectric layer arrangements in acoustic wave devices and related methods | |
JP3937302B2 (en) | Filter and duplexer using thin film piezoelectric resonator | |
JP2008079294A (en) | Thin film bulk elastic wave resonator and method for manufacturing same | |
JP3952464B2 (en) | Duplexer | |
JP2009207075A (en) | Method of manufacturing resonator filter | |
JP2009290591A (en) | Baw filter | |
CN117318664A (en) | Acoustic wave filter assembly, acoustic wave filter and manufacturing method | |
KR100425685B1 (en) | Manufacturing method for duplexer and bandpass filter using thinfilm bulk acoustic resonator | |
KR100429971B1 (en) | Manufacturing method for duplexer using thin film bulk acoustic resonator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |