CN101465628A - A kind of film bulk acoustic resonator and its preparation method - Google Patents
A kind of film bulk acoustic resonator and its preparation method Download PDFInfo
- Publication number
- CN101465628A CN101465628A CNA2009100581390A CN200910058139A CN101465628A CN 101465628 A CN101465628 A CN 101465628A CN A2009100581390 A CNA2009100581390 A CN A2009100581390A CN 200910058139 A CN200910058139 A CN 200910058139A CN 101465628 A CN101465628 A CN 101465628A
- Authority
- CN
- China
- Prior art keywords
- layer
- air gap
- piezoelectric layer
- substrate
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
本发明公开了一种薄膜体声波谐振器,包括衬底、缓冲层、压电层和电极,其特征在于:①衬底上端面设置有平滑的凹槽和缓冲层,所述缓冲层跨越凹槽与衬底形成一具有平滑上凸边缘的空气隙并完全覆盖该空气隙,所述空气隙下顶面的高度低于衬底,具有平整的表面和平缓变化的边界;②所述缓冲层的与空气隙接触面且临近衬底的边缘为平滑外凸形状,缓冲层上设置所述压电层,电极包括底电极和顶电极,所述底电极设置在缓冲层上压电层内,所述顶电极设置在压电层的上面。该体声波谐振器结构新颖,该方法能够在衬底上制作出结构稳定、损耗小的FBAR,且无需采用CMP工艺,有利于集成于CMOS芯片中。
The invention discloses a thin-film bulk acoustic resonator, which includes a substrate, a buffer layer, a piezoelectric layer and an electrode. The groove and the substrate form an air gap with a smooth upper convex edge and completely cover the air gap. The height of the lower top surface of the air gap is lower than the substrate, and has a flat surface and a gently changing boundary; ②The buffer layer The edge of the surface in contact with the air gap and adjacent to the substrate is in a smooth convex shape, the piezoelectric layer is arranged on the buffer layer, and the electrodes include a bottom electrode and a top electrode, and the bottom electrode is arranged in the piezoelectric layer on the buffer layer, The top electrode is disposed on top of the piezoelectric layer. The bulk acoustic wave resonator has a novel structure, and the method can produce a FBAR with a stable structure and low loss on a substrate without using a CMP process, which is beneficial for integration into a CMOS chip.
Description
技术领域 technical field
本发明涉及薄膜体声波谐振器技术领域,具体涉及一种薄膜体声波谐振器及其制备方法。The invention relates to the technical field of thin-film bulk acoustic wave resonators, in particular to a thin-film bulk acoustic wave resonator and a preparation method thereof.
背景技术 Background technique
无线通讯终端的多功能化发展对射频器件提出了微型化、高频率、高性能、低功耗、低成本等高技术要求。传统的声表面波器件在2.4GHz以上的高频段插入损耗大,微波介质技术有很好的性能但是体积太大。薄膜体声波谐振器(FBAR)技术是近年来随着加工工艺技术水平的提高和现代无线通讯技术,尤其是个人无线通信技术的快速发展而出现的一种新的射频器件技术。它具有极高的Q值(1000以上)和可集成于IC芯片上的优点,同时有效地避免了声表谐振器和介质谐振器的缺点。The multi-functional development of wireless communication terminals has put forward high technical requirements for radio frequency devices such as miniaturization, high frequency, high performance, low power consumption, and low cost. Traditional surface acoustic wave devices have large insertion loss in the high-frequency band above 2.4GHz, and microwave dielectric technology has good performance but is too bulky. Film Bulk Acoustic Resonator (FBAR) technology is a new radio frequency device technology that has emerged in recent years with the improvement of processing technology and the rapid development of modern wireless communication technology, especially personal wireless communication technology. It has the advantages of extremely high Q value (above 1000) and can be integrated on an IC chip, while effectively avoiding the shortcomings of SAW resonators and dielectric resonators.
FBAR是制作在衬底材料上的电极——压电膜——电极的三明治结构的薄膜器件。FBAR的压电材料通常采用PZT、ZnO和氮化铝。其中氮化铝声速最高,因此应用于更高的频率,符合现在无线通信往高频化发展的要求。并且氮化铝具有相对另外两种材料温度损耗低、化学稳定性好、制备工艺相对简单的优点。此外,锌、铅、锆等材料对于CMOS工艺来说是很危险的材料,因为它们会严重降低半导体中载流子的寿命,而氮化铝不存在这个问题。因此,氮化铝是FBAR兼容在CMOS器件中的理想材料。FBAR is a thin-film device with a sandwich structure of electrode-piezoelectric film-electrode fabricated on the substrate material. PZT, ZnO and aluminum nitride are usually used as piezoelectric materials for FBAR. Among them, aluminum nitride has the highest sound velocity, so it is applied to higher frequencies, which meets the requirements of the development of high-frequency wireless communications. In addition, aluminum nitride has the advantages of low temperature loss, good chemical stability and relatively simple preparation process compared with the other two materials. In addition, materials such as zinc, lead, and zirconium are dangerous materials for CMOS processes because they will seriously reduce the lifetime of carriers in semiconductors, while aluminum nitride does not have this problem. Therefore, AlN is an ideal material for FBAR compatibility in CMOS devices.
FBAR的结构有空气隙型、布拉格反射型(SMR)和背面刻蚀型。其中空气隙型FBAR相对SMR型Q值要高,损耗要小;相对背面刻蚀型FBAR不需去掉大面积的衬底,机械强度较高。因此,空气隙型FBAR是集成于CMOS器件上的首选。The structure of FBAR includes air gap type, Bragg reflective type (SMR) and backside etching type. Among them, the air gap type FBAR has a higher Q value than the SMR type, and the loss is smaller; compared with the backside etching type FBAR, it does not need to remove a large area of the substrate, and its mechanical strength is higher. Therefore, the air-gap FBAR is the first choice for integration on CMOS devices.
通常空气隙型FBAR的结构如图1所示。它包括衬底、衬底上的空气隙、衬底上跨越空气隙依次制作的底电极、压电层和顶电极。通常的工艺方法是:先在硅衬底上各向异性腐蚀出一个凹坑,然后在凹坑中填充牺牲层材料,牺牲层材料可以是Al、Mg或者二氧化硅。表面经CMP抛光后溅射生长一层金属膜,对应在牺牲层上方的位置刻蚀出底电极图形。然后在底电极上方沉积一层压电膜,经刻蚀后,该压电膜盖过衬底上凹坑的边界,并且露出底电极的引出端。接下来在压电膜上沉积一层金属膜,刻蚀出顶电极图形。接下来通过干法刻蚀在压电层上腐蚀出一个窗口,将牺牲层部分露出来。最后从刻出的释放窗口将牺牲层释放,衬底上跨过空气隙的FBAR就制作出来了。Usually, the structure of the air-gap FBAR is shown in Fig. 1 . It includes a substrate, an air gap on the substrate, a bottom electrode, a piezoelectric layer and a top electrode sequentially fabricated across the air gap on the substrate. A common process method is: first anisotropically etches a pit on the silicon substrate, and then fills the pit with a sacrificial layer material, which can be Al, Mg or silicon dioxide. After the surface is polished by CMP, a layer of metal film is grown by sputtering, and the bottom electrode pattern is etched corresponding to the position above the sacrificial layer. Then a piezoelectric film is deposited on the bottom electrode, and after etching, the piezoelectric film covers the boundary of the pit on the substrate and exposes the lead-out end of the bottom electrode. Next, a metal film is deposited on the piezoelectric film, and the top electrode pattern is etched. Next, a window is etched on the piezoelectric layer by dry etching to partially expose the sacrificial layer. Finally, the sacrificial layer is released from the engraved release window, and the FBAR across the air gap on the substrate is fabricated.
为了降低制作难度和提高FBAR的性能,前人提出过不少改进措施,如安捷伦科技有限公司的《制作薄膜体声波谐振器的改进方法和以该法实现的薄膜体声波谐振器结构》(公开号:CN1373556,公开日:2002.10.09),提出了在衬底上增加沟道以利于牺牲层释放孔的制作。Tetsuo Yamada等人的《Method OfProducing Thin Film Bulk Acoustic Resonator》(公开号:US7140084B2,公布日:2006.11.28)提出了降低薄膜表面粗糙度提高FBAR的品质。但这些改进后的结构仍然存在缺点:1.为了保证FBAR具有良好的频率稳定性,底电极和顶电极之间的区域需要非常平整。需要采用高精度CMP技术磨平硅表面,增大了对加工设备和硅片厚度精度控制的要求,且不利于CMOS芯片上加工FBAR。2.通常压电层上有一定厚度的非晶过渡区域,当FBAR的应用频率从几个GHz上升到几十GHz以上时,压电层会制作得越来越薄,择优取向的压电膜层厚度与非晶过渡区域厚度之比将会减小,这将导致FBAR的插入损耗变大,Q值降低。这就限制了FBAR往高频方向的发展。In order to reduce the manufacturing difficulty and improve the performance of FBAR, predecessors have proposed many improvement measures, such as "Improved Method for Making Thin Film Bulk Acoustic Resonator and the Structure of Thin Film Bulk Acoustic Resonator" by Agilent Technologies Co., Ltd. (published No.: CN1373556, publication date: 2002.10.09), it is proposed to add a channel on the substrate to facilitate the manufacture of the sacrificial layer release hole. "Method Of Producing Thin Film Bulk Acoustic Resonator" by Tetsuo Yamada et al. (public number: US7140084B2, publication date: 2006.11.28) proposed to reduce the surface roughness of the film and improve the quality of FBAR. However, these improved structures still have disadvantages: 1. In order to ensure good frequency stability of the FBAR, the area between the bottom electrode and the top electrode needs to be very flat. It is necessary to use high-precision CMP technology to smooth the silicon surface, which increases the requirements for processing equipment and thickness precision control of silicon wafers, and is not conducive to processing FBAR on CMOS chips. 2. Usually there is an amorphous transition region with a certain thickness on the piezoelectric layer. When the application frequency of FBAR rises from a few GHz to tens of GHz, the piezoelectric layer will be made thinner and thinner, and the piezoelectric film with preferred orientation The ratio of the layer thickness to the thickness of the amorphous transition region will decrease, which will lead to a larger insertion loss and lower Q value of the FBAR. This limits the development of FBAR towards high frequency.
因此,仍然有这样的需要来改进空气隙型FBAR的制作技术,即采用常规的CMOS生产工艺就能获得平整的FBAR谐振区的表面,以降低FBAR的制作难度和提高与CMOS电路的兼容性,并采用合适的工艺来改善压电膜的品质,降低FBAR的插入损耗和提升应用频率。Therefore, there is still such a need to improve the manufacturing technology of the air-gap type FBAR, that is, the surface of the flat FBAR resonance region can be obtained by using the conventional CMOS production process, so as to reduce the manufacturing difficulty of the FBAR and improve the compatibility with the CMOS circuit. And use appropriate technology to improve the quality of piezoelectric film, reduce the insertion loss of FBAR and increase the application frequency.
发明内容 Contents of the invention
本发明所要解决的问题是:如何提供一种薄膜体声波谐振器及其制备方法,该体声波谐振器结构新颖,该方法能够在衬底上制作出结构稳定、损耗小的FBAR,且无需采用CMP工艺,有利于集成于CMOS芯片中。The problem to be solved by the present invention is: how to provide a thin-film bulk acoustic resonator and its preparation method. The CMP process is conducive to integration in CMOS chips.
本发明所提出的技术问题是这样解决的:提供一种薄膜体声波谐振器,包括衬底、缓冲层、压电层和电极,其特征在于:The technical problem proposed by the present invention is solved like this: provide a kind of film bulk acoustic resonator, comprise substrate, buffer layer, piezoelectric layer and electrode, it is characterized in that:
①衬底上端面设置有平滑的凹槽和缓冲层,所述缓冲层跨越凹槽与衬底形成一具有平滑上凸边缘的空气隙并完全覆盖该空气隙,所述空气隙下顶面的高度低于衬底,具有平整的表面和平缓变化的边界;①The upper end surface of the substrate is provided with a smooth groove and a buffer layer. The buffer layer spans the groove and the substrate to form an air gap with a smooth upper convex edge and completely covers the air gap. The lower top surface of the air gap Higher than the substrate, with a flat surface and gently varying boundaries;
②所述缓冲层的与空气隙接触面且临近衬底的边缘为平滑外凸形状,缓冲层上设置所述压电层,电极包括底电极和顶电极,所述底电极设置在缓冲层上压电层内,所述顶电极设置在压电层的上面。② The edge of the buffer layer in contact with the air gap and adjacent to the substrate has a smooth convex shape, the piezoelectric layer is arranged on the buffer layer, and the electrodes include a bottom electrode and a top electrode, and the bottom electrode is arranged on the buffer layer Within the piezoelectric layer, the top electrode is disposed on top of the piezoelectric layer.
按照本发明所提供的薄膜体声波谐振器,其特征在于,所述缓冲层为非晶态的氮化铝层,压电层为c轴取向的氮化铝层,衬底为硅衬底。According to the film bulk acoustic resonator provided by the present invention, the buffer layer is an amorphous aluminum nitride layer, the piezoelectric layer is a c-axis oriented aluminum nitride layer, and the substrate is a silicon substrate.
按照本发明所提供的薄膜体声波谐振器,其特征在于,设置有牺牲层释放窗口,该释放窗口位于空气隙边界和电极边界之间。The film bulk acoustic resonator provided by the present invention is characterized in that a sacrificial layer release window is provided, and the release window is located between the boundary of the air gap and the boundary of the electrode.
一种薄膜体声波谐振器的制备方法,其特征在于,包括以下步骤:A method for preparing a thin-film bulk acoustic resonator, comprising the following steps:
①在衬底上制备一层氮化硅膜;① Prepare a layer of silicon nitride film on the substrate;
②在氮化硅膜上光刻出具有牺牲层轮廓的窗口,即空气隙的轮廓在衬底上的轮廓,将窗口处的氮化硅刻蚀掉;② Photoetching a window with the outline of the sacrificial layer on the silicon nitride film, that is, the outline of the air gap on the substrate, and etching away the silicon nitride at the window;
③通过局部热氧化的方法在窗口处形成二氧化硅牺牲层,控制热氧化的时间得到所需要的牺牲层厚度,该二氧化硅牺牲层具有平整的表面和平缓变化的边界;③ Form a silicon dioxide sacrificial layer at the window by local thermal oxidation, and control the thermal oxidation time to obtain the required thickness of the sacrificial layer. The silicon dioxide sacrificial layer has a flat surface and a gently changing boundary;
④去除剩余的氮化硅;④Remove the remaining silicon nitride;
⑤采用溅射的方法低温生长一层非晶态氮化铝,即所需的缓冲层,形成空气隙;⑤Grow a layer of amorphous aluminum nitride at low temperature by sputtering, that is, the required buffer layer, to form an air gap;
⑥在缓冲层的上表面溅射生长一层金属层并光刻出底电极图形;⑥Grow a metal layer by sputtering on the upper surface of the buffer layer and photoetch the bottom electrode pattern;
⑦形成底电极后在底电极上生长一层压电层并刻蚀出压电层图形,该压电层图形边界大于空气隙的边界;⑦ After forming the bottom electrode, grow a piezoelectric layer on the bottom electrode and etch the piezoelectric layer pattern, the boundary of the piezoelectric layer pattern is larger than the boundary of the air gap;
⑧在压电层的上表面沉积顶电极,刻蚀出顶电极的图形;⑧ Deposit the top electrode on the upper surface of the piezoelectric layer, and etch the pattern of the top electrode;
⑨释放牺牲层并干燥。⑨ Release the sacrificial layer and dry.
一种体声波谐振器的制备方法,其特征在于,包括以下步骤:A method for preparing a bulk acoustic wave resonator, comprising the following steps:
①在经过抛光的硅表面上用CVD方法沉积一层80~120nm的氮化硅,该抛光表面是(100)、(110)或者(111)取向,然后用光刻的方法将对应牺牲层区域的氮化硅去掉;① Deposit a layer of 80-120nm silicon nitride on the polished silicon surface by CVD method, the polished surface is (100), (110) or (111) orientation, and then use photolithography to place The silicon nitride is removed;
②在上述生长了氮化硅的硅表面,通过局部湿法热氧化处理,在被去除氮化硅的区域生长一层二氧化硅,该二氧化硅的厚度在400nm~800nm之间;② On the above-mentioned silicon surface grown with silicon nitride, a layer of silicon dioxide is grown in the area where the silicon nitride is removed by partial wet thermal oxidation treatment, and the thickness of the silicon dioxide is between 400nm and 800nm;
③去除硅表面残余氮化硅;③Remove residual silicon nitride on the silicon surface;
④在上述步骤后,在硅表面生长一层60~80nm的非晶态氮化铝层,然后在非晶态氮化铝层上溅射生长一层金属并光刻出底电极图形,该底电极材料采用钼,厚度为100~200nm,非晶态氮化铝在小于200℃、功率密度<5W·cm-2的条件下由射频溅射的方法获得;④ After the above steps, grow a layer of 60-80nm amorphous aluminum nitride layer on the silicon surface, then sputter and grow a layer of metal on the amorphous aluminum nitride layer and photoetch the bottom electrode pattern. The electrode material is molybdenum, the thickness is 100-200nm, and the amorphous aluminum nitride is obtained by radio frequency sputtering under the conditions of less than 200°C and power density <5W·cm -2 ;
⑤在上述步骤后,在硅表面生长一层c轴取向的氮化铝压电层,该氮化铝压电层的厚度根据实际应用的频率范围决定,c轴取向的氮化铝压电层在温度>250℃、功率密度>10W·cm-2和氮气浓度>50%的条件下由射频溅射的方法获得;⑤ After the above steps, a layer of c-axis oriented aluminum nitride piezoelectric layer is grown on the silicon surface. The thickness of the aluminum nitride piezoelectric layer is determined according to the frequency range of the actual application. The c-axis oriented aluminum nitride piezoelectric layer Obtained by radio frequency sputtering under the conditions of temperature>250℃, power density>10W·cm -2 and nitrogen concentration>50%;
⑥用湿法刻蚀出压电层的图形,该压电层图形边界轮廓大于空气隙边界轮廓,在刻蚀出压电层图形的同时,牺牲层释放窗口也被刻蚀出来,释放窗口位于空气隙边界和电极边界之间;⑥ Etching out the pattern of the piezoelectric layer by wet method, the boundary contour of the piezoelectric layer pattern is larger than the boundary contour of the air gap, while etching the pattern of the piezoelectric layer, the release window of the sacrificial layer is also etched out, and the release window is located at between the air gap boundary and the electrode boundary;
⑦溅射沉积顶电极金属,并刻蚀出顶电极图形。该顶电极材料通常采用钼,厚度为100~200nm;⑦ Sputtering deposits the top electrode metal, and etches the top electrode pattern. The top electrode material is usually molybdenum, with a thickness of 100-200nm;
⑧释放牺牲层并且干燥。⑧ Release the sacrificial layer and dry.
本发明的有益效果:本发明在结构上有所创新,其具有平整的表面和平缓变化的边界的空气隙,满足了FBAR底电极和顶电极之间的谐振区域对平整度的要求,同时平缓变化的边界避免了射频溅射镀膜对陡直台阶覆盖不好的问题,故空气隙边界处薄膜有足够的厚度支撑整个器件;另外设置有缓冲层,它在谐振区域具有平整的表面,而在边界处通过平缓的弧面连接到衬底上,该缓冲层采用非晶氮化铝为材料,作用是解决底电极材料在热氧化生长的二氧化硅或磷硅玻璃(PSG)上粘附不牢的问题,该非晶氮化铝材料缓冲层压电层材料相同的化学性质,在刻蚀压电层时即能同时去除多余的缓冲层部分,不会增加工艺难度。Beneficial effects of the present invention: the present invention is innovative in structure, and it has a flat surface and an air gap with a gently changing boundary, which meets the flatness requirement of the resonance region between the FBAR bottom electrode and the top electrode, and is gentle at the same time The changing boundary avoids the problem of poor coverage of the RF sputtering coating on the steep steps, so the film at the boundary of the air gap has sufficient thickness to support the entire device; in addition, a buffer layer is provided, which has a flat surface in the resonant region and a flat surface in the resonant region. The boundary is connected to the substrate through a gentle arc surface, and the buffer layer is made of amorphous aluminum nitride, which is used to solve the problem of the bottom electrode material not adhering to the silicon dioxide or phosphosilicate glass (PSG) grown by thermal oxidation. To solve the problem of firmness, the amorphous aluminum nitride buffer layer has the same chemical properties as the piezoelectric layer material, and the redundant buffer layer can be removed at the same time when the piezoelectric layer is etched, without increasing the difficulty of the process.
本发明的制备方法比起已有技术的FBAR来说具有如下优点:首先,牺牲层的制备无需引入CMP过程,借助传统的氧化设备即可获得,所以降低了制作工艺对设备的要求,并且更方便融入CMOS工艺步骤中;其次,该技术制作的FBAR的压电层能够保证在不增大器件的插入损耗的情况下做的更薄,所以有利于将FBAR的应用频率做的更高。Compared with the FBAR of the prior art, the preparation method of the present invention has the following advantages: first, the preparation of the sacrificial layer does not need to introduce a CMP process, and can be obtained by means of traditional oxidation equipment, so the requirements for the equipment of the production process are reduced, and it is more It is convenient to integrate into the CMOS process steps; secondly, the piezoelectric layer of FBAR produced by this technology can be made thinner without increasing the insertion loss of the device, so it is beneficial to make the application frequency of FBAR higher.
在硅上局部湿法热氧化制作牺牲层的方法也是本发明的一个特点,通过该方法在抛光过的硅衬底上得到的牺牲层具有非常平整的顶面,同时具有平缓过渡的边缘,其平整顶面满足了FBAR底电极和顶电极之间的谐振区域对平整度的要求,其平缓过渡的边缘保证了后续溅射生长的各膜层不至于出现由于边缘过薄而导致的机械强度不高的问题。因此,用该制作方法得到的牺牲层可以替代经过CMP抛光所形成的牺牲层。其中的湿法热氧化工艺是CMOS常规工艺,无需对设备进行改造即可用于FBAR的制作工艺中。The method for making the sacrificial layer by local wet thermal oxidation on silicon is also a feature of the present invention, the sacrificial layer obtained on the polished silicon substrate by this method has a very smooth top surface, and has a gentle transition edge at the same time. The flat top surface meets the flatness requirements of the resonance region between the bottom electrode and the top electrode of FBAR, and its gentle transition edge ensures that the subsequent sputtering growth of each film layer will not appear due to the thin edge of the mechanical strength. high question. Therefore, the sacrificial layer obtained by this manufacturing method can replace the sacrificial layer formed by CMP polishing. The wet thermal oxidation process is a conventional CMOS process, which can be used in the FBAR manufacturing process without modification of the equipment.
本发明的制备方法还有一个特点,是在沉积底电极金属前,先在局部热氧化的牺牲层上通过射频溅射的方法沉积一层100nm左右的非晶态的氮化铝,该层非晶氮化铝的作用是解决底电极材料在热氧化生长的二氧化硅或磷硅玻璃(PSG)上粘附不牢的问题,该问题表现在生长完压电层后,部分底电极将会从牺牲层上剥离,从而导致压电层开裂。而在底电极和牺牲层之间添加非晶氮化铝层后,该问题将得以解决。同时采用非晶氮化铝这种材料能够为底电极和压电层提供一个晶格常数相匹配的缓冲层,有利于采用氮化铝为材料的压电层择优取向性能的改善。该非晶氮化铝材料具有与压电层材料相同的化学性质,在刻蚀压电层时即能同时去除多余的缓冲层,不会增加工艺难度。Another feature of the preparation method of the present invention is that before depositing the bottom electrode metal, a layer of amorphous aluminum nitride with a thickness of about 100 nm is deposited on the partially thermally oxidized sacrificial layer by radio frequency sputtering. The role of crystalline aluminum nitride is to solve the problem of poor adhesion of the bottom electrode material on the silicon dioxide or phosphosilicate glass (PSG) grown by thermal oxidation. This problem is manifested in the fact that after the piezoelectric layer is grown, part of the bottom electrode will delamination from the sacrificial layer, resulting in cracking of the piezoelectric layer. This problem will be solved by adding an amorphous aluminum nitride layer between the bottom electrode and the sacrificial layer. At the same time, the use of amorphous aluminum nitride can provide a buffer layer with matching lattice constants for the bottom electrode and the piezoelectric layer, which is beneficial to the improvement of the preferred orientation performance of the piezoelectric layer using aluminum nitride as the material. The amorphous aluminum nitride material has the same chemical properties as the piezoelectric layer material, and the excess buffer layer can be removed at the same time when the piezoelectric layer is etched without increasing the difficulty of the process.
另外局部热氧化形成的牺牲层边界大于底电极和顶点极的边界,以便贯穿压电层和缓冲层的牺牲层释放窗口能够通过湿法腐蚀一次刻蚀成功。最终,采用稀释HF或者HF缓冲液将牺牲层从刻蚀窗口释放出来。因此,采用本发明所制作的FBAR将不会增大工艺的繁杂程度。In addition, the boundary of the sacrificial layer formed by local thermal oxidation is larger than the boundary of the bottom electrode and the apex electrode, so that the release window of the sacrificial layer penetrating the piezoelectric layer and the buffer layer can be successfully etched once by wet etching. Finally, dilute HF or HF buffer to release the sacrificial layer from the etched window. Therefore, the FBAR manufactured by the present invention will not increase the complexity of the process.
附图说明 Description of drawings
图1示出现有技术中空气隙型FBAR结构图Fig. 1 shows the structural diagram of the air-gap type FBAR in the prior art
图2示出按本发明制作的空气隙型FBAR剖面图;Fig. 2 shows the sectional view of the air-gap type FBAR made by the present invention;
图3示出在衬底硅上CVD方法生长一层氮化硅薄膜,并光刻去除对应牺牲层区域的氮化硅后的剖视图;Fig. 3 shows a cross-sectional view of growing a layer of silicon nitride film by CVD method on the substrate silicon, and photolithographically removing the silicon nitride corresponding to the sacrificial layer region;
图4示出通过局部热氧化方法在衬底上生长二氧化硅后的剖视图;Figure 4 shows a cross-sectional view after growing silicon dioxide on a substrate by a localized thermal oxidation method;
图5示出去除剩余氮化硅后的剖视图;Figure 5 shows a cross-sectional view after removing the remaining silicon nitride;
图6示出在溅射了非晶氮化铝层上生长和刻蚀完底电极后的剖视图;Figure 6 shows a cross-sectional view after the bottom electrode has been grown and etched on the sputtered amorphous aluminum nitride layer;
图7示出沉积氮化铝压电层后的剖视图;Figure 7 shows a cross-sectional view after depositing an aluminum nitride piezoelectric layer;
图8示出刻蚀出氮化铝边界和氮化铝上的释放窗口后的剖面图;8 shows a cross-sectional view after etching the aluminum nitride boundary and the release window on the aluminum nitride;
图9示出生长完顶电极后的FBAR的剖面图。FIG. 9 shows a cross-sectional view of the FBAR after growing the top electrode.
具体实施方式 Detailed ways
下面结合附图对本发明作进一步描述:The present invention will be further described below in conjunction with accompanying drawing:
本发明所提供的新的FBAR结构如图2所示,包括衬底1、空气隙2、缓冲层(非晶态氮化铝层)、底电极4、氮化铝压电层5、顶电极13和释放窗口6、7。The new FBAR structure provided by the present invention is shown in Figure 2, including
本发明所提供FBAR的衬底材料采用硅,空气隙2上顶面的高度高于衬底1的上表面,空气隙2下顶面的高度低于衬底1的上表面。空气隙2的上表面上有一层非晶氮化铝缓冲层3,该非晶态氮化铝缓冲层3跨过空气隙的边界,且厚度不大于0.10微米。非晶氮化铝缓冲层3上依次为底电极4、氮化铝压电层5、和顶电极13。底电极4和顶电极13垂直于衬底上表面方向的重叠区域要求处于空气隙2的边界以内。The substrate material of the FBAR provided by the present invention is silicon, the height of the top surface of the
以下是本发明的具体实施方式: The following are specific embodiments of the present invention:
1)在经过抛光的硅1表面上用CVD方法沉积一层100nm左右的氮化硅。该抛光表面可以是(100)、(110)或者(111)取向。然后用光刻的方法将对应牺牲层区域的氮化硅去掉,留下8、9所在部分的氮化硅如图3所示。1) Deposit a layer of silicon nitride with a thickness of about 100 nm on the surface of the
2)在上述生长了氮化硅8、9的硅表面,通过湿法热氧化处理,在被去除氮化硅的区域生长一层二氧化硅10。该二氧化硅的厚度在400nm~800nm之间。如图4所示。2) On the silicon surface on which the
3)在上述步骤后,去除硅表面残余氮化硅8、9,留下二氧化硅10部分。如图5所示。3) After the above steps, remove the
4)在上述步骤后,在硅表面生长一层100nm左右的非晶氮化铝层11,然后在非晶氮化铝层11上溅射生长一层金属并光刻出底电极图形4,该底电极材料通常采用钼,厚度为100~200nm。如图6所示。非晶氮化铝层11可以在低温(<200℃)、低功率密度(<5W·cm-2)的条件下由射频溅射的方法获得。4) After the above steps, an amorphous
5)在上述步骤后,在硅表面生长一层c轴取向的氮化铝层12。该氮化铝层12的厚度根据实际应用的频率范围决定。如图7所示。c轴取向的氮化铝层12可以在温度>250℃、功率密度>10W·cm-2和氮气浓度>50%的条件下由射频溅射的方法获得。5) After the above steps, grow a c-axis oriented
6)用湿法腐蚀的方法刻蚀氮化铝层12,得到压电层图形5。该压电层图形5边界轮廓大于空气隙边界轮廓。在刻蚀出压电层图形5的同时,牺牲层释放窗口6、7也被刻蚀出来。该释放窗口6、7位于空气隙边界和电极边界之间。因为在此区间的材料均为氮化铝,故释放窗口6、7能够很方便地被刻蚀穿,直至露出牺牲层10。如图8所示。6) Etching the
7)溅射沉积顶电极金属,并刻蚀出顶电极图形13。该顶电极材料通常采用钼,厚度为100~200nm。如图9所示。7) Deposit the top electrode metal by sputtering, and etch the
8)释放牺牲层,露出空气隙2。干燥。如图2所示。8) The sacrificial layer is released, exposing the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100581390A CN101465628B (en) | 2009-01-15 | 2009-01-15 | Film bulk acoustic resonator and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100581390A CN101465628B (en) | 2009-01-15 | 2009-01-15 | Film bulk acoustic resonator and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101465628A true CN101465628A (en) | 2009-06-24 |
CN101465628B CN101465628B (en) | 2011-05-11 |
Family
ID=40806022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100581390A Expired - Fee Related CN101465628B (en) | 2009-01-15 | 2009-01-15 | Film bulk acoustic resonator and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101465628B (en) |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101895269A (en) * | 2010-07-30 | 2010-11-24 | 中国科学院声学研究所 | Method for preparing piezoelectric film bulk acoustic wave resonator |
CN102122940A (en) * | 2010-11-01 | 2011-07-13 | 中国电子科技集团公司第二十六研究所 | Preset cavity type SOI (silicon on insulator) substrate film bulk acoustic wave resonator and manufacturing method thereof |
EP2535310A2 (en) * | 2011-06-16 | 2012-12-19 | Infineon Technologies AG | MEMS devices having membrane and methods of fabrication thereof |
CN103414446A (en) * | 2013-08-27 | 2013-11-27 | 张家港恩达通讯科技有限公司 | Film bulk acoustic resonator and method for manufacturing same |
CN103427778A (en) * | 2013-08-27 | 2013-12-04 | 张家港恩达通讯科技有限公司 | Method for preparing thin film bulk acoustic resonator based on ferroelectric materials and resonator |
CN103988427A (en) * | 2011-12-01 | 2014-08-13 | 三星电子株式会社 | Bulk acoustic wave resonator |
CN105897211A (en) * | 2016-05-18 | 2016-08-24 | 华南理工大学 | Film bulk acoustic resonator having multiple resonance modes and preparation method thereof and filter |
CN106209002A (en) * | 2016-06-29 | 2016-12-07 | 电子科技大学 | A kind of novel thin film bulk acoustic wave resonator and preparation method thereof |
CN107623501A (en) * | 2016-07-14 | 2018-01-23 | 三星电机株式会社 | Bulk accoustic wave filter device |
CN107643228A (en) * | 2017-08-31 | 2018-01-30 | 中国船舶重工集团公司第七〇九研究所 | Measure chip of mercury vapour and preparation method thereof, sensor and its application method |
CN108023569A (en) * | 2016-11-02 | 2018-05-11 | 阿库斯蒂斯有限公司 | For the acoustic resonator or the structure and manufacture method of filter apparatus changed using improved manufacturing conditions and perimeter structure |
CN108270414A (en) * | 2017-01-03 | 2018-07-10 | 稳懋半导体股份有限公司 | Method for manufacturing bulk acoustic wave resonator having mass adjustment structure |
CN108288960A (en) * | 2017-01-10 | 2018-07-17 | 稳懋半导体股份有限公司 | Method for tuning resonator, method for forming cavity of resonator and filter |
CN108649916A (en) * | 2018-04-20 | 2018-10-12 | 华南理工大学 | A kind of outbound course of thin film bulk acoustic wave resonator and its back electrode |
CN108736856A (en) * | 2017-04-19 | 2018-11-02 | 三星电机株式会社 | Bulk acoustic wave resonator and method of manufacturing bulk acoustic wave resonator |
CN108988818A (en) * | 2017-05-30 | 2018-12-11 | 三星电机株式会社 | Acoustic resonator and method for manufacturing acoustic resonator |
CN109590037A (en) * | 2018-12-29 | 2019-04-09 | 天津大学 | The production method of sub-micron runner micro-fluidic chip |
CN109905098A (en) * | 2019-03-11 | 2019-06-18 | 重庆邮电大学 | Film bulk acoustic resonator and preparation method thereof |
CN109945966A (en) * | 2019-03-29 | 2019-06-28 | 中北大学 | Single-electrode hydrophone with AlN double-layer film |
CN110011632A (en) * | 2019-03-13 | 2019-07-12 | 电子科技大学 | The preparation method and bulk acoustic wave resonator of monocrystal thin films bulk acoustic wave resonator |
CN110324022A (en) * | 2019-06-28 | 2019-10-11 | 瑞声科技(新加坡)有限公司 | Resonator and preparation method thereof |
CN110417374A (en) * | 2019-08-27 | 2019-11-05 | 南方科技大学 | Film bulk acoustic resonator and preparation method thereof |
CN110474616A (en) * | 2019-08-29 | 2019-11-19 | 华南理工大学 | A kind of air-gap type thin film bulk acoustic wave resonator and preparation method thereof |
CN110504937A (en) * | 2019-08-27 | 2019-11-26 | 南方科技大学 | Film bulk acoustic resonator structure and preparation method thereof |
CN110601673A (en) * | 2019-08-12 | 2019-12-20 | 清华大学 | Surface acoustic wave device and film bulk acoustic wave device based on hafnium-based ferroelectric film |
CN110601674A (en) * | 2019-09-27 | 2019-12-20 | 中国科学院上海微系统与信息技术研究所 | High-frequency acoustic wave resonator and preparation method thereof |
CN110868173A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator and filter |
CN110868184A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave resonator and semiconductor device |
CN110868171A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator, wafer and resonator manufacturing method |
CN110868170A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Acoustic resonator |
CN110868174A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Acoustic resonator and filter |
CN110868185A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave resonator and semiconductor device |
CN110868195A (en) * | 2019-10-24 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Radio frequency switch filter assembly and semiconductor device |
CN110867509A (en) * | 2019-10-11 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Acoustic resonator packaging structure |
CN110868192A (en) * | 2019-10-11 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Thin Film Bulk Acoustic Resonators and Filters with Packaged Structures |
CN110868169A (en) * | 2019-01-28 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonators and Semiconductor Devices |
CN110868182A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator and filter |
CN110868176A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator and filter with embedded temperature compensation layer |
CN110868177A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator and filter |
CN110868186A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave resonator, method of manufacturing the same, and semiconductor device |
CN110868191A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Film bulk acoustic resonator and filter |
CN110868175A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator with crystal seed layer, filter and resonator preparation method |
WO2020062385A1 (en) * | 2018-09-30 | 2020-04-02 | 天津大学 | Flexible substrate film bulk acoustic resonator and forming method therefor |
CN111294006A (en) * | 2018-12-07 | 2020-06-16 | 三星电机株式会社 | Bulk acoustic wave resonator and bulk acoustic wave filter |
WO2020124662A1 (en) * | 2018-12-20 | 2020-06-25 | 中国电子科技集团公司第十三研究所 | Method for fabricating resonator |
WO2020124663A1 (en) * | 2018-12-20 | 2020-06-25 | 中国电子科技集团公司第十三研究所 | Resonator and filter |
CN111600569A (en) * | 2020-04-29 | 2020-08-28 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator, method of manufacturing the same, filter, and electronic apparatus |
WO2020177557A1 (en) * | 2019-03-02 | 2020-09-10 | 天津大学 | Package for mems device of which release hole is arranged in packaging space |
CN111654257A (en) * | 2020-06-05 | 2020-09-11 | 武汉衍熙微器件有限公司 | Film bulk acoustic resonator, method for manufacturing same, and filter |
CN111697942A (en) * | 2020-05-13 | 2020-09-22 | 杭州见闻录科技有限公司 | Cavity processing technology for MEMS device, bulk acoustic wave resonator and manufacturing technology thereof |
CN112019184A (en) * | 2020-08-19 | 2020-12-01 | 合肥先微企业管理咨询合伙企业(有限合伙) | 5G small-sized base station radio frequency acoustic wave filter |
US20210013856A1 (en) * | 2019-01-28 | 2021-01-14 | The 13Th Research Institute Of China Electronics Technology Group Corporation | Method for manufacturing resonator |
CN112260658A (en) * | 2020-10-16 | 2021-01-22 | 广东广纳芯科技有限公司 | A kind of Lamb wave resonator and its manufacturing method |
CN112953437A (en) * | 2016-08-03 | 2021-06-11 | 三星电机株式会社 | Bulk acoustic wave resonator and filter |
CN113572444A (en) * | 2021-09-23 | 2021-10-29 | 深圳新声半导体有限公司 | Method for making bulk acoustic wave resonators |
CN114124014A (en) * | 2022-01-25 | 2022-03-01 | 深圳新声半导体有限公司 | Film bulk acoustic resonator and preparation method thereof |
WO2022057768A1 (en) * | 2020-09-21 | 2022-03-24 | 中芯集成电路(宁波)有限公司上海分公司 | Manufacturing method for thin film bulk acoustic wave resonator |
CN114531126A (en) * | 2021-12-31 | 2022-05-24 | 河源市艾佛光通科技有限公司 | Preparation method of broadband film bulk acoustic resonator |
US20230091745A1 (en) * | 2021-09-22 | 2023-03-23 | Wuhan MEMSonics Technologies Co.,Ltd. | Film Bulk Acoustic Resonator and Manufacturing Method therefor, and Film Bulk Acoustic Wave Filter |
US11677381B2 (en) | 2021-10-19 | 2023-06-13 | Shenzhen Newsonic Technologies Co., Ltd. | Film bulk acoustic resonator structure and fabricating method |
US12143085B2 (en) | 2021-10-19 | 2024-11-12 | Shenzhen Newsonic Technologies Co., Ltd. | Film bulk acoustic resonator structure and fabricating method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101217266B (en) * | 2008-01-09 | 2011-06-15 | 电子科技大学 | Method for preparing bulk acoustic wave resonator |
-
2009
- 2009-01-15 CN CN2009100581390A patent/CN101465628B/en not_active Expired - Fee Related
Cited By (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101895269B (en) * | 2010-07-30 | 2012-09-05 | 中国科学院声学研究所 | Method for preparing piezoelectric film bulk acoustic wave resonator |
CN101895269A (en) * | 2010-07-30 | 2010-11-24 | 中国科学院声学研究所 | Method for preparing piezoelectric film bulk acoustic wave resonator |
CN102122941B (en) * | 2010-11-01 | 2013-10-16 | 中国电子科技集团公司第二十六研究所 | Tunable preset cavity type silicon on insulator (SOI) substrate film body acoustic resonator and manufacturing method thereof |
CN102122940A (en) * | 2010-11-01 | 2011-07-13 | 中国电子科技集团公司第二十六研究所 | Preset cavity type SOI (silicon on insulator) substrate film bulk acoustic wave resonator and manufacturing method thereof |
CN102122941A (en) * | 2010-11-01 | 2011-07-13 | 中国电子科技集团公司第二十六研究所 | Tunable preset cavity type silicon on insulator (SOI) substrate film body acoustic resonator and manufacturing method thereof |
US8975107B2 (en) | 2011-06-16 | 2015-03-10 | Infineon Techologies Ag | Method of manufacturing a semiconductor device comprising a membrane over a substrate by forming a plurality of features using local oxidation regions |
CN106829846B (en) * | 2011-06-16 | 2020-04-14 | 英飞凌科技股份有限公司 | Semiconductor device and method of manufacturing the same |
EP2535310A2 (en) * | 2011-06-16 | 2012-12-19 | Infineon Technologies AG | MEMS devices having membrane and methods of fabrication thereof |
US10405118B2 (en) | 2011-06-16 | 2019-09-03 | Infineon Technologies Ag | Semiconductor devices having a membrane layer with smooth stress-relieving corrugations and methods of fabrication thereof |
CN102826502A (en) * | 2011-06-16 | 2012-12-19 | 英飞凌科技股份有限公司 | MEMS devices and methods of fabrication thereof |
EP2535310B1 (en) * | 2011-06-16 | 2022-08-24 | Infineon Technologies AG | Mems devices having membrane and methods of fabrication thereof |
CN106829846A (en) * | 2011-06-16 | 2017-06-13 | 英飞凌科技股份有限公司 | Semiconductor devices and its manufacture method |
CN103988427A (en) * | 2011-12-01 | 2014-08-13 | 三星电子株式会社 | Bulk acoustic wave resonator |
US9634643B2 (en) | 2011-12-01 | 2017-04-25 | Samsung Electronics Co., Ltd. | Bulk acoustic wave resonator |
US10666224B2 (en) | 2011-12-01 | 2020-05-26 | Samsung Electronics Co., Ltd. | Bulk acoustic wave resonator |
CN103988427B (en) * | 2011-12-01 | 2019-02-15 | 三星电子株式会社 | Bulk Acoustic Resonator |
US11894833B2 (en) | 2011-12-01 | 2024-02-06 | Samsung Electronics Co., Ltd. | Bulk acoustic wave resonator |
CN103427778A (en) * | 2013-08-27 | 2013-12-04 | 张家港恩达通讯科技有限公司 | Method for preparing thin film bulk acoustic resonator based on ferroelectric materials and resonator |
CN103414446A (en) * | 2013-08-27 | 2013-11-27 | 张家港恩达通讯科技有限公司 | Film bulk acoustic resonator and method for manufacturing same |
CN105897211A (en) * | 2016-05-18 | 2016-08-24 | 华南理工大学 | Film bulk acoustic resonator having multiple resonance modes and preparation method thereof and filter |
CN106209002B (en) * | 2016-06-29 | 2019-03-05 | 电子科技大学 | A kind of thin film bulk acoustic wave resonator and preparation method thereof |
CN106209002A (en) * | 2016-06-29 | 2016-12-07 | 电子科技大学 | A kind of novel thin film bulk acoustic wave resonator and preparation method thereof |
CN107623501A (en) * | 2016-07-14 | 2018-01-23 | 三星电机株式会社 | Bulk accoustic wave filter device |
CN112953437B (en) * | 2016-08-03 | 2024-06-11 | 三星电机株式会社 | Bulk acoustic wave resonator and filter |
CN112953437A (en) * | 2016-08-03 | 2021-06-11 | 三星电机株式会社 | Bulk acoustic wave resonator and filter |
CN108023569A (en) * | 2016-11-02 | 2018-05-11 | 阿库斯蒂斯有限公司 | For the acoustic resonator or the structure and manufacture method of filter apparatus changed using improved manufacturing conditions and perimeter structure |
CN108270414A (en) * | 2017-01-03 | 2018-07-10 | 稳懋半导体股份有限公司 | Method for manufacturing bulk acoustic wave resonator having mass adjustment structure |
CN108288960A (en) * | 2017-01-10 | 2018-07-17 | 稳懋半导体股份有限公司 | Method for tuning resonator, method for forming cavity of resonator and filter |
CN108736856A (en) * | 2017-04-19 | 2018-11-02 | 三星电机株式会社 | Bulk acoustic wave resonator and method of manufacturing bulk acoustic wave resonator |
CN108988818A (en) * | 2017-05-30 | 2018-12-11 | 三星电机株式会社 | Acoustic resonator and method for manufacturing acoustic resonator |
CN107643228A (en) * | 2017-08-31 | 2018-01-30 | 中国船舶重工集团公司第七〇九研究所 | Measure chip of mercury vapour and preparation method thereof, sensor and its application method |
CN108649916A (en) * | 2018-04-20 | 2018-10-12 | 华南理工大学 | A kind of outbound course of thin film bulk acoustic wave resonator and its back electrode |
WO2020062385A1 (en) * | 2018-09-30 | 2020-04-02 | 天津大学 | Flexible substrate film bulk acoustic resonator and forming method therefor |
CN111294006B (en) * | 2018-12-07 | 2024-06-11 | 三星电机株式会社 | Bulk acoustic wave resonator and bulk acoustic wave filter |
CN111294006A (en) * | 2018-12-07 | 2020-06-16 | 三星电机株式会社 | Bulk acoustic wave resonator and bulk acoustic wave filter |
US11984864B2 (en) | 2018-12-20 | 2024-05-14 | The 13Th Research Institute Of China Electronics Technology Group Corporation | Method for manufacturing resonator |
US11817848B2 (en) | 2018-12-20 | 2023-11-14 | The 13Th Research Institute Of China Electronics Technology Group Corporation | Resonator and filter |
CN111431497A (en) * | 2018-12-20 | 2020-07-17 | 中国电子科技集团公司第十三研究所 | Resonators and Filters |
WO2020124662A1 (en) * | 2018-12-20 | 2020-06-25 | 中国电子科技集团公司第十三研究所 | Method for fabricating resonator |
WO2020124663A1 (en) * | 2018-12-20 | 2020-06-25 | 中国电子科技集团公司第十三研究所 | Resonator and filter |
CN109590037A (en) * | 2018-12-29 | 2019-04-09 | 天津大学 | The production method of sub-micron runner micro-fluidic chip |
US11664783B2 (en) | 2019-01-28 | 2023-05-30 | The 13Th Research Institute Of China Electronics | Resonator and semiconductor device |
WO2020155192A1 (en) * | 2019-01-28 | 2020-08-06 | 中国电子科技集团公司第十三研究所 | Resonator and semiconductor device |
US20210013856A1 (en) * | 2019-01-28 | 2021-01-14 | The 13Th Research Institute Of China Electronics Technology Group Corporation | Method for manufacturing resonator |
CN110868169A (en) * | 2019-01-28 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonators and Semiconductor Devices |
WO2020177557A1 (en) * | 2019-03-02 | 2020-09-10 | 天津大学 | Package for mems device of which release hole is arranged in packaging space |
CN109905098A (en) * | 2019-03-11 | 2019-06-18 | 重庆邮电大学 | Film bulk acoustic resonator and preparation method thereof |
CN110011632B (en) * | 2019-03-13 | 2022-05-03 | 电子科技大学 | Method for preparing single crystal thin film bulk acoustic wave resonator and bulk acoustic wave resonator |
CN110011632A (en) * | 2019-03-13 | 2019-07-12 | 电子科技大学 | The preparation method and bulk acoustic wave resonator of monocrystal thin films bulk acoustic wave resonator |
CN109945966A (en) * | 2019-03-29 | 2019-06-28 | 中北大学 | Single-electrode hydrophone with AlN double-layer film |
CN110868191A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Film bulk acoustic resonator and filter |
CN110868177B (en) * | 2019-04-23 | 2023-08-15 | 中国电子科技集团公司第十三研究所 | Resonator and filter |
CN110868186A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave resonator, method of manufacturing the same, and semiconductor device |
CN110868177A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator and filter |
CN110868176A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator and filter with embedded temperature compensation layer |
CN110868182A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator and filter |
CN110868182B (en) * | 2019-04-23 | 2023-06-16 | 中国电子科技集团公司第十三研究所 | Resonator and filter |
CN110868186B (en) * | 2019-04-23 | 2023-03-14 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave resonator, method of manufacturing the same, and semiconductor device |
CN110868173A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator and filter |
CN110868185A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave resonator and semiconductor device |
CN110868185B (en) * | 2019-04-23 | 2024-04-16 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave resonator and semiconductor device |
CN110868174A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Acoustic resonator and filter |
CN110868171B (en) * | 2019-04-23 | 2024-04-16 | 中国电子科技集团公司第十三研究所 | Resonator, wafer, and resonator manufacturing method |
CN110868170B (en) * | 2019-04-23 | 2024-02-13 | 中国电子科技集团公司第十三研究所 | Acoustic resonator |
CN110868175B (en) * | 2019-04-23 | 2023-06-27 | 中国电子科技集团公司第十三研究所 | Resonator with seed layer, filter and resonator preparation method |
CN110868170A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Acoustic resonator |
CN110868184A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Bulk acoustic wave resonator and semiconductor device |
CN110868171A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator, wafer and resonator manufacturing method |
CN110868175A (en) * | 2019-04-23 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Resonator with crystal seed layer, filter and resonator preparation method |
CN110868174B (en) * | 2019-04-23 | 2023-08-04 | 中国电子科技集团公司第十三研究所 | Acoustic resonator and filter |
CN110868173B (en) * | 2019-04-23 | 2023-08-15 | 中国电子科技集团公司第十三研究所 | Resonator and filter |
CN110868191B (en) * | 2019-04-23 | 2023-09-12 | 中国电子科技集团公司第十三研究所 | Thin film bulk acoustic resonator and filter |
CN110324022B (en) * | 2019-06-28 | 2023-04-11 | 瑞声科技(新加坡)有限公司 | Resonator and preparation method thereof |
CN110324022A (en) * | 2019-06-28 | 2019-10-11 | 瑞声科技(新加坡)有限公司 | Resonator and preparation method thereof |
CN110601673B (en) * | 2019-08-12 | 2021-08-13 | 清华大学 | Surface acoustic wave devices and thin-film bulk acoustic wave devices based on hafnium-based ferroelectric thin films |
CN110601673A (en) * | 2019-08-12 | 2019-12-20 | 清华大学 | Surface acoustic wave device and film bulk acoustic wave device based on hafnium-based ferroelectric film |
CN110417374B (en) * | 2019-08-27 | 2023-09-19 | 南方科技大学 | Thin film bulk acoustic resonator and preparation method thereof |
CN110504937B (en) * | 2019-08-27 | 2023-09-26 | 南方科技大学 | Film bulk acoustic resonator structure and preparation method thereof |
CN110504937A (en) * | 2019-08-27 | 2019-11-26 | 南方科技大学 | Film bulk acoustic resonator structure and preparation method thereof |
CN110417374A (en) * | 2019-08-27 | 2019-11-05 | 南方科技大学 | Film bulk acoustic resonator and preparation method thereof |
CN110474616A (en) * | 2019-08-29 | 2019-11-19 | 华南理工大学 | A kind of air-gap type thin film bulk acoustic wave resonator and preparation method thereof |
CN110601674B (en) * | 2019-09-27 | 2022-04-01 | 中国科学院上海微系统与信息技术研究所 | High-frequency acoustic wave resonator and preparation method thereof |
CN110601674A (en) * | 2019-09-27 | 2019-12-20 | 中国科学院上海微系统与信息技术研究所 | High-frequency acoustic wave resonator and preparation method thereof |
CN110868192A (en) * | 2019-10-11 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Thin Film Bulk Acoustic Resonators and Filters with Packaged Structures |
CN110867509A (en) * | 2019-10-11 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Acoustic resonator packaging structure |
CN110868195A (en) * | 2019-10-24 | 2020-03-06 | 中国电子科技集团公司第十三研究所 | Radio frequency switch filter assembly and semiconductor device |
CN111600569A (en) * | 2020-04-29 | 2020-08-28 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator, method of manufacturing the same, filter, and electronic apparatus |
CN111600569B (en) * | 2020-04-29 | 2022-02-22 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator, method of manufacturing the same, filter, and electronic apparatus |
WO2021227208A1 (en) * | 2020-05-13 | 2021-11-18 | 杭州见闻录科技有限公司 | Cavity machining process for mems device, bulk acoustic wave resonator and manufacturing process therefor |
CN111697942A (en) * | 2020-05-13 | 2020-09-22 | 杭州见闻录科技有限公司 | Cavity processing technology for MEMS device, bulk acoustic wave resonator and manufacturing technology thereof |
CN111654257A (en) * | 2020-06-05 | 2020-09-11 | 武汉衍熙微器件有限公司 | Film bulk acoustic resonator, method for manufacturing same, and filter |
CN111654257B (en) * | 2020-06-05 | 2023-12-12 | 武汉衍熙微器件有限公司 | Thin film bulk acoustic resonator, method of manufacturing the same, and filter |
CN112019184A (en) * | 2020-08-19 | 2020-12-01 | 合肥先微企业管理咨询合伙企业(有限合伙) | 5G small-sized base station radio frequency acoustic wave filter |
WO2022057768A1 (en) * | 2020-09-21 | 2022-03-24 | 中芯集成电路(宁波)有限公司上海分公司 | Manufacturing method for thin film bulk acoustic wave resonator |
CN112260658A (en) * | 2020-10-16 | 2021-01-22 | 广东广纳芯科技有限公司 | A kind of Lamb wave resonator and its manufacturing method |
CN112260658B (en) * | 2020-10-16 | 2021-08-06 | 广东省广纳科技发展有限公司 | A kind of Lamb wave resonator and its manufacturing method |
US20230091745A1 (en) * | 2021-09-22 | 2023-03-23 | Wuhan MEMSonics Technologies Co.,Ltd. | Film Bulk Acoustic Resonator and Manufacturing Method therefor, and Film Bulk Acoustic Wave Filter |
CN113572444A (en) * | 2021-09-23 | 2021-10-29 | 深圳新声半导体有限公司 | Method for making bulk acoustic wave resonators |
US11677381B2 (en) | 2021-10-19 | 2023-06-13 | Shenzhen Newsonic Technologies Co., Ltd. | Film bulk acoustic resonator structure and fabricating method |
US12143085B2 (en) | 2021-10-19 | 2024-11-12 | Shenzhen Newsonic Technologies Co., Ltd. | Film bulk acoustic resonator structure and fabricating method |
CN114531126A (en) * | 2021-12-31 | 2022-05-24 | 河源市艾佛光通科技有限公司 | Preparation method of broadband film bulk acoustic resonator |
CN114124014A (en) * | 2022-01-25 | 2022-03-01 | 深圳新声半导体有限公司 | Film bulk acoustic resonator and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101465628B (en) | 2011-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101465628B (en) | Film bulk acoustic resonator and preparation method thereof | |
CN109474252B (en) | Cavity thin film bulk acoustic wave resonator capable of increasing Q value and preparation method thereof | |
CN102122941B (en) | Tunable preset cavity type silicon on insulator (SOI) substrate film body acoustic resonator and manufacturing method thereof | |
CN109905098A (en) | Film bulk acoustic resonator and preparation method thereof | |
WO2021159677A1 (en) | Cavity structure of thin film bulk acoustic resonator and manufacturing process | |
CN107528561A (en) | A kind of cavity type FBAR and preparation method thereof | |
CN112290901B (en) | Cavity type film bulk acoustic resonator packaging structure and preparation method thereof | |
CN112671367A (en) | Novel FBAR filter and preparation method thereof | |
CN109302158B (en) | Film bulk acoustic resonator and preparation method thereof | |
CN103873010A (en) | Piezoelectric film bulk acoustic resonator and preparation method thereof | |
CN111371426A (en) | A kind of air-gap shear wave resonator based on lithium niobate and preparation method thereof | |
CN111262543A (en) | Scandium-doped aluminum nitride lamb wave resonator and preparation method thereof | |
CN101692602B (en) | Film bulk acoustic resonator structure with single-layer electrodes and manufacturing method thereof | |
CN111049490B (en) | Bulk acoustic wave resonator with electrical isolation layer and its manufacturing method, filter and electronic equipment | |
CN210444236U (en) | FBAR filter | |
CN108493325A (en) | A kind of high-frequency high-performance SAW device and preparation method thereof | |
CN110620563A (en) | Method for improving preparation yield of FBAR (film bulk acoustic resonator) filter and FBAR filter | |
WO2021135022A1 (en) | Bulk acoustic wave resonator having electrical isolation layer and manufacturing method therefor, filter, and electronic device | |
WO2023125757A1 (en) | High-bandwidth cavity type film bulk acoustic resonator and preparation method therefor | |
CN109302159A (en) | A kind of method of compound substrate and compound substrate production thin film bulk acoustic wave resonator | |
CN113193846B (en) | A Thin Film Bulk Acoustic Resonator with Hybrid Transverse Structural Features | |
CN212012591U (en) | An air-gap shear wave resonator based on lithium niobate | |
CN216959824U (en) | High-bandwidth cavity type film bulk acoustic resonator | |
CN108471298A (en) | Air lumen type thin film bulk acoustic wave resonator and preparation method thereof | |
CN212163290U (en) | Scandium-doped aluminum nitride lamb wave resonator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
DD01 | Delivery of document by public notice |
Addressee: Zhong Hui Document name: Patent Right Termination Notice |
|
DD01 | Delivery of document by public notice | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110511 |
|
CF01 | Termination of patent right due to non-payment of annual fee |