CN114006594A - A kind of bulk acoustic wave resonator and preparation method thereof - Google Patents
A kind of bulk acoustic wave resonator and preparation method thereof Download PDFInfo
- Publication number
- CN114006594A CN114006594A CN202111290290.4A CN202111290290A CN114006594A CN 114006594 A CN114006594 A CN 114006594A CN 202111290290 A CN202111290290 A CN 202111290290A CN 114006594 A CN114006594 A CN 114006594A
- Authority
- CN
- China
- Prior art keywords
- area
- hole
- electrode
- acoustic wave
- bulk acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- 239000000463 material Substances 0.000 claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 33
- 230000008569 process Effects 0.000 claims abstract description 24
- 239000012530 fluid Substances 0.000 claims abstract description 16
- 238000005530 etching Methods 0.000 claims abstract description 11
- 230000002093 peripheral effect Effects 0.000 claims description 23
- 238000002955 isolation Methods 0.000 claims description 20
- 239000007772 electrode material Substances 0.000 claims description 15
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 6
- 230000001788 irregular Effects 0.000 claims description 6
- 238000000059 patterning Methods 0.000 claims description 4
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 2
- 238000000206 photolithography Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 21
- 239000010410 layer Substances 0.000 description 21
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000001459 lithography Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XSBJUSIOTXTIPN-UHFFFAOYSA-N aluminum platinum Chemical compound [Al].[Pt] XSBJUSIOTXTIPN-UHFFFAOYSA-N 0.000 description 2
- 230000003064 anti-oxidating effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- BLIQUJLAJXRXSG-UHFFFAOYSA-N 1-benzyl-3-(trifluoromethyl)pyrrolidin-1-ium-3-carboxylate Chemical compound C1C(C(=O)O)(C(F)(F)F)CCN1CC1=CC=CC=C1 BLIQUJLAJXRXSG-UHFFFAOYSA-N 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02015—Characteristics of piezoelectric layers, e.g. cutting angles
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H2003/023—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
本文公开一种体声波谐振器及其制备方法,体声波谐振器包括:顶电极、压电材料薄膜、底电极和衬底;其中,顶电极的外周轮廓圈定的区域设置有一个以上第一通孔,压电材料薄膜设置有一个以上第二通孔;底电极的外周轮廓圈定的区域设置有一个以上第三通孔;其中,第一通孔、第二通孔和第三通孔用于通过在衬底上刻蚀空腔的腐蚀性流体。本发明实施例在不需要应用牺牲层工艺、衬底背面光刻工艺以及布拉格反射层的情况下,通过设置的第一通孔、第二通孔和第三通孔,通过在衬底上刻蚀空腔的腐蚀性流体,简化了体声波谐振器的制备工艺。
Disclosed herein is a bulk acoustic wave resonator and a method for preparing the same. The bulk acoustic wave resonator includes: a top electrode, a piezoelectric material film, a bottom electrode and a substrate; wherein, the area delimited by the outer periphery of the top electrode is provided with more than one first pass through The piezoelectric material film is provided with one or more second through holes; the area delineated by the outer circumference of the bottom electrode is provided with more than one third through hole; wherein the first through hole, the second through hole and the third through hole are used for Corrosive fluid by etching cavities on the substrate. In the embodiment of the present invention, without applying the sacrificial layer process, the photolithography process on the backside of the substrate and the Bragg reflection layer, the first through hole, the second through hole and the third through hole are provided, and the etching is performed on the substrate by etching The corrosive fluid that corrodes the cavity simplifies the preparation process of the bulk acoustic wave resonator.
Description
技术领域technical field
本文涉及但不限于射频通信技术,尤指一种体声波谐振器及其制备方法。This article relates to but not limited to radio frequency communication technology, especially to a bulk acoustic wave resonator and its preparation method.
背景技术Background technique
微机电系统(MEMS)谐振器被广泛应用于射频通信领域,在微型滤波器、双工器、复用器等制造中发挥着极其重要的作用。相关技术中的声表面波谐振器工艺成熟,可以通过光刻图形的改变来调节谐振频率,但由于光刻工艺条件的制约以及压电材料中声速的限制,难以在2.5吉赫兹(GHz)以上同时具备较高的机电耦合系数与品质因数,并且其制造工艺难以与互补金属氧化物半导体的加工工艺相兼容,不符合电子产品微型化与集成化的发展趋势。相关技术中的体声波谐振器可应用于超高频领域,但工艺相对复杂,谐振频率较高时压电薄膜的厚度较小,质量难以保障。兰姆(Lamb)波谐振器可在超高频下具备较高的机电耦合系数,但是对光刻设备及工艺条件的要求比较苛刻,寄生模态的强度和数量也多于体声波谐振器。Micro-Electro-Mechanical System (MEMS) resonators are widely used in the field of radio frequency communications, and play an extremely important role in the manufacture of micro-filters, duplexers, and multiplexers. The surface acoustic wave resonator technology in the related art is mature, and the resonant frequency can be adjusted by changing the lithography pattern. However, due to the constraints of the lithography process conditions and the limitation of the speed of sound in the piezoelectric material, it is difficult to be above 2.5 gigahertz (GHz). At the same time, it has high electromechanical coupling coefficient and quality factor, and its manufacturing process is difficult to be compatible with the processing technology of complementary metal oxide semiconductor, which does not conform to the development trend of miniaturization and integration of electronic products. The bulk acoustic wave resonator in the related art can be applied to the ultra-high frequency field, but the process is relatively complicated, and the thickness of the piezoelectric film is small when the resonance frequency is high, and the quality is difficult to guarantee. Lamb wave resonators can have high electromechanical coupling coefficients at ultra-high frequencies, but they have stricter requirements on lithography equipment and process conditions, and the intensity and number of spurious modes are also greater than those of bulk acoustic wave resonators.
氮化铝是近年来在MEMS谐振器中被广泛应用的压电材料,具有稳定的化学性质、良好的工艺可重复性、材料参数的高热稳定性等优点。基于氮化铝的谐振器制作中心频率为3GHz以上的滤波器的主要问题是工艺复杂、工艺窗口窄、机电耦合系数低、氮化铝质量较差,难以满足批量化生产的要求。因此,需要一种可以满足超高频滤波器电学要求的新型结构的谐振器。Aluminum nitride is a piezoelectric material that has been widely used in MEMS resonators in recent years. It has the advantages of stable chemical properties, good process repeatability, and high thermal stability of material parameters. The main problems of making filters with center frequency above 3GHz based on aluminum nitride resonators are complex process, narrow process window, low electromechanical coupling coefficient, and poor quality of aluminum nitride, which are difficult to meet the requirements of mass production. Therefore, there is a need for a resonator with a new structure that can meet the electrical requirements of UHF filters.
发明内容SUMMARY OF THE INVENTION
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。The following is an overview of the topics detailed in this article. This summary is not intended to limit the scope of protection of the claims.
本发明实施例提供一种体声波谐振器及其制备方法,能够降低体声波谐振器对光刻工艺的要求,简化体声波谐振器的制备工艺。The embodiments of the present invention provide a bulk acoustic wave resonator and a preparation method thereof, which can reduce the requirements of the bulk acoustic wave resonator on the lithography process and simplify the preparation process of the bulk acoustic wave resonator.
本发明实施例提供一种体声波谐振器,包括:顶电极1、压电材料薄膜2、底电极3和衬底4;其中,An embodiment of the present invention provides a bulk acoustic wave resonator, comprising: a
顶电极(1)的外周轮廓圈定的区域设置有一个以上第一通孔(1-1),压电材料薄膜(2)设置有一个以上第二通孔(2-1);底电极(3)的外周轮廓圈定的区域设置有一个以上第三通孔(3-1);The top electrode (1) is provided with one or more first through holes (1-1) in the area delineated by the outer peripheral contour, and the piezoelectric material film (2) is provided with one or more second through holes (2-1); the bottom electrode (3) ) is provided with more than one third through hole (3-1) in the area delineated by the outer peripheral contour of the );
其中,所述第一通孔(1-1)、所述第二通孔(2-1)和所述第三通孔(3-1) 用于通过在衬底(4)上刻蚀空腔的腐蚀性流体;所述第二通孔(2-1)在所述顶电极(1)的外周轮廓圈定的区域上的第一投影区域与所述第一通孔(1-1) 的重叠区域为第一镂空区域;所述第二通孔(2-1)在所述底电极(3)的外周轮廓圈定的区域上的第二投影区域与所述第三通孔(3-1)的重叠区域为第二镂空区域。Wherein, the first through hole (1-1), the second through hole (2-1) and the third through hole (3-1) are used to etch holes on the substrate (4) The corrosive fluid of the cavity; the first projection area of the second through hole (2-1) on the area delineated by the outer peripheral contour of the top electrode (1) and the first projection area of the first through hole (1-1) The overlapping area is the first hollow area; the second projection area of the second through hole (2-1) on the area delineated by the outer peripheral contour of the bottom electrode (3) and the third through hole (3-1) ) overlapping area is the second hollow area.
本发明实施例还提供一种体声波谐振器的制备方法,包括:An embodiment of the present invention also provides a method for preparing a bulk acoustic wave resonator, comprising:
在衬底的上表面沉积底电极材料与底电极引出电极材料,并进行图形化处理,以获得底电极引出电极和包含第三通孔的底电极;depositing a bottom electrode material and a bottom electrode lead-out electrode material on the upper surface of the substrate, and performing a patterning process to obtain a bottom electrode lead-out electrode and a bottom electrode including a third through hole;
在底电极材料上表面制备压电材料薄膜;A piezoelectric material film is prepared on the surface of the bottom electrode material;
刻蚀压电材料薄膜,获得第二通孔;etching the piezoelectric material film to obtain a second through hole;
在压电材料薄膜上表面沉积顶电极材料与顶电极引出电极材料,并进行图形化处理,以获得顶电极引出电极和包含第一通孔的顶电极;A top electrode material and a top electrode lead-out electrode material are deposited on the upper surface of the piezoelectric material film, and patterned to obtain a top electrode lead-out electrode and a top electrode including a first through hole;
腐蚀性流体通过第一通孔、第二通孔和第三通孔流向衬底刻蚀空腔,释放体声波谐振器;The corrosive fluid flows to the substrate etching cavity through the first through hole, the second through hole and the third through hole, and releases the bulk acoustic wave resonator;
其中,所述第二通孔在所述顶电极的外周轮廓圈定的区域上的第一投影区域与第一通孔的重叠区域为第一镂空区域;所述第二通孔在所述底电极的外周轮廓圈定的区域上的第二投影区域与第三通孔的重叠区域为第二镂空区域。Wherein, the first projection area of the second through hole on the area delineated by the outer circumference of the top electrode and the overlapping area of the first through hole is the first hollow area; the second through hole is in the bottom electrode The overlapping area of the second projection area and the third through hole on the area delineated by the outer peripheral contour is the second hollow area.
本申请技术方案包括:顶电极1、压电材料薄膜2、底电极3和衬底4;其中,顶电极1的外周轮廓圈定的区域设置有一个以上第一通孔1-1,压电材料薄膜2设置有一个以上第二通孔2-1;底电极3的外周轮廓圈定的区域设置有一个以上第三通孔3-1;其中,所述第一通孔1-1、所述第二通孔2-1和所述第三通孔3-1用于通过在衬底4上刻蚀空腔的腐蚀性流体;第二通孔2-1在所述顶电极1的外周轮廓圈定的区域上的第一投影区域与第一通孔1-1的重叠区域为第一镂空区域;所述第二通孔2-1在所述底电极3的外周轮廓圈定的区域上的第二投影区域与第三通孔3-1的重叠区域为第二镂空区域。本发明实施例在不需要应用牺牲层工艺、衬底背面光刻工艺以及布拉格反射层的情况下,通过设置的第一通孔1-1、第二通孔2-1和第三通孔3-1,通过在衬底上刻蚀空腔的腐蚀性流体,简化了体声波谐振器的制备工艺。The technical solution of the present application includes: a
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。Other features and advantages of the present invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the description, claims and drawings.
附图说明Description of drawings
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。The accompanying drawings are used to provide a further understanding of the technical solutions of the present invention, and constitute a part of the specification. They are used to explain the technical solutions of the present invention together with the embodiments of the present application, and do not limit the technical solutions of the present invention.
图1为本发明实施例体声波谐振器的立体图;1 is a perspective view of a bulk acoustic wave resonator according to an embodiment of the present invention;
图2为本发明实施例体声波谐振器的剖面图;2 is a cross-sectional view of a bulk acoustic wave resonator according to an embodiment of the present invention;
图3为本发明一实施例体声波谐振器的导纳曲线示意图;3 is a schematic diagram of an admittance curve of a bulk acoustic wave resonator according to an embodiment of the present invention;
图4为本发明另一实施例体声波谐振器的导纳曲线示意图;4 is a schematic diagram of an admittance curve of a bulk acoustic wave resonator according to another embodiment of the present invention;
图5为本发明再一实施例体声波谐振器的导纳曲线示意图;5 is a schematic diagram of an admittance curve of a bulk acoustic wave resonator according to another embodiment of the present invention;
图6为本发明实施例体声波谐振器的二维局部示意图;6 is a two-dimensional partial schematic diagram of a bulk acoustic wave resonator according to an embodiment of the present invention;
图7为本发明实施例隔离层的示意图;7 is a schematic diagram of an isolation layer according to an embodiment of the present invention;
图8为本发明实施例缺口示意图;8 is a schematic diagram of a gap according to an embodiment of the present invention;
图9为本发明实施例隔离槽的示意图;9 is a schematic diagram of an isolation trench according to an embodiment of the present invention;
图10为本发明实施例引出电极的示意图;FIG. 10 is a schematic diagram of a lead-out electrode according to an embodiment of the present invention;
图11为本发明实施例体声波谐振器的制备方法的流程图;11 is a flowchart of a method for preparing a bulk acoustic wave resonator according to an embodiment of the present invention;
图12为本发明一实施例制备体声波谐振器的组成示意图;12 is a schematic diagram of the composition of a bulk acoustic wave resonator prepared according to an embodiment of the present invention;
图13为本发明另一实施例制备体声波谐振器的组成示意图;13 is a schematic diagram of the composition of a bulk acoustic wave resonator prepared according to another embodiment of the present invention;
图14为本发明再一实施例制备体声波谐振器的组成示意图;FIG. 14 is a schematic diagram of the composition of a bulk acoustic wave resonator prepared according to still another embodiment of the present invention;
图15为本发明还一实施例制备体声波谐振器的组成示意图;15 is a schematic diagram of the composition of a bulk acoustic wave resonator prepared according to another embodiment of the present invention;
图16为本发明还一实施例制备体声波谐振器的组成示意图。FIG. 16 is a schematic diagram of the composition of a bulk acoustic wave resonator prepared according to another embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, the embodiments in the present application and the features in the embodiments may be arbitrarily combined with each other if there is no conflict.
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。The steps shown in the flowcharts of the figures may be performed in a computer system, such as a set of computer-executable instructions. Also, although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that herein.
图1为本发明实施例体声波谐振器的立体图,图2为本发明实施例体声波谐振器的剖面图,如图1和图2所示,本发明实施例体声波谐振器,包括:顶电极1、压电材料薄膜2、底电极3和衬底4;其中,1 is a perspective view of a bulk acoustic wave resonator according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a bulk acoustic wave resonator according to an embodiment of the present invention. As shown in FIGS. 1 and 2 , the bulk acoustic wave resonator according to the embodiment of the present invention includes: a top Electrode 1,
顶电极1的外周轮廓圈定的区域设置有一个以上第一通孔1-1,压电材料薄膜2设置有一个以上第二通孔2-1;底电极3的外周轮廓圈定的区域设置有一个以上第三通孔3-1;The area delineated by the outer periphery of the
其中,第一通孔1-1、第二通孔2-1和第三通孔3-1用于通过在衬底4上刻蚀空腔的腐蚀性流体;第二通孔2-1在顶电极1的外周轮廓圈定的区域上的第一投影区域与第一通孔1-1的重叠区域为第一镂空区域;第二通孔2-1在底电极3的外周轮廓圈定的区域上的第二投影区域与第三通孔3-1的重叠区域为第二镂空区域。Among them, the first through hole 1-1, the second through hole 2-1 and the third through hole 3-1 are used to pass the corrosive fluid that etches the cavity on the
本发明实施例在顶电极1和底电极3的外周轮廓圈定的区域中,分别设置第一通孔1-1和第三通孔3-1;在一种示例性实例中,本发明实施例顶电极1上有且仅有第一通孔1-1,底电极3上有且仅有第三通孔3-1。In the embodiment of the present invention, the first through hole 1-1 and the third through hole 3-1 are respectively provided in the regions delineated by the outer peripheral contours of the
本发明实施例在不需要应用牺牲层工艺、衬底背面光刻工艺以及布拉格反射层的情况下,通过设置的第一通孔1-1、第二通孔2-1和第三通孔3-1,通过在衬底上刻蚀空腔的腐蚀性流体,简化了体声波谐振器的制备工艺。In the embodiment of the present invention, the first through hole 1-1, the second through hole 2-1 and the third through
在一种示例性实例中,本发明实施例第一通孔1-1、第二通孔2-1和第三通孔3-1的通孔大小和位置,可以由本领域技术人员根据腐蚀性流体的体积、空腔的位置和衬底的刻蚀速度进行分析和设定。In an exemplary example, the size and position of the first through hole 1-1, the second through hole 2-1 and the third through hole 3-1 according to the embodiment of the present invention can be determined by those skilled in the art according to the corrosion resistance. The volume of the fluid, the location of the cavity and the etch rate of the substrate are analyzed and set.
在一种示例性实例中,本发明实施例中的腐蚀性流体可以包括:二氟化氙。在一种示例性实例中,本发明实施例腐蚀性流体可以由本领域技术人员根据衬底的材料确定。In an exemplary example, the corrosive fluid in the embodiment of the present invention may include: xenon difluoride. In an exemplary example, the corrosive fluid of the embodiment of the present invention can be determined by those skilled in the art according to the material of the substrate.
在一种示例性实例中,本发明实施例衬底的材料可以是硅或碳化硅,衬底4通过腐蚀性流体刻蚀获得空腔;本发明实施例利用衬底减弱体声波谐振器边缘处压电材料薄膜2以及顶电极1和底电极3的振动,从而实现了寄生模态的抑制。In an exemplary example, the material of the substrate in the embodiment of the present invention may be silicon or silicon carbide, and the
在一种示例性实例中,本发明实施例压电材料薄膜2由一层以上以下任意一种压电材料组成:In an exemplary embodiment, the
氮化铝、掺钪氮化铝、铌酸锂、钽酸锂和锆钛酸铅。Aluminum nitride, scandium-doped aluminum nitride, lithium niobate, lithium tantalate, and lead zirconate titanate.
在一种示例性实例中,本发明实施例顶电极1在底电极3的顶部所在平面的投影,均位于底电极3外周轮廓圈定的区域内。In an exemplary example, the projections of the
在一种示例性实例中,本发明实施例第一通孔1-1面积与顶电极1外周轮廓圈定区域的面积的比值为第一预设比值。In an exemplary example, the ratio of the area of the first through hole 1-1 in the embodiment of the present invention to the area of the area delineated by the outer periphery of the
在一种示例性实例中,本发明实施例第二通孔2-1的面积与顶电极1外周轮廓圈定区域的面积的比值为第二预设比值。In an exemplary example, the ratio of the area of the second through hole 2 - 1 according to the embodiment of the present invention to the area of the area delineated by the outer peripheral contour of the
在一种示例性实例中,本发明实施例第三通孔3-1的面积与顶电极1外周轮廓圈定区域的面积的比值为第三预设比值。In an exemplary example, the ratio of the area of the third through hole 3 - 1 in the embodiment of the present invention to the area of the area delineated by the outer periphery of the
在一种示例性实例中,本发明实施例中的第一预设比值大于0.001但小于 0.7;第二预设比值大于0.001但小于0.7;第三预设比值大于0.001但小于0.7。In an exemplary example, the first preset ratio in the embodiment of the present invention is greater than 0.001 but less than 0.7; the second preset ratio is greater than 0.001 but less than 0.7; the third preset ratio is greater than 0.001 but less than 0.7.
在一种示例性实例中,本发明实施例第一预设比值、第二预设比值和第三预设比值可以由本领域技术人员基于制备出的体声波谐振器的性能进行调整,在一种示例性实例中,本发明实施例第一预设比值、第二预设比值和第三预设比值可以大于0.01但小于0.09。In an exemplary example, the first preset ratio, the second preset ratio, and the third preset ratio in the embodiment of the present invention can be adjusted by those skilled in the art based on the performance of the prepared bulk acoustic wave resonator. In an exemplary example, the first preset ratio, the second preset ratio, and the third preset ratio in the embodiment of the present invention may be greater than 0.01 but less than 0.09.
在一种示例性实例中,本发明实施例衬底4的空腔的上表面的面积,与顶电极1的外周轮廓圈定的区域的面积的比值为第四预设比值。In an exemplary example, the ratio of the area of the upper surface of the cavity of the
在一种示例性实例中,本发明实施例中的第四预设比值大于0.8但小于4。In an exemplary example, the fourth preset ratio in the embodiment of the present invention is greater than 0.8 but less than 4.
在一种示例性实例中,本发明实施例第一镂空区域的面积与顶电极1外周轮廓圈定区域的面积的比值为第五预设比值;In an exemplary example, the ratio of the area of the first hollowed-out region in the embodiment of the present invention to the area of the region delineated by the outer periphery of the
第二镂空区域的面积与顶电极1外周轮廓圈定区域的面积的比值为第六预设比值;The ratio of the area of the second hollow area to the area of the area delineated by the outer periphery of the
其中,第五预设比值大于0.001但小于0.7;第六预设比值大于0.001但小于0.7。Wherein, the fifth preset ratio is greater than 0.001 but less than 0.7; the sixth preset ratio is greater than 0.001 but less than 0.7.
在一种示例性实例中,本发明实施例第五预设比值和第六预设比值可以由本领域技术人员基于制备出的体声波谐振器的性能进行调整,在一种示例性实例中,本发明实施例第五预设比值和第六预设比值可以大于0.01但小于0.09。在一种示例性实例中,本发明实施例当顶电极1和底电极3的材料均为铝,压电材料薄膜2为氮化铝,衬底4为硅,顶电极1和底电极3的上表面外周轮廓为圆形,顶电极1的半径和底电极3的半径均大于衬底4的空腔的上表面半径;各参数取值如表1所示;图3为本发明一实施例体声波谐振器的导纳曲线示意图,衬底4上的空腔的上表面的半径为58微米(μm)的体声波谐振器,在小频率范围内的导纳曲线;图4为本发明另一实施例体声波谐振器的导纳曲线示意图,衬底4上的空腔的上表面的半径为58μm的体声波谐振器,在大频率范围内的导纳曲线;衬底4上的空腔的上表面的面积,与顶电极1的外周轮廓圈定的区域的面积的比值为第四预设比值;本发明实施例基于表1的参数设计的体声波谐振器的串联谐振频率fs为4.876吉赫兹 (GHz),并联谐振频率fp为5.024GHz,机电耦合系数的计算值为7.27%。在这种参数组合下,衬底4上的空腔的上表面半径均小于顶电极和底电极半径,减弱了体声波谐振器边缘处压电材料薄膜以及电极的振动,抑制了体声波谐振器边缘造成的寄生模态。若衬底4上的空腔的上表面半径大于顶电极和底电极半径,如r3=62μm时,体声波谐振器在小频率范围内的导纳曲线,如图5所示,对比图3与图5,图5的导纳曲线中寄生模态较多。In an exemplary embodiment, the fifth preset ratio and the sixth preset ratio in the embodiment of the present invention may be adjusted by those skilled in the art based on the performance of the prepared bulk acoustic wave resonator. In an exemplary embodiment, this In the embodiment of the invention, the fifth preset ratio and the sixth preset ratio may be greater than 0.01 but less than 0.09. In an exemplary embodiment, in the embodiment of the present invention, when the materials of the
表1Table 1
图6为本发明实施例体声波谐振器的二维局部示意图,如图6所示,二维局部结构沿回转轴9旋转360°形成三维的体声波谐振器;假设:顶电极1 和底电极3为圆形;第一通孔1-1的数量为1且为圆形,第二通孔2-1的数量为1且为圆形;第三通孔3-1的数量为1且为圆形;第一通孔1-1的中心为顶电极1的几何中心,第二通孔2-1的中心为压电材料薄膜2的几何中心,第三通孔3-1为底电极3的几何中心,图中各参数的含义分别为:x1为第一通孔 1-1的半径,x2为第二通孔2-1的半径,x3为第三通孔3-1的半径,r1为顶电极1半径,r2为底电极3半径,r3为空腔的上表面半径,ht为顶电极1厚度, hp为压电材料薄膜2厚度,hb为底电极3厚度。本发明实施例当第一通孔1-1、第二通孔2-1和第三通孔3-1均为圆形时,忽略顶电极引出电极5和底电极引出电极8的三维结构可以用二维几何模型绕中心轴旋转构成,利于建模仿真。本发明实施例串联谐振频率fs和并联谐振频率fp共同决定体声波谐振器的机电耦合系数的大小,采用一阶泰勒近似公式表示为:FIG. 6 is a two-dimensional partial schematic diagram of a bulk acoustic wave resonator according to an embodiment of the present invention. As shown in FIG. 6 , the two-dimensional partial structure rotates 360° along the rotation axis 9 to form a three-dimensional bulk acoustic wave resonator; suppose: the top electrode 1 and the bottom electrode 3 is circular; the number of first through holes 1-1 is 1 and is circular, the number of second through holes 2-1 is 1 and is circular; the number of third through holes 3-1 is 1 and is Circular; the center of the first through hole 1-1 is the geometric center of the top electrode 1, the center of the second through hole 2-1 is the geometric center of the piezoelectric material film 2, and the third through hole 3-1 is the bottom electrode 3 The geometric center of , the meanings of the parameters in the figure are: x 1 is the radius of the first through hole 1-1, x 2 is the radius of the second through hole 2-1, x 3 is the radius of the third through hole 3-1 Radius, r 1 is the radius of the top electrode 1, r 2 is the radius of the bottom electrode 3, r 3 is the radius of the upper surface of the cavity, h t is the thickness of the top electrode 1, h p is the thickness of the piezoelectric material film 2, and h b is the bottom Electrode 3 thickness. In the embodiment of the present invention, when the first through hole 1-1, the second through hole 2-1 and the third through hole 3-1 are all circular, ignoring the three-dimensional structure of the top electrode lead-out
在一种示例性实例中,本发明实施例基于体声波谐振器参数得到导纳曲线,获得导纳曲线的压电方程的表达式为:In an exemplary example, the embodiment of the present invention obtains the admittance curve based on the parameters of the bulk acoustic wave resonator, and the expression of the piezoelectric equation for obtaining the admittance curve is:
T=cS-eET=cS-eE
D=εE-eSD=εE-eS
其中,T为应力矩阵,c为压电材料刚度矩阵,S为应变矩阵,e为压电应力矩阵,E为静电场强度,D为电位移,ε为压电材料介电矩阵;根据压电应力矩阵e对体声波谐振器谐振频率与机电耦合系数进行调整,压电应力矩阵为:Among them, T is the stress matrix, c is the piezoelectric material stiffness matrix, S is the strain matrix, e is the piezoelectric stress matrix, E is the electrostatic field strength, D is the electrical displacement, and ε is the piezoelectric material dielectric matrix; The stress matrix e adjusts the resonant frequency and electromechanical coupling coefficient of the bulk acoustic wave resonator, and the piezoelectric stress matrix is:
其中,e15、e22、e24、e31、e33分别为压电材料对应方向的压电系数;基于上述方程,利用有限元仿真的方法确定体声波谐振器的理论导纳曲线并对几何参数进行调整;制造体声波谐振器,测试得到体声波谐振器的实际导纳曲线,根据实际导纳曲线进一步调整几何尺寸与工艺参数,最终确定制备满足要求的体声波谐振器的几何尺寸与工艺参数。Among them, e15, e22, e24, e31, e33 are the piezoelectric coefficients of the piezoelectric material in the corresponding directions; based on the above equations, the theoretical admittance curve of the BAW resonator is determined by the method of finite element simulation and the geometric parameters are adjusted; Manufacture the BAW resonator, obtain the actual admittance curve of the BAW resonator, further adjust the geometrical dimensions and process parameters according to the actual admittance curve, and finally determine the geometrical dimensions and process parameters of the BAW resonator that meet the requirements.
在一种示例性实例中,本发明实施例中的第一通孔1-1为以下任一形状:圆形、椭圆形、规则多边形、不规则四边形和不规则五边形;In an exemplary example, the first through hole 1-1 in the embodiment of the present invention is any one of the following shapes: circle, ellipse, regular polygon, trapezoid and irregular pentagon;
在一种示例性实例中,本发明实施例中的第二通孔2-1为以下任一形状:圆形、椭圆形、规则多边形、不规则四边形和不规则五边形;In an exemplary example, the second through hole 2-1 in the embodiment of the present invention is any one of the following shapes: a circle, an ellipse, a regular polygon, a trapezoid, and an irregular pentagon;
在一种示例性实例中,本发明实施例中的第三通孔3-1为以下任一形状:圆形、椭圆形、规则多边形、不规则四边形和不规则五边形。In an exemplary example, the third through hole 3-1 in the embodiment of the present invention is any one of the following shapes: a circle, an ellipse, a regular polygon, a trapezoid and an irregular pentagon.
在一种示例性实例中,本发明实施例顶电极1在底电极3的顶部所在平面上投影形成的第二投影区域外周轮廓的形状包括以下任意之一:In an exemplary example, the shape of the outer peripheral contour of the second projection area formed by the projection of the
圆形、椭圆形、规则多边形、不规则四边形和不规则五边形。在一种示例性实例中,本发明实施例规则多边形包括:等边多边形、矩形等几何图形。Circles, ellipses, regular polygons, trapezoids, and pentagons. In an exemplary example, the regular polygon according to the embodiment of the present invention includes geometric figures such as an equilateral polygon and a rectangle.
在一种示例性实例中,本发明实施例顶电极1由一层或多层导电材料组成;In an exemplary embodiment, the
在一种示例性实例中,本发明实施例中的导电材料包括导电化合物或以下任一导电单质:金、铝、铜、钛、钼和铂。In an exemplary example, the conductive material in the embodiment of the present invention includes a conductive compound or any one of the following conductive elements: gold, aluminum, copper, titanium, molybdenum, and platinum.
在一种示例性实例中,本发明实施例底电极3由一层或多层导电材料组成;In an exemplary embodiment, the
在一种示例性实例中,本发明实施例中的导电材料包括导电化合物或以下任一导电单质:金、铝、铜、钛、钼和铂。In an exemplary example, the conductive material in the embodiment of the present invention includes a conductive compound or any one of the following conductive elements: gold, aluminum, copper, titanium, molybdenum, and platinum.
在一种示例性实例中,本发明实施例中的顶电极1采用铝铂双层电极,双层电极先沉积铝再沉积铂,铂作为防氧化保护层防止铝层上表面被氧化,提高器件长期服役的可靠性;In an exemplary example, the
在一种示例性实例中,本发明实施例中的底电极3采用铝铂双层电极,双层电极先沉积铝再沉积铂,铂作为防氧化保护层防止铝层上表面被氧化,提高器件长期服役的可靠性;底电极3上表面为铂时生长氮化铝的质量更好。In an exemplary example, the
在一种示例性实例中,本发明实施例体声波谐振器还包括:顶电极引出电极5;In an exemplary example, the BAW resonator according to the embodiment of the present invention further includes: a top electrode lead-out
顶电极引出电极5和压电材料薄膜2之间设置有隔离层6或空腔7;An
其中,隔离层6或空腔7用于隔离顶电极引出电极5和压电材料薄膜2。Wherein, the
图7为本发明实施例隔离层的示意图,如图7所示,顶电极引出电极5 和压电材料薄膜2之间设置有隔离层6,隔离层6隔离了顶电极引出电极5和压电材料薄膜2;在一种示例性实例中,本发明实施例隔离层6可以采用沉积方式制备。FIG. 7 is a schematic diagram of an isolation layer according to an embodiment of the present invention. As shown in FIG. 7, an
在一种示例性实例中,本发明实施例顶电极引出电极5在所述底电极3 的第四投影区域的位置设置有预设形状的缺口3-2;In an exemplary example, the top electrode lead-out
其中,缺口3-2的区域包含第四投影区域。Wherein, the area of the gap 3-2 includes the fourth projection area.
图8为本发明实施例缺口示意图,如图8所示,在底电极3上设置有缺口3-2;本发明实施例基于缺口3-2的设置,抑制了顶电极引出电极5与底电极3投影区域重合所造成的寄生模态。FIG. 8 is a schematic diagram of a notch in an embodiment of the present invention. As shown in FIG. 8 , a notch 3-2 is provided on the
在一种示例性实例中,本发明实施例体声波谐振器还包括顶电极引出电极5和底电极引出电极8,压电材料薄膜2上刻蚀有隔离槽2-2;In an exemplary embodiment, the bulk acoustic wave resonator of the embodiment of the present invention further includes a top electrode lead-out
其中,隔离槽2-2在底电极3顶部所在平面的投影位于底电极3和底电极引出电极8组成的区域内;隔离槽2-2位于由底电极3和底电极引出电极8 组成区域的外周轮廓与顶电极1的外周轮廓形成的中间区域。Among them, the projection of the isolation groove 2-2 on the plane where the top of the
在一种示例性实例中,本发明实施例顶电极1和底电极3为圆形,隔离槽2-2为扇环形,隔离槽2-2的内半径大于顶电极1的外半径,隔离槽2-2的外半径小于底电极3的外半径。In an exemplary embodiment, the
图9为本发明实施例隔离槽的示意图,如图9所示,本发明实施例通过隔离槽2-2有效抑制了声波从体声波谐振器有效区域向周围的传播,降低了间隔较小的多个体声波谐振器之间的相互影响。FIG. 9 is a schematic diagram of an isolation slot according to an embodiment of the present invention. As shown in FIG. 9 , in the embodiment of the present invention, the isolation slot 2-2 effectively suppresses the propagation of sound waves from the effective area of the bulk acoustic wave resonator to the surroundings, and reduces Interaction between multiple bulk acoustic wave resonators.
在一种示例性实例中,本发明实施例体声波谐振器还包括:底电极引出电极8;在一种示例性实例中,本发明实施例体声波谐振器可以包括两个以上顶电极引出电极5和两个以上底电极引出电极8;图10为本发明实施例引出电极的示意图,如图10所示,体声波谐振器包括两个顶电极引出电极5和两个底电极引出电极8。In an exemplary embodiment, the bulk acoustic wave resonator of the embodiment of the present invention further includes: a bottom electrode lead-out
图11为本发明实施例体声波谐振器的制备方法的流程图,如图11所示,包括:FIG. 11 is a flowchart of a method for preparing a bulk acoustic wave resonator according to an embodiment of the present invention, as shown in FIG. 11 , including:
步骤1101、在衬底的上表面沉积底电极材料与底电极引出电极材料,并进行图形化处理,以获得底电极引出电极和包含第三通孔的底电极;
步骤1102、在底电极材料上表面制备压电材料薄膜;这里,压电材料薄膜的制备方法包括沉积。
步骤1103、刻蚀压电材料薄膜,获得第二通孔;
步骤1104、在压电材料薄膜上表面沉积顶电极材料与顶电极引出电极材料,并进行图形化处理,以获得顶电极引出电极和包含第一通孔的顶电极;
步骤1105、腐蚀性流体通过第一通孔、第二通孔和第三通孔流向衬底刻蚀空腔,释放体声波谐振器;
其中,第二通孔在顶电极的外周轮廓圈定的区域上的第一投影区域与第一通孔的重叠区域为第一镂空区域;第二通孔在底电极的外周轮廓圈定的区域上的第二投影区域与第三通孔的重叠区域为第二镂空区域。Wherein, the first projection area of the second through hole on the area delineated by the outer circumference of the top electrode and the overlapping area of the first through hole is the first hollow area; the second through hole is on the area delineated by the outer circumference of the bottom electrode. The overlapping area of the second projection area and the third through hole is the second hollow area.
图12~图16为本发明实施例逐步制备体声波谐振器的成品图;如图12 所示,执行步骤1101获得的体声波谐振器的底电极3,底电极3中包含第三通孔3-1;如图13所示,执行步骤1102获得的体声波谐振器的压电材料薄膜2;如图13所示,执行步骤1103对压电材料薄膜2进行刻蚀,形成第二通孔 2-1;如图14所示,执行步骤1104获得的体声波谐振器的顶电极1,顶电极1 中包含第一通孔1-1;如图15所示,执行步骤1105将腐蚀性流体通过第一通孔、第二通孔和第三通孔流向衬底刻蚀空腔,释放体声波谐振器。FIGS. 12 to 16 are finished drawings of the step-by-step preparation of the bulk acoustic wave resonator according to the embodiment of the present invention; as shown in FIG. 12 , the
本发明实施例直接在衬底上沉积底电极,保证较薄的压电材料能具备良好的晶面取向性与较低的表面粗糙度;无需牺牲层工艺、衬底背面光刻工艺以及布拉格反射层,工艺更简单;利用衬底减弱谐振器边缘处压电材料薄膜以及电极的振动,从而抑制寄生模态;当第一通孔、第二通孔和第三通孔均为圆形时,忽略顶电极引出电极和底电极引出电极的体声波谐振器三维结构可以用二维几何模型绕中心轴旋转构成,利于建模仿真。本发明实施例可以灵活调节衬底材料空腔上表面的面积,使其接近甚至小于体声波谐振器有效区域的面积,在相邻谐振器间距极小的条件下保障相邻谐振器之间存在有衬底支撑的区域,有效缓解高集成度的超高频滤波器中压电谐振器电极与压电材料薄膜的弯曲问题,进而改善谐振器与滤波器的电学特性。In the embodiment of the present invention, the bottom electrode is directly deposited on the substrate to ensure that the thin piezoelectric material can have good crystal plane orientation and low surface roughness; no sacrificial layer process, substrate backside photolithography process and Bragg reflection are required layer, the process is simpler; the vibration of the piezoelectric material film and the electrode at the edge of the resonator is weakened by the substrate, thereby suppressing the parasitic mode; when the first through hole, the second through hole and the third through hole are all circular, The three-dimensional structure of the bulk acoustic wave resonator ignoring the top electrode lead-out electrode and the bottom electrode lead-out electrode can be constructed by rotating a two-dimensional geometric model around the central axis, which is beneficial for modeling and simulation. The embodiment of the present invention can flexibly adjust the area of the upper surface of the cavity of the substrate material to be close to or even smaller than the area of the effective area of the bulk acoustic wave resonator, and ensure the existence of space between adjacent resonators under the condition that the distance between adjacent resonators is extremely small. The area supported by the substrate can effectively alleviate the bending problem of the piezoelectric resonator electrode and the piezoelectric material film in the highly integrated ultra-high frequency filter, thereby improving the electrical characteristics of the resonator and the filter.
“本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。”。"It can be understood by those of ordinary skill in the art that all or some steps in the methods disclosed above, functional modules/units in systems and devices can be implemented as software, firmware, hardware and their appropriate combinations. In the hardware implementation , the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be performed cooperatively by several physical components. Some or all components may be implemented as software executed by a processor, such as a digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit. Such software may be distributed On computer-readable media, computer-readable media can include computer storage media (or non-transitory media) and communication media (or transitory media). As is known to those of ordinary skill in the art, the term computer storage media is included in the Volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but does not Limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disc (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may be used to store desired information And any other medium that can be accessed by the computer.In addition, it is well known to those of ordinary skill in the art that communication medium usually contains computer readable instructions, data structures, program modules or modulated data signals such as carrier waves or other transport mechanisms. other data, and may include any information delivery medium.".
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111290290.4A CN114006594B (en) | 2021-11-02 | 2021-11-02 | Bulk acoustic wave resonator and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111290290.4A CN114006594B (en) | 2021-11-02 | 2021-11-02 | Bulk acoustic wave resonator and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114006594A true CN114006594A (en) | 2022-02-01 |
CN114006594B CN114006594B (en) | 2024-08-13 |
Family
ID=79926555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111290290.4A Active CN114006594B (en) | 2021-11-02 | 2021-11-02 | Bulk acoustic wave resonator and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114006594B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005333642A (en) * | 2004-05-17 | 2005-12-02 | Samsung Electronics Co Ltd | Air gap type thin film bulk acoustic resonator and manufacturing method thereof |
CN104767500A (en) * | 2014-01-03 | 2015-07-08 | 李国强 | Cavity film bulk acoustic resonator and preparation method thereof |
CN105897211A (en) * | 2016-05-18 | 2016-08-24 | 华南理工大学 | Film bulk acoustic resonator having multiple resonance modes and preparation method thereof and filter |
CN109302158A (en) * | 2018-08-01 | 2019-02-01 | 河源市众拓光电科技有限公司 | A kind of thin film bulk acoustic wave resonator and preparation method thereof |
CN109474255A (en) * | 2018-11-14 | 2019-03-15 | 开元通信技术(厦门)有限公司 | Thin film bulk acoustic wave resonator and preparation method thereof, filter |
WO2020199511A1 (en) * | 2019-04-04 | 2020-10-08 | 中芯集成电路(宁波)有限公司上海分公司 | Bulk acoustic resonator and manufacturing method therefor, filter, and radio frequency communication system |
CN112436819A (en) * | 2020-11-24 | 2021-03-02 | 浙江信唐智芯科技有限公司 | Film bulk acoustic resonator with multiple top electrode shapes and preparation method thereof |
US20210184642A1 (en) * | 2016-03-11 | 2021-06-17 | Akoustis, Inc. | Piezoelectric acoustic resonator manufactured with piezoelectric thin film transfer process |
CN113381724A (en) * | 2021-07-02 | 2021-09-10 | 中国科学院上海微系统与信息技术研究所 | Bulk acoustic wave resonator and method for manufacturing the same |
-
2021
- 2021-11-02 CN CN202111290290.4A patent/CN114006594B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005333642A (en) * | 2004-05-17 | 2005-12-02 | Samsung Electronics Co Ltd | Air gap type thin film bulk acoustic resonator and manufacturing method thereof |
CN104767500A (en) * | 2014-01-03 | 2015-07-08 | 李国强 | Cavity film bulk acoustic resonator and preparation method thereof |
US20210184642A1 (en) * | 2016-03-11 | 2021-06-17 | Akoustis, Inc. | Piezoelectric acoustic resonator manufactured with piezoelectric thin film transfer process |
CN105897211A (en) * | 2016-05-18 | 2016-08-24 | 华南理工大学 | Film bulk acoustic resonator having multiple resonance modes and preparation method thereof and filter |
CN109302158A (en) * | 2018-08-01 | 2019-02-01 | 河源市众拓光电科技有限公司 | A kind of thin film bulk acoustic wave resonator and preparation method thereof |
CN109474255A (en) * | 2018-11-14 | 2019-03-15 | 开元通信技术(厦门)有限公司 | Thin film bulk acoustic wave resonator and preparation method thereof, filter |
WO2020199511A1 (en) * | 2019-04-04 | 2020-10-08 | 中芯集成电路(宁波)有限公司上海分公司 | Bulk acoustic resonator and manufacturing method therefor, filter, and radio frequency communication system |
CN112436819A (en) * | 2020-11-24 | 2021-03-02 | 浙江信唐智芯科技有限公司 | Film bulk acoustic resonator with multiple top electrode shapes and preparation method thereof |
CN113381724A (en) * | 2021-07-02 | 2021-09-10 | 中国科学院上海微系统与信息技术研究所 | Bulk acoustic wave resonator and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN114006594B (en) | 2024-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10355195B2 (en) | Acoustic resonator and method of manufacturing the same | |
CN110995196B (en) | Method for manufacturing resonator and resonator | |
CN113810015A (en) | Bulk acoustic wave resonator, preparation method thereof and filter | |
WO2021003699A1 (en) | Bulk acoustic wave filter and manufacturing method therefor | |
CN111211757B (en) | Top electrode structure of bulk acoustic wave resonator and manufacturing process | |
CN112217493A (en) | Bulk acoustic wave filter and method for manufacturing the same | |
KR20160086552A (en) | Acoustic resonator and manufacturing method thereof | |
CN111294010A (en) | Cavity structure of film bulk acoustic resonator and manufacturing process | |
CN113328723A (en) | Elastic wave resonator and preparation method thereof | |
CN111010127B (en) | A thin-film bulk acoustic wave resonator and its preparation method | |
CN113328722A (en) | Film bulk acoustic resonator and preparation method thereof | |
CN107979353A (en) | RF MEMS filters and preparation method thereof | |
CN110868188A (en) | An ultra-high frequency resonator structure based on ring electrodes | |
CN103414446A (en) | Film bulk acoustic resonator and method for manufacturing same | |
CN114342255B (en) | A method for forming a bulk acoustic wave resonance device | |
CN113193847B (en) | Structure for Improving Quality Factor and Optimizing Stress Distribution of Thin Film Bulk Acoustic Resonators | |
CN113992183B (en) | Bulk acoustic wave resonator | |
CN104917476B (en) | Method for manufacturing acoustic wave resonator | |
CN114006594A (en) | A kind of bulk acoustic wave resonator and preparation method thereof | |
WO2021103579A1 (en) | Thin film material surface acoustic wave device with gs layered electrode, preparation method therefor and use thereof | |
CN114301408B (en) | A method and device for preparing a bulk acoustic wave resonator | |
CN114303318B (en) | Bulk acoustic wave resonator, bulk acoustic wave filter | |
CN108206319A (en) | Microwave filter with suspension structure and preparation method thereof | |
CN114006593B (en) | Bulk acoustic wave resonator | |
CN113852357B (en) | Film bulk acoustic resonator structure and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |