CN105575990A - Wafer-level light emitting diode package and method of fabricating the same - Google Patents
Wafer-level light emitting diode package and method of fabricating the same Download PDFInfo
- Publication number
- CN105575990A CN105575990A CN201610131393.9A CN201610131393A CN105575990A CN 105575990 A CN105575990 A CN 105575990A CN 201610131393 A CN201610131393 A CN 201610131393A CN 105575990 A CN105575990 A CN 105575990A
- Authority
- CN
- China
- Prior art keywords
- layer
- insulating layer
- bump
- semiconductor layer
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 31
- 239000004065 semiconductor Substances 0.000 claims abstract description 184
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 15
- 230000001681 protective effect Effects 0.000 abstract description 15
- 239000010410 layer Substances 0.000 description 448
- 239000000758 substrate Substances 0.000 description 60
- 229910052751 metal Inorganic materials 0.000 description 27
- 239000002184 metal Substances 0.000 description 27
- 238000000926 separation method Methods 0.000 description 26
- 238000000034 method Methods 0.000 description 18
- 239000002356 single layer Substances 0.000 description 12
- 229910052594 sapphire Inorganic materials 0.000 description 9
- 239000010980 sapphire Substances 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 6
- 238000000059 patterning Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000012858 packaging process Methods 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- -1 region Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H29/00—Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
- H10H29/10—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
- H10H29/14—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
- H10H29/142—Two-dimensional arrangements, e.g. asymmetric LED layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00
- H01L25/0756—Stacked arrangements of devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8312—Electrodes characterised by their shape extending at least partially through the bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/8506—Containers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H29/00—Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
- H10H29/10—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
- H10H29/14—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00
- H01L25/0753—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/018—Bonding of wafers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8316—Multi-layer electrodes comprising at least one discontinuous layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8514—Wavelength conversion means characterised by their shape, e.g. plate or foil
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
本发明的示例性实施例提供了一种晶片级发光二极管(LED)封装件及其制造方法。所述LED封装件包括:半导体堆叠件,包括第一导电型半导体层、有源层和第二导电型半导体层;多个接触孔,布置在第二导电型半导体层和有源层中,接触孔暴露第一导电型半导体层;第一凸块,布置在半导体堆叠件的第一侧上,第一凸块通过多个接触孔电连接到第一导电型半导体层;第二凸块,布置在半导体堆叠件的第一侧上,第二凸块电连接到第二导电型半导体层以及保护绝缘层,覆盖半导体堆叠件的侧壁。
Exemplary embodiments of the present invention provide a wafer level light emitting diode (LED) package and a method of manufacturing the same. The LED package includes: a semiconductor stack including a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer; a plurality of contact holes arranged in the second conductivity type semiconductor layer and the active layer, contacting The hole exposes the first conductive type semiconductor layer; the first bump is arranged on the first side of the semiconductor stack, and the first bump is electrically connected to the first conductive type semiconductor layer through a plurality of contact holes; the second bump is arranged On the first side of the semiconductor stack, the second bump is electrically connected to the second conductive type semiconductor layer and the protective insulating layer, covering sidewalls of the semiconductor stack.
Description
本申请是向中国国家知识产权局提交的申请日为2011年9月5日的标题为“晶片级发光二极管封装件及其制造方法”的第201180046150.0号申请的分案申请。This application is a divisional application of Application No. 201180046150.0 with the filing date of September 5, 2011, entitled "Wafer-Level Light-Emitting Diode Package and Manufacturing Method" submitted to the State Intellectual Property Office of China.
技术领域technical field
本发明涉及一种发光二极管封装件及其制造方法,更具体地讲,涉及一种晶片级发光二极管封装件及其制造方法。The present invention relates to a light-emitting diode package and its manufacturing method, more specifically, to a wafer-level light-emitting diode package and its manufacturing method.
背景技术Background technique
发光二极管(LED)是包括N型半导体和P型半导体并通过空穴和电子的复合发光的半导体装置。这样的LED已经用在诸如显示装置、交通灯和背光单元的广泛的适用范围中。另外,考虑到比目前的电灯泡或荧光灯低的功耗和更长的寿命的潜在优点,LED的适用范围已经通过代替目前的白炽灯和荧光灯扩大到普通照明。A light emitting diode (LED) is a semiconductor device including an N-type semiconductor and a P-type semiconductor and emitting light through recombination of holes and electrons. Such LEDs have been used in a wide range of applications such as display devices, traffic lights, and backlight units. In addition, considering potential advantages of lower power consumption and longer life than current electric bulbs or fluorescent lamps, the application range of LEDs has been expanded to general lighting by replacing current incandescent lamps and fluorescent lamps.
LED可以用在LED模块中。LED模块是通过制造晶片级的LED芯片的工艺、封装工艺和模块化(modulation)工艺制造的。具体地说,半导体层生长在诸如蓝宝石基底的基底上,经过晶片级图案化工艺来制造具有电极焊盘的LED芯片,然后分成单个芯片(芯片制造工艺)。然后,在将单个芯片安装在引线框架或印刷电路板上后,通过键合引线将电极焊盘电连接到引线端子,由成型构件覆盖LED芯片,从而提供LED封装件(封装工艺)。然后,将LED封装件安装在诸如金属核心印刷电路板(MC-PCB)的电路板上,从而提供诸如光源模块的LED模块(模块化工艺)。LEDs can be used in LED modules. The LED module is manufactured through a process of manufacturing LED chips at a wafer level, a packaging process, and a modulation process. Specifically, a semiconductor layer is grown on a substrate such as a sapphire substrate, undergoes a wafer-level patterning process to manufacture LED chips with electrode pads, and is then divided into individual chips (chip manufacturing process). Then, after individual chips are mounted on a lead frame or printed circuit board, the electrode pads are electrically connected to lead terminals by bonding wires, and the LED chips are covered by a molding member, thereby providing an LED package (packaging process). Then, the LED package is mounted on a circuit board such as a metal core printed circuit board (MC-PCB), thereby providing an LED module such as a light source module (modular process).
在封装工艺中,壳和/或成型构件可以设置到LED芯片以保护LED芯片免受外部环境的影响。另外,在成型构件中可以包含磷光体以转换由LED芯片发射的光,使得LED封装件可以发射白光,从而提供白色LED封装件。可以将这样的白色LED封装件安装在诸如MC-PCB的电路板上,可以将二次透镜设置到LED封装件以调节从LED封装件发射的光的方向特性,从而提供期望的白色LED模块。During the encapsulation process, a case and/or a molding member may be provided to the LED chip to protect the LED chip from the external environment. In addition, a phosphor may be included in the molding member to convert light emitted from the LED chip so that the LED package may emit white light, thereby providing a white LED package. Such a white LED package may be mounted on a circuit board such as MC-PCB, and a secondary lens may be provided to the LED package to adjust directional characteristics of light emitted from the LED package, thereby providing a desired white LED module.
然而,可能难于实现包括引线框架或印刷电路板的传统LED封装件的小型化和令人满意的散热。此外,由于由引线框架或印刷电路板对光的吸收、因引线端子的电阻热等,可能使LED的发光效率恶化。However, miniaturization and satisfactory heat dissipation of conventional LED packages including lead frames or printed circuit boards may be difficult to achieve. In addition, the luminous efficiency of the LED may be deteriorated due to absorption of light by a lead frame or a printed circuit board, resistance heat due to lead terminals, and the like.
另外,可以分开进行芯片制造工艺、封装工艺和模块化工艺,这样增加了用于制造LED模块的时间和成本。In addition, a chip manufacturing process, a packaging process, and a modular process may be performed separately, which increases time and cost for manufacturing an LED module.
同时,交流电(AC)LED已经生产并投入市场。ACLED包括直接连接到AC电源以允许连续发光的LED。在Sakai等发表的第7,417,259号美国专利中公开了可以通过直接连接到高电压AC电源来使用的ACLED的一个示例。Meanwhile, alternating current (AC) LEDs have been produced and put on the market. ACLEDs include LEDs that are connected directly to an AC power source to allow continuous light emission. One example of an AC LED that can be used by connecting directly to a high voltage AC power source is disclosed in US Patent No. 7,417,259 to Sakai et al.
根据第7,417,259号美国专利,LED元件以二维图案排列在绝缘基底(例如,蓝宝石基底)上,并串联连接以形成LED阵列。LED阵列彼此串联连接,从而提供可以在高电压下运行的发光装置。另外,这样的LED阵列可以在蓝宝石基底上彼此反向并联地连接,从而提供可以利用AC电源运行以连续地发光的单芯片发光装置。According to US Pat. No. 7,417,259, LED elements are arranged in a two-dimensional pattern on an insulating substrate (eg, a sapphire substrate) and connected in series to form an LED array. The arrays of LEDs are connected in series with each other, thereby providing a light emitting device that can operate at high voltages. In addition, such LED arrays can be connected in antiparallel to each other on a sapphire substrate, thereby providing a single-chip light emitting device that can be operated with AC power to continuously emit light.
由于AC-LED包括在生长基底上(例如,在蓝宝石基底上)的发光单元,所以AC-LED限制发光单元的结构并且可能限制光提取效率的改进。因此,已经对发光二极管(例如,基于基底分离工艺并包括彼此串联连接的发光单元的AC-LED)进行了调查研究。Since the AC-LED includes a light emitting unit on a growth substrate (for example, on a sapphire substrate), the AC-LED limits the structure of the light emitting unit and may limit improvement in light extraction efficiency. Accordingly, investigations have been conducted on light emitting diodes (for example, AC-LEDs based on a substrate separation process and including light emitting cells connected to each other in series).
发明内容Contents of the invention
技术问题technical problem
本发明的示例性实施例提供了一种可在不使用传统的引线框架或印刷电路板的情况下直接形成在电路板的模块中的晶片级LED封装件及其制造方法。Exemplary embodiments of the present invention provide a wafer level LED package and a manufacturing method thereof that may be directly formed in a module of a circuit board without using a conventional lead frame or a printed circuit board.
本发明的示例性实施例还提供了一种具有高效率并展现出改善的散热的晶片级LED封装件及其制造方法。Exemplary embodiments of the present invention also provide a wafer level LED package having high efficiency and exhibiting improved heat dissipation and a method of manufacturing the same.
本发明的示例性实施例还提供了一种可减少LED模块的制造时间和制造成本的LED封装件的制造方法。Exemplary embodiments of the present invention also provide a method of manufacturing an LED package that can reduce manufacturing time and cost of an LED module.
本发明的示例性实施例还提供了一种具有高效率并展现出改善的散热的LED模块及其制造方法。Exemplary embodiments of the present invention also provide an LED module having high efficiency and exhibiting improved heat dissipation and a method of manufacturing the same.
本发明的示例性实施例还提供了一种包括多个发光单元并可在不使用传统的引线框架或印刷电路板的情况下直接形成在电路板的模块中的晶片级发光二极管封装件及其制造方法。Exemplary embodiments of the present invention also provide a wafer level light emitting diode package including a plurality of light emitting units and which can be directly formed in a module of a circuit board without using a conventional lead frame or a printed circuit board, and the same. Manufacturing method.
本发明的其他方面将在下面的描述中进行阐述,并部分地根据描述将是明显的,或者可以通过本发明的实施而明了。Additional aspects of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
技术方案Technical solutions
本发明的示例性实施例公开了一种发光二极管,所述发光二极管包括:半导体堆叠件,包括第一半导体层、第二半导体层以及设置在第一半导体层和第二半导体层之间的有源层,第一半导体层和第二半导体层具有不同的导电类型;第一接触层,设置在第一半导体层上;第二接触层,设置在第二半导体层上;第一绝缘层,覆盖有源层和第二半导体层的侧壁以及第二接触层,并且接触第一接触层,第一绝缘层包括暴露第一半导体层的第一开口和暴露第二接触层的第二开口;第二绝缘层,设置在第一绝缘层上;第一凸块,设置在半导体堆叠件的第一侧上,第一凸块电连接到第一接触层;第二凸块,设置在半导体堆叠件的第一侧上,第二凸块电连接到第二接触层;以及第三绝缘层,设置在第一凸块和第二凸块的侧表面上。An exemplary embodiment of the present invention discloses a light emitting diode including: a semiconductor stack including a first semiconductor layer, a second semiconductor layer, and an active semiconductor layer disposed between the first semiconductor layer and the second semiconductor layer. The source layer, the first semiconductor layer and the second semiconductor layer have different conductivity types; the first contact layer is arranged on the first semiconductor layer; the second contact layer is arranged on the second semiconductor layer; the first insulating layer covers The side walls of the active layer and the second semiconductor layer and the second contact layer are in contact with the first contact layer, and the first insulating layer includes a first opening exposing the first semiconductor layer and a second opening exposing the second contact layer; Two insulating layers, arranged on the first insulating layer; first bumps, arranged on the first side of the semiconductor stack, the first bumps are electrically connected to the first contact layer; second bumps, arranged on the semiconductor stack The second bump is electrically connected to the second contact layer on the first side of the first bump; and a third insulating layer is disposed on side surfaces of the first bump and the second bump.
本发明的示例性实施例公开了一种LED封装件,所述LED封装件包括:半导体堆叠件,包括第一导电型半导体层、有源层和第二导电型半导体层;多个接触孔,布置在第二导电型半导体层和有源层中,接触孔暴露第一导电型半导体层;第一凸块,布置在半导体堆叠件的第一侧上,第一凸块通过多个接触孔被电连接到第一导电型半导体层;第二凸块,布置在半导体堆叠件的第一侧上,第二凸块被电连接到第二导电型半导体层;以及保护绝缘层,覆盖半导体堆叠件的侧壁。An exemplary embodiment of the present invention discloses an LED package including: a semiconductor stack including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer; a plurality of contact holes, disposed in the second conductivity type semiconductor layer and the active layer, the contact holes exposing the first conductivity type semiconductor layer; the first bumps disposed on the first side of the semiconductor stack, the first bumps being exposed through the plurality of contact holes electrically connected to the first conductive type semiconductor layer; second bumps arranged on the first side of the semiconductor stack, the second bumps being electrically connected to the second conductive type semiconductor layer; and a protective insulating layer covering the semiconductor stack side wall.
本发明的示例性实施例还公开了一种发光二极管模块,所述发光二极管模块包括根据上述示例性实施例的LED封装件。所述LED模块可以包括:电路板;LED封装件,安装在电路板上;以及透镜,调节从LED封装件发射的光的方向角。Exemplary embodiments of the present invention also disclose a light emitting diode module including the LED package according to the above exemplary embodiments. The LED module may include: a circuit board; an LED package mounted on the circuit board; and a lens adjusting a direction angle of light emitted from the LED package.
本发明的示例性实施例还公开了一种制造LED封装件的方法。所述方法包括:在第一基底上形成包括第一导电型半导体层、有源层和第二导电型半导体层的半导体堆叠件;使半导体堆叠件图案化以形成芯片分离区域;使第二导电型半导体层和有源层图案化以形成暴露第一导电型半导体层的多个接触孔;形成覆盖半导体堆叠件的在芯片分离区域中的侧壁的保护绝缘层;以及在半导体堆叠件上形成第一凸块和第二凸块。第一凸块通过多个接触孔电连接到第一导电型半导体层,第二凸块电连接到第二导电型半导体层。Exemplary embodiments of the present invention also disclose a method of manufacturing the LED package. The method includes: forming a semiconductor stack including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer on a first substrate; patterning the semiconductor stack to form a chip isolation region; making the second conductive type type semiconductor layer and the active layer to form a plurality of contact holes exposing the first conductivity type semiconductor layer; form a protective insulating layer covering the sidewall of the semiconductor stack in the chip isolation region; and form a semiconductor stack on the the first bump and the second bump. The first bump is electrically connected to the first conductive type semiconductor layer through a plurality of contact holes, and the second bump is electrically connected to the second conductive type semiconductor layer.
本发明的示例性实施例还公开了一种发光二极管封装件。LED封装件包括:多个发光单元,每个发光单元包括第一导电型半导体层、有源层和第二导电型半导体层;多个接触孔,布置在每个发光单元的第二导电型半导体层和有源层中,接触孔暴露每个发光单元的第一导电型半导体层;保护绝缘层,覆盖每个发光单元的侧壁;连接件,位于布置在发光单元的第一侧上,并使两个邻近的发光单元彼此电连接;第一凸块,布置在发光单元的第一侧上,并通过发光单元的第一发光单元的多个接触孔电连接到第一导电型半导体层;以及第二凸块,布置在发光单元的第一侧上,并电连接到发光单元的第二发光单元的第二导电型半导体层。Exemplary embodiments of the present invention also disclose a light emitting diode package. The LED package includes: a plurality of light emitting units, each light emitting unit including a first conductive type semiconductor layer, an active layer and a second conductive type semiconductor layer; a plurality of contact holes, arranged in the second conductive type semiconductor layer of each light emitting unit In the layer and the active layer, the contact hole exposes the first conductivity type semiconductor layer of each light emitting unit; the protective insulating layer covers the sidewall of each light emitting unit; the connector is located on the first side of the light emitting unit, and electrically connecting two adjacent light-emitting units to each other; a first bump arranged on a first side of the light-emitting units and electrically connected to the first conductive type semiconductor layer through a plurality of contact holes of the first light-emitting units of the light-emitting units; and a second bump arranged on the first side of the light emitting unit and electrically connected to the second conductive type semiconductor layer of the second light emitting unit of the light emitting unit.
本发明的示例性实施例还公开了一种发光二极管模块,所述发光二极管模块包括以上描述的LED封装件。所述模块包括:电路板;LED封装件,布置在电路板上;以及透镜,调节从LED封装件发射的光的方向角。Exemplary embodiments of the present invention also disclose a light emitting diode module including the LED package described above. The module includes: a circuit board; an LED package disposed on the circuit board; and a lens adjusting a direction angle of light emitted from the LED package.
本发明的示例性实施例还公开了一种制造包括多个发光单元的LED封装件的方法。所述方法包括:在第一基底上形成包括第一导电型半导体层、有源层、第二导电型半导体层的半导体堆叠件;使半导体堆叠件图案化以形成芯片分离区域和发光单元分离区域;使第二导电型半导体层和有源层图案化以形成多个发光单元,每个发光单元具有暴露第一导电型半导体层的多个接触孔;形成覆盖半导体堆叠件的在芯片分离区域和发光单元分离区域中的侧壁的保护绝缘层;形成将邻近的发光单元彼此串联连接的连接件;以及在多个发光单元上形成第一凸块和第二凸块。这里,第一凸块通过发光单元的第一发光单元的多个接触孔电连接到第一导电型半导体层,第二凸块电连接到发光单元的第二发光单元的第二导电型半导体层。Exemplary embodiments of the present invention also disclose a method of manufacturing an LED package including a plurality of light emitting units. The method includes: forming a semiconductor stack including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer on a first substrate; patterning the semiconductor stack to form a chip separation region and a light emitting unit separation region ; patterning the second conductivity type semiconductor layer and the active layer to form a plurality of light emitting units, each light emitting unit having a plurality of contact holes exposing the first conductivity type semiconductor layer; A protective insulating layer for sidewalls in the light emitting unit separation region; forming a connection piece connecting adjacent light emitting units to each other in series; and forming a first bump and a second bump on the plurality of light emitting units. Here, the first bump is electrically connected to the first conductive type semiconductor layer through a plurality of contact holes of the first light emitting unit of the light emitting unit, and the second bump is electrically connected to the second conductive type semiconductor layer of the second light emitting unit of the light emitting unit. .
将理解的是,前面的总体描述和下面的详细描述都是示例性的和说明性的,并且意图对所保护的本发明提供进一步的解释。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
附图说明Description of drawings
附图示出了本发明的示例性实施例,并与描述一起用于解释本发明的原理,其中,包括附图以提供对本发明的进一步理解,使附图并入本说明书并构成本说明书的一部分。The accompanying drawings illustrate exemplary embodiments of the invention and together with the description serve to explain the principles of the invention and are included to provide a further understanding of the invention and are incorporated in and constitute an integral part of this specification. part.
图1是根据本发明的第一示例性实施例的发光二极管封装件的示意性剖视图。FIG. 1 is a schematic cross-sectional view of a light emitting diode package according to a first exemplary embodiment of the present invention.
图2是根据本发明的第二示例性实施例的发光二极管封装件的示意性剖视图。2 is a schematic cross-sectional view of a light emitting diode package according to a second exemplary embodiment of the present invention.
图3是包括根据第一示例性实施例的发光二极管封装件的发光二极管模块的剖视图。3 is a cross-sectional view of a light emitting diode module including the light emitting diode package according to the first exemplary embodiment.
图4至图12示出了制造根据第一示例性实施例的发光二极管封装件的方法,其中(a)是平面图,(b)是沿图5至图10中的A-A线截取的剖视图。4 to 12 illustrate a method of manufacturing a light emitting diode package according to a first exemplary embodiment, wherein (a) is a plan view and (b) is a cross-sectional view taken along line A-A in FIGS. 5 to 10 .
图13是示出制造根据本发明的第二示例性实施例的发光二极管封装件的方法的剖视图。13 is a cross-sectional view illustrating a method of manufacturing a light emitting diode package according to a second exemplary embodiment of the present invention.
图14是根据本发明的第三示例性实施例的发光二极管封装件的示意性剖视图。14 is a schematic cross-sectional view of a light emitting diode package according to a third exemplary embodiment of the present invention.
图15是根据本发明的第四示例性实施例的发光二极管封装件的示意性剖视图。15 is a schematic cross-sectional view of a light emitting diode package according to a fourth exemplary embodiment of the present invention.
图16是包括根据第三示例性实施例的发光二极管封装件的发光二极管模块的剖视图。16 is a cross-sectional view of a light emitting diode module including a light emitting diode package according to a third exemplary embodiment.
图17至图26示出了制造根据第三示例性实施例的发光二极管封装件的方法,其中(a)是平面图,(b)是沿图18至图23中的A-A线截取的剖视图。17 to 26 illustrate a method of manufacturing a light emitting diode package according to a third exemplary embodiment, wherein (a) is a plan view and (b) is a cross-sectional view taken along line A-A in FIGS. 18 to 23 .
图27是示出制造根据本发明的第四示例性实施例的发光二极管封装件的方法的剖视图。27 is a cross-sectional view illustrating a method of manufacturing a light emitting diode package according to a fourth exemplary embodiment of the present invention.
具体实施方式detailed description
在下文中参照附图更加充分地描述了本发明,在附图中示出了本发明的示例性实施例。然而,本发明可以以许多不同的形式实施并且不应被理解为限制于这里所阐述的示例性实施例。相反,提供这些示例性实施例使得本公开完全并将向本领域技术人员充分地传达本发明的范围。在附图中,为清晰起见,可夸大层和区域的尺寸和相对尺寸。在附图中同样的标号表示同样的元件。The present invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. However, this invention may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure is thorough and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. Like reference numerals denote like elements in the drawings.
将理解的是,当诸如层、膜、区域或基底的元件被称为“在”另一元件“上”时,它可以直接在另一元件上或者也可以存在中间元件。相反,当元件被称为“直接在”另一元件“上”时,则没有中间元件存在。It will be understood that when an element such as a layer, film, region, or substrate is referred to as being "on" another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" another element, there are no intervening elements present.
图1是根据本发明的第一示例性实施例的LED封装件100的示意性剖视图。Fig. 1 is a schematic cross-sectional view of an LED package 100 according to a first exemplary embodiment of the present invention.
参照图1,LED封装件100可以包括半导体堆叠件30、第一接触层35、第二接触层31、第一绝缘层33、第二绝缘层37、第一电极焊盘39a、第二电极焊盘39b、第一凸块45a和第二凸块45b。LED封装件100还可以包括绝缘层43、哑凸块45c和波长转换器51。1, the LED package 100 may include a semiconductor stack 30, a first contact layer 35, a second contact layer 31, a first insulating layer 33, a second insulating layer 37, a first electrode pad 39a, a second electrode pad The disk 39b, the first bump 45a and the second bump 45b. The LED package 100 may further include an insulating layer 43 , a dummy bump 45 c and a wavelength converter 51 .
半导体堆叠件30包括第一导电型上半导体层25、有源层27和第二导电型下半导体层29。有源层27设置在上半导体层25和下半导体层29之间。The semiconductor stack 30 includes a first conductive type upper semiconductor layer 25 , an active layer 27 and a second conductive type lower semiconductor layer 29 . The active layer 27 is disposed between the upper semiconductor layer 25 and the lower semiconductor layer 29 .
有源层27、上半导体层25和下半导体层29可以由诸如(Al、Ga、In)N半导体的III-N基化合物半导体构成。上半导体层25和下半导体层29中的每个可以是单层或多层。例如,除了接触层和覆层之外,上半导体层25和/或下半导体层29可以包括超晶格层。有源层27可具有单量子阱结构或多量子阱结构。第一导电型可以是n型,第二导电型可以是p型。可选择的,第一导电型可以是p型,第二导电型可以是n型。由于上半导体层25可由具有相对低的比电阻的n型半导体层形成,所以上半导体层25可具有相对厚的厚度。因此,可以在上半导体层25的上表面上形成粗糙的表面R,其中粗糙的表面R增大了在有源层27中产生的光的提取效率。The active layer 27, the upper semiconductor layer 25, and the lower semiconductor layer 29 may be composed of a III-N-based compound semiconductor such as (Al, Ga, In)N semiconductor. Each of the upper semiconductor layer 25 and the lower semiconductor layer 29 may be a single layer or a multilayer. For example, the upper semiconductor layer 25 and/or the lower semiconductor layer 29 may include a superlattice layer in addition to the contact layer and the cladding layer. The active layer 27 may have a single quantum well structure or a multiple quantum well structure. The first conductivity type may be n-type, and the second conductivity type may be p-type. Optionally, the first conductivity type may be p-type, and the second conductivity type may be n-type. Since the upper semiconductor layer 25 may be formed of an n-type semiconductor layer having relatively low specific resistance, the upper semiconductor layer 25 may have a relatively thick thickness. Accordingly, a rough surface R may be formed on the upper surface of the upper semiconductor layer 25 , wherein the rough surface R increases extraction efficiency of light generated in the active layer 27 .
半导体堆叠件30具有穿过第二导电型下半导体层29和有源层27以暴露第一导电型上半导体层的多个接触孔30a(参见图5中的(b)),第一接触层35接触暴露在多个接触孔中的第一导电型上半导体层25。The semiconductor stack 30 has a plurality of contact holes 30a passing through the second conductivity type lower semiconductor layer 29 and the active layer 27 to expose the first conductivity type upper semiconductor layer (see (b) in FIG. 35 contacts the first conductive type upper semiconductor layer 25 exposed in the plurality of contact holes.
第二接触层31接触第二导电型下半导体层29。第二接触层31包括反射金属层来反射在有源层27中产生的光。另外,第二接触层31可以形成与第二导电型下半导体层29的欧姆接触。The second contact layer 31 contacts the second conductive type lower semiconductor layer 29 . The second contact layer 31 includes a reflective metal layer to reflect light generated in the active layer 27 . In addition, the second contact layer 31 may form an ohmic contact with the second conductive type lower semiconductor layer 29 .
第一绝缘层33覆盖第二接触层31。另外,第一绝缘层33覆盖半导体堆叠件30的暴露在多个接触孔30a中的侧壁。此外,第一绝缘层33可以覆盖半导体堆叠件30的侧表面。第一绝缘层33使第一接触层35与第二接触层31绝缘,同时使暴露在多个接触孔30a中的第二导电型下半导体层29和有源层27与第一接触层35绝缘。第一绝缘层33可以由单层或多层(例如,氧化硅膜或氮化硅膜)组成。可选择地,第一绝缘层33可以由通过交替地堆叠具有不同折射率的诸如SiO2/TiO2或SiO2/Nb2O5的绝缘层形成的分布式布拉格反射器组成。The first insulating layer 33 covers the second contact layer 31 . In addition, the first insulating layer 33 covers sidewalls of the semiconductor stack 30 exposed in the plurality of contact holes 30a. In addition, the first insulating layer 33 may cover side surfaces of the semiconductor stack 30 . The first insulating layer 33 insulates the first contact layer 35 from the second contact layer 31, and simultaneously insulates the second conductive type lower semiconductor layer 29 and the active layer 27 exposed in the plurality of contact holes 30a from the first contact layer 35. . The first insulating layer 33 may be composed of a single layer or multiple layers (for example, a silicon oxide film or a silicon nitride film). Alternatively, the first insulating layer 33 may be composed of a distributed Bragg reflector formed by alternately stacking insulating layers having different refractive indices, such as SiO 2 /TiO 2 or SiO 2 /Nb 2 O 5 .
第一接触层35位于第一绝缘层33下方并且在多个接触孔30a中穿过第一绝缘层33来接触第一导电型上半导体层25。第一接触层35包括接触第一导电型上半导体层25的接触部分35a和将接触部分35a彼此连接的连接部分35b。因此,通过连接部分35b将接触部分35a彼此电连接。第一接触层35形成在第一绝缘层33的一些区域下方并且可由反射金属层组成。The first contact layer 35 is located under the first insulating layer 33 and passes through the first insulating layer 33 in the plurality of contact holes 30 a to contact the first conductive type upper semiconductor layer 25 . The first contact layer 35 includes a contact portion 35 a contacting the first conductive type upper semiconductor layer 25 and a connection portion 35 b connecting the contact portions 35 a to each other. Accordingly, the contact portions 35a are electrically connected to each other through the connection portion 35b. The first contact layer 35 is formed under some regions of the first insulating layer 33 and may consist of a reflective metal layer.
第二绝缘层37在第一接触层35下方覆盖第一接触层35。此外,第二绝缘层37在覆盖第一绝缘层33的同时覆盖半导体堆叠件30的侧表面。第二绝缘层37可以由单层或多层组成。另外,第二绝缘层37可以是分布式布拉格反射器。The second insulating layer 37 covers the first contact layer 35 below the first contact layer 35 . In addition, the second insulating layer 37 covers the side surfaces of the semiconductor stack 30 while covering the first insulating layer 33 . The second insulating layer 37 may consist of a single layer or multiple layers. In addition, the second insulating layer 37 may be a distributed Bragg reflector.
第一电极焊盘39a和第二电极焊盘39b位于第二绝缘层37下方。第一电极焊盘39a可穿过第二绝缘层37连接到第一接触层35。此外,第二电极焊盘39b可穿过第二绝缘层37和第一绝缘层33连接到第二接触层31。The first electrode pad 39 a and the second electrode pad 39 b are located under the second insulating layer 37 . The first electrode pad 39 a may be connected to the first contact layer 35 through the second insulating layer 37 . In addition, the second electrode pad 39 b may be connected to the second contact layer 31 through the second insulating layer 37 and the first insulating layer 33 .
第一凸块45a和第二凸块45b位于第一电极焊盘39a和第二电极焊盘39b下方以被分别连接到第一电极焊盘39a和第二电极焊盘39b。第一凸块45a和第二凸块45b可以通过涂覆形成。第一凸块45a和第二凸块45b是电连接到诸如MC-PCB的电路板的端子并且具有共面末端。此外,第一电极焊盘39a可以形成在与第二电极焊盘39b的水平面相同的水平面处,从而第一凸块45a和第二凸块45b也可形成在同一平面上。因此,第一凸块45a和第二凸块45b可具有相同的高度。The first bump 45a and the second bump 45b are located under the first electrode pad 39a and the second electrode pad 39b to be connected to the first electrode pad 39a and the second electrode pad 39b, respectively. The first bump 45a and the second bump 45b may be formed by coating. The first bump 45a and the second bump 45b are terminals electrically connected to a circuit board such as an MC-PCB and have coplanar ends. In addition, the first electrode pad 39a may be formed at the same level as that of the second electrode pad 39b, so that the first bump 45a and the second bump 45b may also be formed on the same plane. Therefore, the first bump 45a and the second bump 45b may have the same height.
同时,哑凸块45c可以位于第一凸块45a和第二凸块45b之间。哑凸块45c可以与第一凸块45a和第二凸块45b一起形成以提供用于排出来自半导体堆叠件30的热的热通道。Meanwhile, the dummy bump 45c may be located between the first bump 45a and the second bump 45b. A dummy bump 45 c may be formed together with the first bump 45 a and the second bump 45 b to provide a thermal path for exhausting heat from the semiconductor stack 30 .
绝缘层43可覆盖第一凸块45a和第二凸块45b的侧表面。绝缘层43还可以覆盖哑凸块45c的侧表面。此外,绝缘层43填充第一凸块45a、第二凸块45b和哑凸块45c之间的空间以防止湿气从外部进入半导体堆叠件30。绝缘层43还覆盖第一电极焊盘39a和第二电极焊盘39b的侧表面以避免第一电极焊盘39a和第二电极焊盘39b免受诸如湿气的外部环境因素的影响。尽管绝缘层43可被构造成覆盖第一凸块45a和第二凸块45b的全部侧表面,但是本发明不限制于此。可选择地,绝缘层43可以覆盖除接近第一凸块和第二凸块的末端的侧表面的一些区域以外的第一凸块45a和第二凸块45b的侧表面。The insulating layer 43 may cover side surfaces of the first bump 45a and the second bump 45b. The insulating layer 43 may also cover side surfaces of the dummy bump 45c. In addition, the insulating layer 43 fills the space between the first bump 45 a , the second bump 45 b and the dummy bump 45 c to prevent moisture from entering the semiconductor stack 30 from the outside. The insulating layer 43 also covers side surfaces of the first and second electrode pads 39a and 39b to protect the first and second electrode pads 39a and 39b from external environmental factors such as moisture. Although the insulating layer 43 may be configured to cover the entire side surfaces of the first bump 45a and the second bump 45b, the present invention is not limited thereto. Alternatively, the insulating layer 43 may cover the side surfaces of the first and second bumps 45 a and 45 b except some regions of the side surfaces near the ends of the first and second bumps.
在本示例性实施例中,绝缘层43被示出为覆盖第一电极焊盘39a和第二电极焊盘39b的侧表面,但是本发明不限于此。可选择地,另一绝缘层可用于覆盖第一电极焊盘39a和第二电极焊盘39b,绝缘层43可形成在所述另一绝缘层下方。在这种情况下,第一凸块45a和第二凸块45b可以穿过所述另一绝缘层连接到第一电极焊盘39a和第二电极焊盘39b。In the present exemplary embodiment, the insulating layer 43 is shown to cover the side surfaces of the first and second electrode pads 39a and 39b, but the present invention is not limited thereto. Alternatively, another insulating layer may be used to cover the first electrode pad 39a and the second electrode pad 39b, and the insulating layer 43 may be formed under the other insulating layer. In this case, the first bump 45a and the second bump 45b may be connected to the first electrode pad 39a and the second electrode pad 39b through the other insulating layer.
波长转换器51可以位于第一导电型上半导体层25的与剩下的半导体堆叠件30相反的上方。波长转换器51可以接触第一导电型上半导体层25的上表面。波长转换器51在没有限制的情况下可以是具有均一厚度的磷光体片。可选择地,波长转换器51可以是掺杂有用于波长转换的杂质的基底,例如,蓝宝石基底或硅基底。The wavelength converter 51 may be located above the first conductive type upper semiconductor layer 25 opposite to the remaining semiconductor stack 30 . The wavelength converter 51 may contact the upper surface of the first conductive type upper semiconductor layer 25 . The wavelength converter 51 may be a phosphor sheet having a uniform thickness without limitation. Alternatively, the wavelength converter 51 may be a substrate doped with impurities for wavelength conversion, for example, a sapphire substrate or a silicon substrate.
在本示例性实施例中,半导体堆叠件30的侧表面由保护绝缘层覆盖。保护绝缘层可以包括例如,第一绝缘层33和/或第二绝缘层37。此外,第一接触层35可由第二绝缘层37覆盖以被保护免受外部环境的影响,第二接触层31可由第一绝缘层33和第二绝缘层37覆盖以被保护免受外部环境的影响。第一电极焊盘39a和第二电极焊盘39b也被例如绝缘层43保护。因此,能够防止由于湿气使半导体堆叠件30恶化。In the present exemplary embodiment, side surfaces of the semiconductor stack 30 are covered with a protective insulating layer. The protective insulating layer may include, for example, the first insulating layer 33 and/or the second insulating layer 37 . In addition, the first contact layer 35 may be covered by the second insulating layer 37 to be protected from the external environment, and the second contact layer 31 may be covered by the first insulating layer 33 and the second insulating layer 37 to be protected from the external environment. influences. The first electrode pad 39 a and the second electrode pad 39 b are also protected by, for example, an insulating layer 43 . Therefore, deterioration of the semiconductor stack 30 due to moisture can be prevented.
波长转换器51可附着到晶片级的第一导电型上半导体层25,然后在芯片分离工艺过程中与保护绝缘层一起被分开。因此,波长转换器51的侧表面可以与保护绝缘层在一条线上。即,可以使波长转换器51的侧表面与保护绝缘层的侧表面沿着直线齐平。另外,波长转换器51的侧表面可以与绝缘层43的侧表面在一条线上。因此,可以使波长转换器51的侧表面、保护绝缘层的侧表面和绝缘层43的侧表面全部沿着直线齐平。The wavelength converter 51 may be attached to the first conductive type upper semiconductor layer 25 at the wafer level, and then separated together with the protective insulating layer during the chip separation process. Therefore, the side surface of the wavelength converter 51 can be in line with the protective insulating layer. That is, it is possible to make the side surface of the wavelength converter 51 flush with the side surface of the protective insulating layer along a straight line. In addition, the side surface of the wavelength converter 51 may be in line with the side surface of the insulating layer 43 . Therefore, it is possible to make the side surface of the wavelength converter 51, the side surface of the protective insulating layer, and the side surface of the insulating layer 43 all flush along a straight line.
图2是根据本发明的第二示例性实施例的发光二极管封装件200的示意性剖视图。FIG. 2 is a schematic cross-sectional view of a light emitting diode package 200 according to a second exemplary embodiment of the present invention.
参照图2,LED封装件200与根据以上示例性实施例的LED封装件100相似。但是,在本示例性实施例中,第一凸块65a和第二凸块65b形成在基底61中。Referring to FIG. 2 , an LED package 200 is similar to the LED package 100 according to the above exemplary embodiment. However, in the present exemplary embodiment, the first bump 65 a and the second bump 65 b are formed in the substrate 61 .
具体地说,基底61包括分别在其内形成有第一凸块65a和第二凸块65b的通孔。基底61是绝缘基底,例如,蓝宝石基底或硅基底,但不限于此。具有第一凸块65a和第二凸块65b的基底61可以附着到第一电极焊盘39a和第二电极焊盘39b。在这种情况下,为了防止第一电极焊盘39a和第二电极焊盘39b被暴露到外部,绝缘层49可以覆盖第一电极焊盘39a和第二电极焊盘39b的侧表面和底表面。另外,绝缘层49可以具有暴露第一电极焊盘39a和第二电极焊盘39b的开口,然后其它金属层67a、67b形成在开口中。其它金属层67a、67b可由接合金属构成。Specifically, the base 61 includes through holes in which the first bump 65a and the second bump 65b are respectively formed. The substrate 61 is an insulating substrate such as, but not limited to, a sapphire substrate or a silicon substrate. The substrate 61 having the first bump 65a and the second bump 65b may be attached to the first electrode pad 39a and the second electrode pad 39b. In this case, in order to prevent the first electrode pad 39a and the second electrode pad 39b from being exposed to the outside, the insulating layer 49 may cover side surfaces and bottom surfaces of the first electrode pad 39a and the second electrode pad 39b . In addition, the insulating layer 49 may have an opening exposing the first electrode pad 39a and the second electrode pad 39b, and then other metal layers 67a, 67b are formed in the opening. The other metal layers 67a, 67b may consist of a bonding metal.
图3是包括根据第一示例性实施例的LED封装件100的发光二极管模块的剖视图。FIG. 3 is a cross-sectional view of a light emitting diode module including the LED package 100 according to the first exemplary embodiment.
参照图3,LED模块包括电路板71(例如,MC-PCB)、LED封装件100和透镜81。电路板71(例如,MC-PCB)具有用于将LED封装件100安装在其上的连接焊盘73a、73b。LED封装件100的第一凸块45a和第二凸块45b(参见图1)分别连接到连接焊盘73a、73b。Referring to FIG. 3 , the LED module includes a circuit board 71 (eg, MC-PCB), an LED package 100 and a lens 81 . The circuit board 71 (eg, MC-PCB) has connection pads 73a, 73b for mounting the LED package 100 thereon. The first bump 45a and the second bump 45b (see FIG. 1 ) of the LED package 100 are connected to the connection pads 73a, 73b, respectively.
多个LED封装件100可以安装在电路板71上,透镜81可以设置在LED封装件100上以调节从LED封装件100发射的光的方向角。A plurality of LED packages 100 may be mounted on the circuit board 71 , and a lens 81 may be disposed on the LED packages 100 to adjust a direction angle of light emitted from the LED packages 100 .
根据第二示例性实施例,发光二极管封装件200可以代替LED封装件100安装在电路板上。According to the second exemplary embodiment, the light emitting diode package 200 may be mounted on a circuit board instead of the LED package 100 .
图4至图12示出了制造根据第一示例性实施例的LED封装件100的方法。在图5至图10中,(a)是平面图,(b)是沿(a)的A-A线截取的剖视图。4 to 12 illustrate a method of manufacturing the LED package 100 according to the first exemplary embodiment. In FIGS. 5 to 10 , (a) is a plan view, and (b) is a cross-sectional view taken along line A-A of (a).
参照图4,在生长基底21上形成包括第一导电型半导体层25、有源层27和第二导电型半导体层29的半导体堆叠件30。生长基底21可以是蓝宝石基底,但不限于此。可选择地,生长基底21可以是其他类型的异质基底(heterogeneoussubstrate),例如,硅基底。第一导电型半导体层25和第二导电型半导体层29中的每个可以由单层或多层组成。另外,有源层27可具有单量子阱结构或多量子阱结构。Referring to FIG. 4 , a semiconductor stack 30 including a first conductive type semiconductor layer 25 , an active layer 27 and a second conductive type semiconductor layer 29 is formed on a growth substrate 21 . The growth substrate 21 may be a sapphire substrate, but is not limited thereto. Alternatively, the growth substrate 21 may be other types of heterogeneous substrates, such as silicon substrates. Each of the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 29 may consist of a single layer or multiple layers. In addition, the active layer 27 may have a single quantum well structure or a multiple quantum well structure.
化合物半导体层可由III-N基化合物半导体在生长基底21上通过金属有机化学气相沉积(MOCVD)或分子束外延(MBE)形成。The compound semiconductor layer may be formed of a III-N based compound semiconductor on the growth substrate 21 by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
可在形成化合物半导体层之前形成缓冲层(未示出)。形成缓冲层以减轻生长基底21和化合物半导体层之间的晶格失配,缓冲层可以由诸如氮化镓或氮化铝的GaN基材料层形成。A buffer layer (not shown) may be formed before forming the compound semiconductor layer. A buffer layer is formed to alleviate lattice mismatch between the growth substrate 21 and the compound semiconductor layer, and the buffer layer may be formed of a GaN-based material layer such as gallium nitride or aluminum nitride.
参照图5的(a)和(b),半导体堆叠件30被图案化以形成芯片(堆叠件)分离区域30b同时使第二导电型半导体层29和有源层27图案化以形成暴露第一导电型半导体层25的多个接触孔30a。可通过光刻工艺和蚀刻工艺使半导体堆叠件30图案化。Referring to (a) and (b) of FIG. 5, the semiconductor stack 30 is patterned to form a chip (stack) separation region 30b while patterning the second conductivity type semiconductor layer 29 and the active layer 27 to form a first A plurality of contact holes 30 a in the conductive type semiconductor layer 25 . The semiconductor stack 30 may be patterned through a photolithography process and an etching process.
芯片分离区域30b是用于将LED封装结构分成单个LED封装件的区域,第一导电型半导体层25的侧表面、有源层27的侧表面和第二导电型半导体层29的侧表面在芯片分离区域30b上暴露。有利地,芯片分离区域30b可被构造成暴露基底21,而没有被限制于此。The chip separation area 30b is an area for dividing the LED package structure into individual LED packages, and the side surfaces of the first conductivity type semiconductor layer 25, the side surfaces of the active layer 27 and the side surfaces of the second conductivity type semiconductor layer 29 are on the chip. The separation area 30b is exposed. Advantageously, the chip separation region 30b may be configured to expose the substrate 21 without being limited thereto.
多个接触孔30a可以是圆形,但不限于此。接触孔30a可具有多种形状。第二导电型半导体层29和有源层27暴露于多个接触孔30a的侧壁。如所示,接触孔30a可具有倾斜的侧壁。The plurality of contact holes 30a may be circular, but not limited thereto. The contact hole 30a may have various shapes. The second conductive type semiconductor layer 29 and the active layer 27 are exposed to sidewalls of the plurality of contact holes 30a. As shown, the contact hole 30a may have sloped sidewalls.
参照图6的(a)和(b),第二接触层31形成在第二导电型半导体层29上。第二接触层31形成在除对应于多个接触孔30a的区域以外的半导体堆叠件30上。Referring to (a) and (b) of FIG. 6 , a second contact layer 31 is formed on the second conductive type semiconductor layer 29 . The second contact layer 31 is formed on the semiconductor stack 30 except for regions corresponding to the plurality of contact holes 30a.
第二接触层31可以包括透明导电氧化物膜(例如,氧化铟锡(ITO))或反射金属层(例如,银(Ag)或铝(Al))。第二接触层31可由单层或多层组成。第二接触层31还可以被构造成形成与第二导电型半导体层29欧姆接触。The second contact layer 31 may include a transparent conductive oxide film such as indium tin oxide (ITO) or a reflective metal layer such as silver (Ag) or aluminum (Al). The second contact layer 31 may consist of a single layer or multiple layers. The second contact layer 31 may also be configured to form an ohmic contact with the second conductivity type semiconductor layer 29 .
可在形成多个接触孔30a之前或之后形成第二接触层31。The second contact layer 31 may be formed before or after forming the plurality of contact holes 30a.
参照图7的(a)和(b),形成第一绝缘层33以覆盖第二接触层31。第一绝缘层33可覆盖半导体堆叠件30的暴露于芯片分离区域30b的侧表面,同时覆盖多个接触孔30a的侧壁。这里,第一绝缘层33可具有在多个接触孔30a中暴露第一导电型半导体层25的开口33a。Referring to (a) and (b) of FIG. 7 , a first insulating layer 33 is formed to cover the second contact layer 31 . The first insulating layer 33 may cover side surfaces of the semiconductor stack 30 exposed to the chip separation region 30b while covering sidewalls of the plurality of contact holes 30a. Here, the first insulating layer 33 may have openings 33a exposing the first conductive type semiconductor layer 25 in the plurality of contact holes 30a.
第一绝缘层33可由单层或多层(例如,氧化硅膜或氮化硅膜)组成。可选择地,第一绝缘层33可由通过交替地堆叠具有不同折射率的绝缘层形成的分布式布拉格反射器组成。例如,第一绝缘层33可通过交替地堆叠SiO2/TiO2或SiO2/Nb2O5形成。另外,可形成第一绝缘层33以提供通过调节各个绝缘层的厚度对蓝光、绿光和红光的宽波长范围具有高反射性的分布式布拉格反射器。The first insulating layer 33 may be composed of a single layer or multiple layers (for example, a silicon oxide film or a silicon nitride film). Alternatively, the first insulating layer 33 may consist of a distributed Bragg reflector formed by alternately stacking insulating layers having different refractive indices. For example, the first insulating layer 33 may be formed by alternately stacking SiO 2 /TiO 2 or SiO 2 /Nb 2 O 5 . In addition, the first insulating layer 33 may be formed to provide a distributed Bragg reflector having high reflectivity for a wide wavelength range of blue, green, and red light by adjusting the thickness of each insulating layer.
参照图8的(a)和(b),在第一绝缘层33上形成第一接触层35。第一接触层35包括接触暴露在接触孔30a中的第一导电型上半导体层25的接触部分35a和将接触部分35a彼此连接的连接部分35b。第一接触层35可由反射金属层组成,但不限于此。Referring to (a) and (b) of FIG. 8 , a first contact layer 35 is formed on the first insulating layer 33 . The first contact layer 35 includes a contact portion 35a contacting the first conductive type upper semiconductor layer 25 exposed in the contact hole 30a and a connection portion 35b connecting the contact portions 35a to each other. The first contact layer 35 may be composed of a reflective metal layer, but is not limited thereto.
第一接触层35形成在半导体堆叠件30的一些区域上,使得第一绝缘层33暴露在半导体堆叠件30的没有形成第一接触层35的其他区域上。The first contact layer 35 is formed on some regions of the semiconductor stack 30 such that the first insulating layer 33 is exposed on other regions of the semiconductor stack 30 where the first contact layer 35 is not formed.
参照图9的(a)和(b),在第一接触层35上形成第二绝缘层37。第二绝缘层37可由单层或多层(氧化硅膜或氮化硅膜)组成。另外,第二绝缘层37可由通过交替地堆叠具有不同折射率的绝缘层形成的分布式布拉格反射器组成。Referring to (a) and (b) of FIG. 9 , a second insulating layer 37 is formed on the first contact layer 35 . The second insulating layer 37 may be composed of a single layer or multiple layers (silicon oxide film or silicon nitride film). In addition, the second insulating layer 37 may be composed of a distributed Bragg reflector formed by alternately stacking insulating layers having different refractive indices.
第二绝缘层37可覆盖第一接触层35同时覆盖第一绝缘层33。第二绝缘层37还可覆盖半导体堆叠件30的在芯片分离区域30b中的侧表面。The second insulating layer 37 may cover the first contact layer 35 while covering the first insulating layer 33 . The second insulating layer 37 may also cover side surfaces of the semiconductor stack 30 in the chip separation region 30b.
第二绝缘层37具有暴露第一接触层35的开口37a。另外,第二绝缘层37和第一绝缘层33形成有暴露第二接触层31的开口37b。The second insulating layer 37 has an opening 37 a exposing the first contact layer 35 . In addition, the second insulating layer 37 and the first insulating layer 33 are formed with an opening 37 b exposing the second contact layer 31 .
参照图10的(a)和(b),在第二绝缘层37上形成第一电极焊盘39a和第二电极焊盘39b。第一电极焊盘39a穿过开口37a连接到第一接触层35,第二电极焊盘39b穿过开口37b连接到第二接触层31。Referring to (a) and (b) of FIG. 10 , a first electrode pad 39 a and a second electrode pad 39 b are formed on the second insulating layer 37 . The first electrode pad 39a is connected to the first contact layer 35 through the opening 37a, and the second electrode pad 39b is connected to the second contact layer 31 through the opening 37b.
第一电极焊盘39a与第二电极焊盘39b分开,从顶部透视图看第一电极焊盘39a和第二电极焊盘39b中的每个可具有相对大的面积,例如,不少于LED封装件的面积的1/3的面积。The first electrode pad 39a is separated from the second electrode pad 39b, and each of the first electrode pad 39a and the second electrode pad 39b may have a relatively large area from a top perspective view, for example, not less than an LED 1/3 the area of the package.
参照图11,在第一电极焊盘39a和第二电极焊盘39b上形成绝缘层43。绝缘层43覆盖第一电极焊盘39a和第二电极焊盘39b,并具有暴露电极焊盘39a和39b的上表面的凹槽。另外,绝缘层43可具有暴露在第一电极焊盘39a和第二电极焊盘39b之间的第二绝缘层37的凹槽。Referring to FIG. 11, an insulating layer 43 is formed on the first electrode pad 39a and the second electrode pad 39b. The insulating layer 43 covers the first electrode pad 39a and the second electrode pad 39b, and has grooves exposing the upper surfaces of the electrode pads 39a and 39b. In addition, the insulating layer 43 may have a groove exposing the second insulating layer 37 between the first electrode pad 39a and the second electrode pad 39b.
然后,在绝缘层43的凹槽中形成第一凸块45a和第二凸块45b,可在第一凸块和第二凸块之间形成哑凸块45c。Then, a first bump 45 a and a second bump 45 b are formed in the groove of the insulating layer 43 , and a dummy bump 45 c may be formed between the first bump and the second bump.
可通过使用金属材料镀覆(例如,电镀)形成凸块。如果必要的话,还可形成用于镀覆的种子层。The bump may be formed by plating (eg, electroplating) using a metal material. A seed layer for plating may also be formed, if necessary.
在形成第一凸块45a和第二凸块45b后,可去除绝缘层43。例如,绝缘层43可由诸如光致抗蚀剂的聚合物形成,并且可在形成凸块后被去除。可选择地,可留下绝缘层43以保护第一凸块45a和第二凸块45b的侧表面。After the first bump 45a and the second bump 45b are formed, the insulating layer 43 may be removed. For example, the insulating layer 43 may be formed of polymer such as photoresist, and may be removed after the bump is formed. Alternatively, the insulating layer 43 may be left to protect the side surfaces of the first bump 45a and the second bump 45b.
在本示例性实施例中,绝缘层43示出为直接形成在第一焊盘电极39a和第二焊盘电极39b上。在另一示例性实施例中,可形成另一绝缘层以覆盖第一电极焊盘39a和第二电极焊盘39b。另一绝缘层可被构造成具有暴露第一电极焊盘39a和第二电极焊盘39b的开口。然后,可执行形成绝缘层43和凸块的工艺。In the present exemplary embodiment, the insulating layer 43 is shown as being formed directly on the first pad electrode 39a and the second pad electrode 39b. In another exemplary embodiment, another insulating layer may be formed to cover the first electrode pad 39a and the second electrode pad 39b. Another insulating layer may be configured to have an opening exposing the first electrode pad 39a and the second electrode pad 39b. Then, a process of forming the insulating layer 43 and the bump may be performed.
参照图12,去除生长基底21,将波长转换器51附着到第一导电型半导体层25。可通过光学技术(例如,激光剥离(LLO))、机械抛光或化学蚀刻去除生长基底21。Referring to FIG. 12 , the growth substrate 21 is removed, and the wavelength converter 51 is attached to the first conductive type semiconductor layer 25 . Growth substrate 21 may be removed by optical techniques such as laser lift-off (LLO), mechanical polishing, or chemical etching.
然后,对第一导电型半导体层25的暴露的表面进行各向异性蚀刻(例如,光电化学(PEC)蚀刻)以在暴露的第一导电型半导体层25上形成粗糙的表面。Then, anisotropic etching (eg, photoelectrochemical (PEC) etching) is performed on the exposed surface of the first conductive type semiconductor layer 25 to form a rough surface on the exposed first conductive type semiconductor layer 25 .
同时,可将诸如包含磷光体的磷光体片的波长转换器附着到第一导电型半导体层25。Meanwhile, a wavelength converter such as a phosphor sheet including phosphor may be attached to the first conductive type semiconductor layer 25 .
可选择地,生长基底21可包含用于转换在有源层27中产生的光的波长的杂质。在这种情况下,可将生长基底21用作波长转换器51。Alternatively, growth substrate 21 may contain impurities for converting the wavelength of light generated in active layer 27 . In this case, the growth substrate 21 can be used as the wavelength converter 51 .
然后,沿着芯片分离区域30b将LED封装结构分成单个的封装件,从而提供完成的LED封装件100。此时,第二绝缘层37与波长转换器51一起被切割,使得可将第二绝缘层37和波长转换器51的切割平面形成在一条线上。Then, the LED package structure is divided into individual packages along the chip separation area 30 b, thereby providing the completed LED package 100 . At this time, the second insulating layer 37 is cut together with the wavelength converter 51 so that the cutting planes of the second insulating layer 37 and the wavelength converter 51 can be formed on a line.
图13是示出制造根据本发明第二示例性实施例的LED封装件200的方法的剖视图。FIG. 13 is a cross-sectional view illustrating a method of manufacturing the LED package 200 according to the second exemplary embodiment of the present invention.
参照图13,在制造根据本示例性实施例的LED封装件200的方法中,工艺与上述制造LED封装件100的方法的工艺相同,直至形成第一电极焊盘39a和第二电极焊盘39b(图10的(a)和(b))。Referring to FIG. 13 , in the method of manufacturing the LED package 200 according to this exemplary embodiment, the process is the same as that of the above-described method of manufacturing the LED package 100 until the first electrode pad 39a and the second electrode pad 39b are formed. ((a) and (b) of FIG. 10).
在形成第一电极焊盘39a和第二电极焊盘39b之后,形成绝缘层49以覆盖第一电极焊盘39a和第二电极焊盘39b。绝缘层49可覆盖第一电极焊盘39a和第二电极焊盘39b的侧表面以保护第一电极焊盘39a和第二电极焊盘39b。绝缘层49具有暴露第一电极焊盘39a和第二电极焊盘39b的开口。然后在开口中形成其他金属层67a、67b。其他金属层67a、67b可由接合金属构成。After the first electrode pad 39a and the second electrode pad 39b are formed, an insulating layer 49 is formed to cover the first electrode pad 39a and the second electrode pad 39b. The insulating layer 49 may cover side surfaces of the first and second electrode pads 39a and 39b to protect the first and second electrode pads 39a and 39b. The insulating layer 49 has openings exposing the first electrode pad 39a and the second electrode pad 39b. Further metal layers 67a, 67b are then formed in the openings. The other metal layers 67a, 67b may consist of a bonding metal.
基底61接合到第一电极焊盘39a和第二电极焊盘39b。基底61可具有可以形成有第一凸块65a和第二凸块65b的通孔。另外,可将第一凸块和第二凸块形成为在其末端具有焊盘69a、69b。具有第一凸块65a、第二凸块65b、焊盘69a和焊盘69b的基底61可单独制备,并接合到具有第一电极焊盘39a和第二电极焊盘39b的晶片。The substrate 61 is bonded to the first electrode pad 39a and the second electrode pad 39b. The substrate 61 may have a through hole in which the first bump 65 a and the second bump 65 b may be formed. In addition, the first bump and the second bump may be formed to have pads 69a, 69b at their ends. The substrate 61 having the first bump 65a, the second bump 65b, the pad 69a, and the pad 69b may be separately prepared and bonded to the wafer having the first electrode pad 39a and the second electrode pad 39b.
然后,如参照图12所述,去除生长基底21并且可将波长转换器51附着到第一导电型半导体层25,随后将LED封装结构分成单个的LED封装件。因此,提供如图2中所述的完成的LED封装件200。Then, as described with reference to FIG. 12 , the growth substrate 21 is removed and the wavelength converter 51 may be attached to the first conductive type semiconductor layer 25 , followed by dividing the LED package structure into individual LED packages. Thus, a completed LED package 200 as described in FIG. 2 is provided.
图14是根据本发明第三示例性实施例的LED封装件300的剖视图。FIG. 14 is a cross-sectional view of an LED package 300 according to a third exemplary embodiment of the present invention.
参照图14,LED封装件300可包括被分成多个发光单元(这里仅示出了两个发光单元S1、S2)的半导体堆叠件130、第一接触层135、第二接触层131、第一绝缘层133、第二绝缘层137、第一电极焊盘139a、第二电极焊盘139b、将邻近的发光单元彼此串联连接的连接件139c、第一凸块145a和第二凸块145b。另外,LED封装件300可包括第三绝缘层141、绝缘层143、哑凸块145c、波长转换器151和其他金属层140a、140b。14, the LED package 300 may include a semiconductor stack 130 divided into a plurality of light emitting units (only two light emitting units S1, S2 are shown here), a first contact layer 135, a second contact layer 131, a first The insulating layer 133, the second insulating layer 137, the first electrode pad 139a, the second electrode pad 139b, the connector 139c connecting adjacent light emitting cells to each other in series, the first bump 145a and the second bump 145b. In addition, the LED package 300 may include a third insulating layer 141, an insulating layer 143, a dummy bump 145c, a wavelength converter 151 and other metal layers 140a, 140b.
半导体堆叠件130包括第一导电型上半导体层125、有源层127和第二导电型下半导体层129。本示例性实施例的半导体堆叠件130与在图1中描述的半导体堆叠件30相似,这里将省略对其详细的描述。The semiconductor stack 130 includes a first conductive type upper semiconductor layer 125 , an active layer 127 and a second conductive type lower semiconductor layer 129 . The semiconductor stack 130 of the present exemplary embodiment is similar to the semiconductor stack 30 described in FIG. 1 , and a detailed description thereof will be omitted here.
发光单元S1、S2中的每个具有延伸穿过第二导电型下半导体层129和有源层127以暴露第一导电型上半导体层的多个接触孔130a(参见图18的(b)),第一接触层135接触暴露在多个接触孔中的第一导电型上半导体层125。发光单元S1、S2通过单元分离区域130b(参见图18的(b))彼此分离。Each of the light emitting cells S1, S2 has a plurality of contact holes 130a extending through the second conductive type lower semiconductor layer 129 and the active layer 127 to expose the first conductive type upper semiconductor layer (see (b) of FIG. 18 ). , the first contact layer 135 contacts the first conductive type upper semiconductor layer 125 exposed in the plurality of contact holes. The light emitting cells S1, S2 are separated from each other by a cell separation region 130b (see (b) of FIG. 18).
第二接触层131接触每个发光单元S1、S2的第二导电型下半导体层129。第二接触层131包括反射金属层来反射在有源层127中产生的光。另外,第二接触层131可形成与第二导电型下半导体层129的欧姆接触。The second contact layer 131 contacts the second conductive type lower semiconductor layer 129 of each light emitting unit S1, S2. The second contact layer 131 includes a reflective metal layer to reflect light generated in the active layer 127 . In addition, the second contact layer 131 may form an ohmic contact with the second conductive type lower semiconductor layer 129 .
第一绝缘层133覆盖第二接触层131。另外,第一绝缘层133覆盖半导体堆叠件130的暴露在多个接触孔130a中的侧壁。此外,第一绝缘层133可覆盖每个发光单元S1、S2的侧表面。第一绝缘层133使第一接触层135与第二接触层131绝缘,同时使暴露在多个接触孔130a中的第二导电型下半导体层129和有源层127与第一接触层135绝缘。第一绝缘层133可由单层或多层(例如,氧化硅膜或氮化硅膜)组成。此外,第一绝缘层133可由通过交替地堆叠具有不同折射率的绝缘层(例如,SiO2/TiO2或SiO2/Nb2O5)形成的分布式布拉格反射器组成。The first insulating layer 133 covers the second contact layer 131 . In addition, the first insulating layer 133 covers sidewalls of the semiconductor stack 130 exposed in the plurality of contact holes 130a. In addition, the first insulating layer 133 may cover a side surface of each light emitting unit S1, S2. The first insulating layer 133 insulates the first contact layer 135 from the second contact layer 131, and simultaneously insulates the second conductive type lower semiconductor layer 129 and the active layer 127 exposed in the plurality of contact holes 130a from the first contact layer 135. . The first insulating layer 133 may be composed of a single layer or multiple layers (for example, a silicon oxide film or a silicon nitride film). In addition, the first insulating layer 133 may be composed of a distributed Bragg reflector formed by alternately stacking insulating layers having different refractive indices (for example, SiO 2 /TiO 2 or SiO 2 /Nb 2 O 5 ).
第一接触层135位于第一绝缘层133下方,并穿过每个发光单元S1、S2中的多个接触孔130a中的第一绝缘层133来接触第一导电型上半导体层125。第一接触层135包括接触第一导电型上半导体层125的接触部分135a和将接触部分135a彼此连接的连接部分135b。因此,由连接部分135b将接触部分135a彼此电连接。位于各个发光单元S1、S2下方的第一接触层135彼此分离并形成在第一绝缘层133的一些区域的下方。第一接触层135可由反射金属层组成。The first contact layer 135 is located under the first insulating layer 133 and contacts the first conductive type upper semiconductor layer 125 through the first insulating layer 133 in the plurality of contact holes 130 a in each light emitting unit S1 , S2 . The first contact layer 135 includes a contact portion 135a contacting the first conductive type upper semiconductor layer 125 and a connection portion 135b connecting the contact portions 135a to each other. Accordingly, the contact portions 135a are electrically connected to each other by the connection portion 135b. The first contact layers 135 under the respective light emitting cells S1 , S2 are separated from each other and formed under some regions of the first insulating layer 133 . The first contact layer 135 may be composed of a reflective metal layer.
第二绝缘层137在第一接触层135下方覆盖第一接触层135。此外,第二绝缘层137可覆盖第一绝缘层133同时覆盖每个发光单元S1、S2的侧表面。第二绝缘层137可由单层或多层组成。可选择地,第二绝缘层137可由分布式布拉格反射器组成。The second insulating layer 137 covers the first contact layer 135 under the first contact layer 135 . In addition, the second insulating layer 137 may cover the first insulating layer 133 while covering the side surface of each light emitting unit S1, S2. The second insulating layer 137 may consist of a single layer or multiple layers. Alternatively, the second insulating layer 137 may consist of a distributed Bragg reflector.
第一电极焊盘139a和第二电极焊盘139b位于第二绝缘层137下方。第一电极焊盘139a可穿过第二绝缘层137连接到第一发光单元S1的第一接触层135。另外,第二电极焊盘139b可穿过第二绝缘层137和第一绝缘层133连接到第二发光单元S2的第二接触层131。The first electrode pad 139 a and the second electrode pad 139 b are located under the second insulating layer 137 . The first electrode pad 139a may be connected to the first contact layer 135 of the first light emitting unit S1 through the second insulating layer 137 . In addition, the second electrode pad 139b may be connected to the second contact layer 131 of the second light emitting unit S2 through the second insulating layer 137 and the first insulating layer 133 .
连接件139c位于第二绝缘层137下方并穿过第二绝缘层137使两个邻近的发光单元S1、S2彼此电连接。连接件139c可以使一个发光单元S1的第二接触层131连接到与其邻近的另一发光单元S2的第一接触层135,使得两个发光单元S1、S2彼此串联连接。The connecting member 139c is located under the second insulating layer 137 and passes through the second insulating layer 137 to electrically connect two adjacent light emitting units S1 and S2 to each other. The connector 139c may connect the second contact layer 131 of one light emitting unit S1 to the first contact layer 135 of another light emitting unit S2 adjacent thereto, so that the two light emitting units S1, S2 are connected to each other in series.
在本示例性实施例中,示出了两个发光单元S1、S2。但是,应该理解的是,两个或更多个发光单元可以通过多个连接件139c彼此串联连接。这里,第一电极焊盘139a、139b可以串联连接到位于这样串联阵列的相反端。In this exemplary embodiment, two light emitting units S1, S2 are shown. However, it should be understood that two or more light emitting units may be connected to each other in series through the plurality of connection members 139c. Here, the first electrode pads 139a, 139b may be connected in series to opposite ends located in such a series array.
同时,第三绝缘层141可在第一电极焊盘139a、第二电极焊盘139b和连接件139c下方覆盖第一电极焊盘139a、第二电极焊盘139b和连接件139c。第三绝缘层141可具有暴露第一电极焊盘139a和第二电极焊盘139b的开口。第三绝缘层141可由氧化硅膜或氮化硅膜形成。Meanwhile, the third insulating layer 141 may cover the first electrode pad 139a, the second electrode pad 139b and the connector 139c under the first electrode pad 139a, the second electrode pad 139b and the connector 139c. The third insulating layer 141 may have openings exposing the first electrode pad 139a and the second electrode pad 139b. The third insulating layer 141 may be formed of a silicon oxide film or a silicon nitride film.
第一凸块145a和第二凸块145b分别位于第一电极焊盘139a和第二电极焊盘139b下方。第一凸块145a和第二凸块145b可通过镀覆形成。第一凸块145a和第二凸块145b是电连接到电路板(例如,MC-PCB)的端子,并具有彼此共面的末端。另外,第一电极焊盘139a可以形成在与第二电极焊盘139b的水平面相同的水平面上,使得第一凸块145a和第二凸块145b还可以形成在同一平面上。因此,第一凸块145a和第二凸块145b可具有相同的高度。The first bump 145a and the second bump 145b are located under the first electrode pad 139a and the second electrode pad 139b, respectively. The first bump 145a and the second bump 145b may be formed through plating. The first bump 145a and the second bump 145b are terminals electrically connected to a circuit board (eg, MC-PCB), and have ends coplanar with each other. In addition, the first electrode pad 139a may be formed on the same level as that of the second electrode pad 139b, so that the first bump 145a and the second bump 145b may also be formed on the same plane. Accordingly, the first bump 145a and the second bump 145b may have the same height.
其他金属层140a、140b可以设置在第一凸块145a和第一电极焊盘139a之间以及第二凸块145b和第二电极焊盘139b之间。这里,设置其他金属层140a、140b以使第一电极焊盘139a和第二电极焊盘139b形成为比连接件139c高,并且其他金属层140a、140b可以位于第三绝缘层141的开口内部。第一电极焊盘139a、第二电极焊盘139b和其他金属层140a、140b可组成最终电极焊盘。Other metal layers 140a, 140b may be disposed between the first bump 145a and the first electrode pad 139a and between the second bump 145b and the second electrode pad 139b. Here, other metal layers 140a, 140b are provided to form the first and second electrode pads 139a, 139b higher than the connectors 139c, and may be located inside the opening of the third insulating layer 141 . The first electrode pad 139a, the second electrode pad 139b and other metal layers 140a, 140b may constitute a final electrode pad.
同时,哑凸块145c可位于第一凸块145a和第二凸块145b之间。哑凸块145c可与第一凸块145a和第二凸块145b一起形成以提供用于排出来自发光单元S1、S2的热通道。哑凸块145c通过第三绝缘层141与连接件139c分离。Meanwhile, the dummy bump 145c may be located between the first bump 145a and the second bump 145b. A dummy bump 145c may be formed together with the first bump 145a and the second bump 145b to provide a heat path for exhausting from the light emitting units S1, S2. The dummy bump 145c is separated from the connector 139c by the third insulating layer 141 .
绝缘层143可覆盖第一凸块145a和第二凸块145b的侧表面。绝缘层143还可覆盖哑凸块145c的侧表面。另外,绝缘层143填充第一凸块145a、第二凸块145b与第三凸块145c之间的空间以防止湿气从外部进入半导体封装件130。尽管绝缘层143可被构造成覆盖第一凸块145a和第二凸块145b的整个侧表面,但是本发明不限于此。可选择地,绝缘层143可覆盖第一凸块145a和第二凸块145b的除接近第一凸块和第二凸块的末端的侧表面的一些区域以外的侧表面。The insulating layer 143 may cover side surfaces of the first bump 145a and the second bump 145b. The insulating layer 143 may also cover side surfaces of the dummy bump 145c. In addition, the insulating layer 143 fills the space between the first bump 145 a , the second bump 145 b and the third bump 145 c to prevent moisture from entering the semiconductor package 130 from the outside. Although the insulating layer 143 may be configured to cover the entire side surfaces of the first bump 145a and the second bump 145b, the present invention is not limited thereto. Alternatively, the insulating layer 143 may cover side surfaces of the first and second bumps 145a and 145b except some regions of the side surfaces near ends of the first and second bumps.
波长转换器151可位于发光单元S1、S2上。波长转换器151可接触第一导电型上半导体层125的上表面。波长转换器151还覆盖单元分离区域130b和芯片分离区域。波长转换器151可以是具有均一厚度的磷光体片,而不限制于此。可选择地,波长转换器151可以是掺杂有用于波长转换的杂质的基底,例如,蓝宝石基底或硅基底。The wavelength converter 151 may be located on the light emitting units S1, S2. The wavelength converter 151 may contact the upper surface of the first conductive type upper semiconductor layer 125 . The wavelength converter 151 also covers the cell separation region 130b and the chip separation region. The wavelength converter 151 may be a phosphor sheet having a uniform thickness, without being limited thereto. Alternatively, the wavelength converter 151 may be a substrate doped with impurities for wavelength conversion, for example, a sapphire substrate or a silicon substrate.
在本实施例中,发光单元S1、S2的侧表面可由保护绝缘层覆盖。保护绝缘层可包括例如,第一绝缘层133和/或第二绝缘层137。另外,第一接触层135可由第二绝缘层137覆盖以被保护免受外部环境的影响,第二接触层131可由第一绝缘层133和第二绝缘层137覆盖以被保护免受外部环境的影响。另外,第一电极焊盘139a和第二电极焊盘139b还被例如第三绝缘层141保护。因此,可以防止由于湿气而使发光单元S1、S2恶化。In this embodiment, side surfaces of the light emitting units S1, S2 may be covered by a protective insulating layer. The protective insulating layer may include, for example, the first insulating layer 133 and/or the second insulating layer 137 . In addition, the first contact layer 135 may be covered by the second insulating layer 137 to be protected from the external environment, and the second contact layer 131 may be covered by the first insulating layer 133 and the second insulating layer 137 to be protected from the external environment. influences. In addition, the first electrode pad 139 a and the second electrode pad 139 b are also protected by, for example, the third insulating layer 141 . Therefore, it is possible to prevent deterioration of the light emitting units S1, S2 due to moisture.
波长转换器151可附着到晶片级的第一导电型上半导体层125,然后在芯片分离工艺(或者封装件分离工艺)过程中与保护绝缘层一起被分开。因此,波长转换器151的侧表面可以与保护绝缘层在一条线上。另外,波长转换器151的侧表面可以与绝缘层143的侧表面在一条线上。The wavelength converter 151 may be attached to the first conductive type upper semiconductor layer 125 at the wafer level, and then separated together with the protective insulating layer during the chip separation process (or package separation process). Therefore, the side surface of the wavelength converter 151 may be in line with the protective insulating layer. In addition, the side surface of the wavelength converter 151 may be in line with the side surface of the insulating layer 143 .
图15是根据本发明第四示例性实施例的发光二极管封装件400的示意性剖视图。FIG. 15 is a schematic cross-sectional view of a light emitting diode package 400 according to a fourth exemplary embodiment of the present invention.
参照图15,LED封装件400与根据以上示例性实施例的LED封装件300相似。但是在本示例性实施例中,第一凸块165a和第二凸块165b形成在基底161中。Referring to FIG. 15 , an LED package 400 is similar to the LED package 300 according to the above exemplary embodiment. But in this exemplary embodiment, the first bump 165 a and the second bump 165 b are formed in the base 161 .
具体地说,基底161包括分别具有形成在其内的第一凸块165a和第二凸块165b的通孔。基底161是绝缘基底,例如,蓝宝石基底或硅基底,但不限制于此。Specifically, the base 161 includes through holes respectively having first and second bumps 165a and 165b formed therein. The substrate 161 is an insulating substrate such as, but not limited to, a sapphire substrate or a silicon substrate.
具有第一凸块165a和第二凸块165b的基底161可附着于第三绝缘层141,第一凸块165a和第二凸块165b可分别连接到第一电极焊盘139a和第二电极焊盘139b。这里,第一凸块165a和第二凸块165b可分别接合到其他金属层140a、140b。The substrate 161 having the first bump 165a and the second bump 165b may be attached to the third insulating layer 141, and the first bump 165a and the second bump 165b may be respectively connected to the first electrode pad 139a and the second electrode pad 139a. Disc 139b. Here, the first bump 165a and the second bump 165b may be bonded to other metal layers 140a, 140b, respectively.
图16是在电路板上包括根据第三示例性实施例的LED封装件300的发光二极管模块的剖视图。16 is a cross-sectional view of a light emitting diode module including an LED package 300 according to the third exemplary embodiment on a circuit board.
参照图16,LED模块包括例如,MC-PCB的电路板171、LED封装件300和透镜181。电路板171(例如,MC-PCB)具有用于将LED封装件300安装在其上的连接焊盘173a、173b。LED封装件300的第一凸块145a和第二凸块145b(参见图14)分别连接到连接焊盘173a、173b。Referring to FIG. 16 , the LED module includes, for example, a circuit board 171 of MC-PCB, an LED package 300 and a lens 181 . The circuit board 171 (eg, MC-PCB) has connection pads 173a, 173b for mounting the LED package 300 thereon. The first bump 145a and the second bump 145b (see FIG. 14 ) of the LED package 300 are connected to the connection pads 173a, 173b, respectively.
多个LED封装件300可安装在电路板171上,透镜181可设置在LED封装件300上以调节从LED封装件300发射的光的方向角。A plurality of LED packages 300 may be mounted on the circuit board 171 , and a lens 181 may be disposed on the LED packages 300 to adjust a direction angle of light emitted from the LED packages 300 .
在其它示例性实施例中,发光二极管封装件400可代替LED封装件300安装在电路板上。In other exemplary embodiments, the light emitting diode package 400 may be mounted on the circuit board instead of the LED package 300 .
图17至图25示出了制造根据第三示例性实施例的LED封装件300的方法。在图18至图23中,(a)是平面图,(b)是沿(a)的A-A线截取的剖视图。17 to 25 illustrate a method of manufacturing the LED package 300 according to the third exemplary embodiment. In FIGS. 18 to 23 , (a) is a plan view, and (b) is a sectional view taken along line A-A of (a).
参照图17,在生长基底121上形成包括第一导电型半导体层125、有源层127和第二导电型半导体层129的半导体堆叠件130。生长基底121和半导体堆叠件130与参照图4描述的基底21和半导体堆叠件30相似,因此这里将省略对其详细的描述。Referring to FIG. 17 , a semiconductor stack 130 including a first conductive type semiconductor layer 125 , an active layer 127 and a second conductive type semiconductor layer 129 is formed on a growth substrate 121 . The growth substrate 121 and the semiconductor stack 130 are similar to the substrate 21 and the semiconductor stack 30 described with reference to FIG. 4 , and thus a detailed description thereof will be omitted here.
参照图18的(a)和(b),使半导体堆叠件130图案化以形成芯片(封装件)分离区域130c和单元分离区域130b,同时使第二导电型半导体层129和有源层127图案化以形成发光单元S1、S2,每个发光单元S1、S2具有暴露第一导电型半导体层125的多个接触孔130a。可通过光刻工艺和蚀刻工艺使半导体堆叠件130图案化。Referring to (a) and (b) of FIG. 18 , the semiconductor stack 130 is patterned to form a chip (package) separation region 130c and a cell separation region 130b, while patterning the second conductivity type semiconductor layer 129 and the active layer 127 to form light emitting units S1, S2, each light emitting unit S1, S2 has a plurality of contact holes 130a exposing the first conductive type semiconductor layer 125. The semiconductor stack 130 may be patterned through a photolithography process and an etching process.
芯片分离区域130c是用于将LED封装结构分成单个的LED封装件的区域,第一导电型半导体层125的侧表面、有源层127的侧表面和第二导电层型半导体层129的侧表面暴露在芯片分离区域130c处。有利地,芯片分离区域130c和单元分离区域130b可被构造成暴露基底121,而不限于此。The chip separation area 130c is an area for dividing the LED package structure into individual LED packages, the side surfaces of the first conductive type semiconductor layer 125, the side surfaces of the active layer 127, and the side surfaces of the second conductive layer type semiconductor layer 129 exposed at the chip separation region 130c. Advantageously, the chip separation region 130c and the cell separation region 130b may be configured to expose the substrate 121, without being limited thereto.
多个接触孔130a可具有圆形,但不限制于此。接触孔130可具有各种形状。第二导电型半导体层129和有源层127暴露到多个接触孔130a的侧壁。接触孔130a可具有倾斜的侧壁。The plurality of contact holes 130a may have a circular shape, but is not limited thereto. The contact hole 130 may have various shapes. The second conductive type semiconductor layer 129 and the active layer 127 are exposed to sidewalls of the plurality of contact holes 130a. The contact hole 130a may have inclined sidewalls.
参照图19的(a)和(b),在第二导电型半导体层129上形成第二接触层131。在每个发光单元S1、S2的除了对应于多个接触孔130a的区域以外的半导体堆叠件130上形成第二接触层131。Referring to (a) and (b) of FIG. 19 , a second contact layer 131 is formed on the second conductive type semiconductor layer 129 . The second contact layer 131 is formed on the semiconductor stack 130 of each light emitting unit S1, S2 except for the region corresponding to the plurality of contact holes 130a.
第二接触层131可包括诸如氧化铟锡(ITO)的透明导电氧化膜或诸如银(Ag)或铝(Al)的反射金属层。第二接触层131可由单层或多层组成。第二接触层131还可被构造成与第二导电型半导体层129形成欧姆接触。The second contact layer 131 may include a transparent conductive oxide film such as indium tin oxide (ITO) or a reflective metal layer such as silver (Ag) or aluminum (Al). The second contact layer 131 may consist of a single layer or multiple layers. The second contact layer 131 may also be configured to form an ohmic contact with the second conductive type semiconductor layer 129 .
可在形成多个接触孔130a前或后形成第二接触层131。The second contact layer 131 may be formed before or after forming the plurality of contact holes 130a.
参照图20的(a)和(b),形成第一绝缘层133以覆盖第二接触层131。第一绝缘层133可覆盖每个发光单元S1、S2的侧表面同时覆盖多个接触孔130a的侧壁。这里,第一绝缘层133可具有在多个接触孔130a中暴露第一导电型半导体层125的开口133a。Referring to (a) and (b) of FIG. 20 , a first insulating layer 133 is formed to cover the second contact layer 131 . The first insulating layer 133 may cover a side surface of each light emitting unit S1, S2 while covering sidewalls of the plurality of contact holes 130a. Here, the first insulating layer 133 may have openings 133a exposing the first conductive type semiconductor layer 125 in the plurality of contact holes 130a.
可由诸如氧化硅膜或氮化硅膜的单层或多层组成第一绝缘层133。此外,可由通过交替地堆叠具有不同折射率的绝缘层形成的分布式布拉格反射器组成第一绝缘层133。例如,可通过交替地堆叠SiO2/TiO2或SiO2/Nb2O5来形成第一绝缘层133。另外,可形成第一绝缘层133以提供通过调节各个绝缘层的厚度对蓝光、绿光和红光的宽波长范围具有高反射性的分布式布拉格反射器。The first insulating layer 133 may be composed of a single layer or multiple layers such as a silicon oxide film or a silicon nitride film. In addition, the first insulating layer 133 may be composed of a distributed Bragg reflector formed by alternately stacking insulating layers having different refractive indices. For example, the first insulating layer 133 may be formed by alternately stacking SiO 2 /TiO 2 or SiO 2 /Nb 2 O 5 . In addition, the first insulating layer 133 may be formed to provide a distributed Bragg reflector having high reflectivity for a wide wavelength range of blue, green, and red light by adjusting the thickness of each insulating layer.
参照图21的(a)和(b),在第一绝缘层133上形成第一接触层135。在每个发光单元S1、S2上形成第一接触层135,第一接触层135包括暴露在接触孔130a中的接触第一导电型上半导体层125的接触部分135a和将接触部分135a彼此连接的连接部分135b。第一接触层135可以由反射金属层组成,但不限于此。Referring to (a) and (b) of FIG. 21 , a first contact layer 135 is formed on the first insulating layer 133 . A first contact layer 135 is formed on each light emitting unit S1, S2, and the first contact layer 135 includes a contact portion 135a exposed in the contact hole 130a and contacting the first conductive type upper semiconductor layer 125 and a contact portion 135a connected to each other. connecting portion 135b. The first contact layer 135 may be composed of a reflective metal layer, but is not limited thereto.
在每个发射单元S1、S2的一些区域上形成第一接触层135,使得在半导体堆叠件130的没有形成第一接触层135的其他区域处暴露第一绝缘层133。The first contact layer 135 is formed on some regions of each firing cell S1 , S2 such that the first insulating layer 133 is exposed at other regions of the semiconductor stack 130 where the first contact layer 135 is not formed.
参照图22的(a)和(b),在第一接触层135上形成第二绝缘层137。可由诸如氧化硅膜或氮化硅膜的单层或多层组成第二绝缘层137。可选择地,可由通过交替地堆叠具有不同折射率的绝缘层形成的分布式布拉格反射器组成第二绝缘层137。Referring to (a) and (b) of FIG. 22 , a second insulating layer 137 is formed on the first contact layer 135 . The second insulating layer 137 may be composed of a single layer or multiple layers such as a silicon oxide film or a silicon nitride film. Alternatively, the second insulating layer 137 may be composed of a distributed Bragg reflector formed by alternately stacking insulating layers having different refractive indices.
第二绝缘层137可覆盖第一接触层135同时覆盖第一绝缘层133。第二绝缘层137还可覆盖每个发光单元S1、S2的侧表面。另外,可在芯片分离区域130c和单元分离区域130b中填充第二绝缘层137。The second insulating layer 137 may cover the first contact layer 135 while covering the first insulating layer 133 . The second insulating layer 137 may also cover a side surface of each light emitting unit S1, S2. In addition, the second insulating layer 137 may be filled in the chip separation region 130c and the cell separation region 130b.
第二绝缘层137具有暴露每个发光单元S1、S2的第一接触层135的开口137a。另外,第二绝缘层137和第一绝缘层133形成有暴露第二接触层131的开口137b。The second insulating layer 137 has an opening 137a exposing the first contact layer 135 of each light emitting unit S1, S2. In addition, the second insulating layer 137 and the first insulating layer 133 are formed with an opening 137 b exposing the second contact layer 131 .
参照图23的(a)和(b),在第二绝缘层137上形成连接件139c、第一电极焊盘139a和第二电极焊盘139b。将第一电极焊盘139a通过开口137a连接到第一发光单元S1的第一接触层135,将第二电极焊盘139b通过开口137b连接到第二发光单元S2的第二接触层131。另外,连接器139c通过开口137a、137b将邻近发光单元S1、S2的第一接触层135和第二接触层131彼此串联连接。Referring to (a) and (b) of FIG. 23 , a connector 139 c , a first electrode pad 139 a and a second electrode pad 139 b are formed on the second insulating layer 137 . The first electrode pad 139a is connected to the first contact layer 135 of the first light emitting unit S1 through the opening 137a, and the second electrode pad 139b is connected to the second contact layer 131 of the second light emitting unit S2 through the opening 137b. In addition, the connector 139c connects the first contact layer 135 and the second contact layer 131 adjacent to the light emitting units S1, S2 to each other in series through the openings 137a, 137b.
参照图24,在第一电极焊盘139a、第二电极焊盘139b和连接件139c上形成第三绝缘层141。第三绝缘层141覆盖第一电极焊盘139a、第二电极焊盘139b和连接件139c,并具有暴露电极焊盘139a、139b的上表面的凹槽。同时,第三绝缘层141可具有形成在其凹槽中的其他金属层140a、140b。其他金属层140a、140b使电极焊盘139a、139b的高度增加,使得最终的电极焊盘可具有比连接件139c更高的高度。在形成第三绝缘层141前可形成其他金属层140a、140b。其他金属层140a、140b的上表面可与第三绝缘层141的上表面基本共面。Referring to FIG. 24, a third insulating layer 141 is formed on the first electrode pad 139a, the second electrode pad 139b, and the connector 139c. The third insulating layer 141 covers the first electrode pad 139a, the second electrode pad 139b and the connector 139c, and has grooves exposing the upper surfaces of the electrode pads 139a, 139b. Meanwhile, the third insulating layer 141 may have other metal layers 140a, 140b formed in grooves thereof. The other metal layers 140a, 140b increase the height of the electrode pads 139a, 139b so that the final electrode pads may have a higher height than the connector 139c. Other metal layers 140a, 140b may be formed before forming the third insulating layer 141 . The upper surfaces of the other metal layers 140a, 140b may be substantially coplanar with the upper surface of the third insulating layer 141 .
参照图25,在第三绝缘层141上形成图案化的绝缘层143。图案化的绝缘层143具有暴露第一电极焊盘139a和第二电极焊盘139b的上侧例如,其他金属层140a、140b的凹槽。另外,图案化的绝缘层143可具有暴露第一电极焊盘139a和第二电极焊盘139b之间的绝缘层141的凹槽。Referring to FIG. 25 , a patterned insulating layer 143 is formed on the third insulating layer 141 . The patterned insulating layer 143 has grooves exposing upper sides of the first electrode pad 139a and the second electrode pad 139b, for example, other metal layers 140a, 140b. In addition, the patterned insulating layer 143 may have grooves exposing the insulating layer 141 between the first electrode pad 139a and the second electrode pad 139b.
然后,在绝缘层143的凹槽中形成第一凸块145a和第二凸块145b,可在第一凸块和第二凸块之间形成哑凸块145c。Then, a first bump 145 a and a second bump 145 b are formed in the groove of the insulating layer 143 , and a dummy bump 145 c may be formed between the first bump and the second bump.
可通过例如电镀的镀覆形成凸块。根据需要,还可形成用于镀覆的种子层。The bumps may be formed by plating such as electroplating. If necessary, a seed layer for plating can also be formed.
在形成第一凸块145a和第二凸块145b后,可以去除绝缘层143。例如,绝缘层143可由诸如光致抗蚀剂的聚合物形成,并且可以在形成凸块后被去除。可选择地,可保留绝缘层143以保护第一凸块145a和第二凸块145b的侧表面。After the first bump 145a and the second bump 145b are formed, the insulating layer 143 may be removed. For example, the insulating layer 143 may be formed of polymer such as photoresist, and may be removed after the bump is formed. Alternatively, the insulating layer 143 may remain to protect side surfaces of the first bump 145a and the second bump 145b.
参照图26,去除生长基底121,然后将波长转换器151附着到发光单元S1、S2。可通过诸如激光剥离(LLO)的光学技术、机械抛光或化学蚀刻来去除生长基底121。Referring to FIG. 26, the growth substrate 121 is removed, and then the wavelength converter 151 is attached to the light emitting units S1, S2. The growth substrate 121 may be removed by optical techniques such as laser lift-off (LLO), mechanical polishing, or chemical etching.
然后,使第一导电型半导体层125的暴露的表面经受诸如PEC蚀刻的各向异性蚀刻,以在暴露的第一导电型半导体层125上形成粗糙表面。Then, the exposed surface of the first conductive type semiconductor layer 125 is subjected to anisotropic etching such as PEC etching to form a rough surface on the exposed first conductive type semiconductor layer 125 .
同时,可将诸如包含磷光体的磷光体片的波长转换器151附着到第一导电型半导体层125。Meanwhile, a wavelength converter 151 such as a phosphor sheet including phosphor may be attached to the first conductive type semiconductor layer 125 .
可选择地,生长基底121可包含用于转换在有源层127中产生的光的波长的杂质。在这种情况下,可将生长基底121用作波长转换器151。Alternatively, the growth substrate 121 may contain impurities for converting the wavelength of light generated in the active layer 127 . In this case, the growth substrate 121 may be used as the wavelength converter 151 .
然后,沿着芯片分离区域130c将LED封装结构分成单个的封装件,从而提供完成的LED封装件300。此时,将第二绝缘层137与波长转换器151一起切割,使得第二绝缘层137和波长转换器151的切割平面可形成在一条直线上。Then, the LED package structure is divided into individual packages along the chip separation region 130 c, thereby providing the completed LED package 300 . At this time, the second insulating layer 137 is cut together with the wavelength converter 151 so that cutting planes of the second insulating layer 137 and the wavelength converter 151 may be formed on a straight line.
图27是解释制造根据本发明第四示例性实施例的LED封装件400的方法的剖视图。FIG. 27 is a cross-sectional view explaining a method of manufacturing an LED package 400 according to a fourth exemplary embodiment of the present invention.
参照图27,在制造根据本实施例的LED封装件400的方法中,工艺与上述(图24)制造LED封装件300的方法的工艺相同,直至形成第三绝缘层141和其他金属层140a、140b。Referring to FIG. 27 , in the method of manufacturing the LED package 400 according to this embodiment, the process is the same as that of the method of manufacturing the LED package 300 described above ( FIG. 24 ), until the formation of the third insulating layer 141 and other metal layers 140a, 140b.
在本示例性实施例中,将基底161接合到第三绝缘层141。基底161可具有在其中可以形成第一凸块165a和第二凸块165b的通孔。另外,第一凸块165a和第二凸块165b可在其末端处形成有焊盘(未示出)。此外,基底161可具有部分形成在其下表面上并由金属材料165c填充的凹槽。金属材料165c改善基底散热。In the present exemplary embodiment, the substrate 161 is bonded to the third insulating layer 141 . The substrate 161 may have a through hole in which the first bump 165 a and the second bump 165 b may be formed. In addition, the first bump 165a and the second bump 165b may be formed with pads (not shown) at ends thereof. In addition, the base 161 may have a groove partially formed on a lower surface thereof and filled with the metal material 165c. The metal material 165c improves the heat dissipation of the substrate.
可选择地,可单独制备具有第一凸块165a和第二凸块165b的基底161,并且将具有第一凸块165a和第二凸块165b的基底161接合到具有第一电极焊盘139a和第二电极焊盘139b的晶片。可分别将第一凸块165a和第二凸块165b电连接到第一电极焊盘139a和第二电极焊盘139b。Alternatively, the substrate 161 having the first bump 165a and the second bump 165b may be separately prepared, and the substrate 161 having the first bump 165a and the second bump 165b may be bonded to the substrate having the first electrode pad 139a and wafer of the second electrode pad 139b. The first bump 165a and the second bump 165b may be electrically connected to the first electrode pad 139a and the second electrode pad 139b, respectively.
然后,如参照图26所述,去除生长基底121,并且可将波长转换器151附着到发光单元S1、S2,随后将LED封装结构分成单个的LED封装件。因此,提供在图15中描述的完成的LED封装件400。Then, as described with reference to FIG. 26, the growth substrate 121 is removed, and the wavelength converter 151 may be attached to the light emitting units S1, S2, and then the LED package structure is divided into individual LED packages. Thus, the completed LED package 400 depicted in FIG. 15 is provided.
同样地,本发明的示例性实施例提供了可在没有使用传统的引线框架或印刷电路板的情况下直接形成在用于模块的电路板上的晶片级LED封装件。因此,LED封装件可具有高效率并可展现出经改善的散热,同时减少用于制造所述LED封装件的时间和成本。此外,具有安装在其上的LED封装件的LED模块可具有高效率并可展现出经改善的散热。Also, exemplary embodiments of the present invention provide a wafer-level LED package that can be directly formed on a circuit board for a module without using a conventional lead frame or printed circuit board. Accordingly, the LED package can have high efficiency and can exhibit improved heat dissipation while reducing the time and cost for manufacturing the LED package. Furthermore, LED modules having LED packages mounted thereon can have high efficiency and can exhibit improved heat dissipation.
另外,LED封装件可包括彼此串联连接的多个发光单元和彼此反向并联连接的阵列。另外,多个发光单元可连接成桥式整流器,并可用于形成桥式整流器。因此,包括LED封装件的LED模块可在没有单独的AC/DC转换器的情况下操作。In addition, the LED package may include a plurality of light emitting units connected in series to each other and an array connected in antiparallel to each other. In addition, a plurality of light emitting units may be connected into a bridge rectifier and may be used to form a bridge rectifier. Therefore, the LED module including the LED package can be operated without a separate AC/DC converter.
尽管已经结合附图参照一些示例性实施例描述了本发明,但是对于本领域技术人员将明显的是,在不脱离本发明的精神和范围的情况下可对本发明做出各种修改和改变。另外,应该理解的是,在不脱离本发明的精神和范围的情况下某个实施例的一些特征还可应用到其他实施例。因此,应该理解的是,仅通过图示将实施例提供给本领域技术人员,给出实施例以将本发明的完全公开提供给本领域技术人员,并将对本发明的彻底理解提供给本领域技术人员。从而,意图的是,本发明覆盖所述修改和变化,只要所述修改和变化落入权利要求及其等同物的范围内。Although the invention has been described with reference to some exemplary embodiments in conjunction with the accompanying drawings, it will be apparent to those skilled in the art that various modifications and changes can be made in the invention without departing from the spirit and scope of the invention. In addition, it should be understood that some features of a certain embodiment can also be applied to other embodiments without departing from the spirit and scope of the invention. Therefore, it should be understood that the embodiments are provided by way of illustration only, and that the embodiments are given so that a complete disclosure of the invention and a thorough understanding of the invention will be provided to those skilled in the art Technical staff. Thus, it is intended that the present invention covers the modifications and variations provided they come within the scope of the claims and their equivalents.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0092807 | 2010-09-24 | ||
KR1020100092807A KR101142965B1 (en) | 2010-09-24 | 2010-09-24 | Wafer-level light emitting diode package and method of fabricating the same |
CN201180046150.0A CN103119735B (en) | 2010-09-24 | 2011-09-05 | Wafer LED packaging part and manufacture method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180046150.0A Division CN103119735B (en) | 2010-09-24 | 2011-09-05 | Wafer LED packaging part and manufacture method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105575990A true CN105575990A (en) | 2016-05-11 |
CN105575990B CN105575990B (en) | 2018-12-07 |
Family
ID=45874235
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610133009.9A Active CN105679751B (en) | 2010-09-24 | 2011-09-05 | Wafer-level light-emitting diode package and method of making the same |
CN201610131393.9A Active CN105575990B (en) | 2010-09-24 | 2011-09-05 | Wafer LED packaging part and its manufacturing method |
CN201180046150.0A Active CN103119735B (en) | 2010-09-24 | 2011-09-05 | Wafer LED packaging part and manufacture method thereof |
CN201610131814.8A Active CN105789234B (en) | 2010-09-24 | 2011-09-05 | Wafer-level light-emitting diode package and method of making the same |
CN201610132965.5A Active CN105789235B (en) | 2010-09-24 | 2011-09-05 | Wafer-level light-emitting diode package and method of making the same |
CN201610132992.2A Active CN105789236B (en) | 2010-09-24 | 2011-09-05 | Wafer-level light-emitting diode package and method of making the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610133009.9A Active CN105679751B (en) | 2010-09-24 | 2011-09-05 | Wafer-level light-emitting diode package and method of making the same |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180046150.0A Active CN103119735B (en) | 2010-09-24 | 2011-09-05 | Wafer LED packaging part and manufacture method thereof |
CN201610131814.8A Active CN105789234B (en) | 2010-09-24 | 2011-09-05 | Wafer-level light-emitting diode package and method of making the same |
CN201610132965.5A Active CN105789235B (en) | 2010-09-24 | 2011-09-05 | Wafer-level light-emitting diode package and method of making the same |
CN201610132992.2A Active CN105789236B (en) | 2010-09-24 | 2011-09-05 | Wafer-level light-emitting diode package and method of making the same |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101142965B1 (en) |
CN (6) | CN105679751B (en) |
DE (3) | DE202011110832U1 (en) |
WO (1) | WO2012039555A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112467020A (en) * | 2019-09-09 | 2021-03-09 | 中国科学院苏州纳米技术与纳米仿生研究所 | Flip-chip LED light source |
Families Citing this family (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130258637A1 (en) * | 2012-03-31 | 2013-10-03 | Michael Dongxue Wang | Wavelength-converting structure for a light source |
CN103700682A (en) * | 2012-05-04 | 2014-04-02 | 奇力光电科技股份有限公司 | Light emitting diode structure and manufacturing method thereof |
US8816383B2 (en) | 2012-07-06 | 2014-08-26 | Invensas Corporation | High performance light emitting diode with vias |
US8664681B2 (en) | 2012-07-06 | 2014-03-04 | Invensas Corporation | Parallel plate slot emission array |
WO2014025195A1 (en) * | 2012-08-07 | 2014-02-13 | 서울바이오시스 주식회사 | Wafer level light-emitting diode array and method for manufacturing same |
US8765500B2 (en) * | 2012-08-24 | 2014-07-01 | Tsmc Solid State Lighting Ltd. | Method and apparatus for fabricating phosphor-coated LED dies |
JP5514274B2 (en) * | 2012-09-03 | 2014-06-04 | Dowaエレクトロニクス株式会社 | Group III nitride semiconductor light emitting device and method of manufacturing the same |
WO2014105403A1 (en) * | 2012-12-31 | 2014-07-03 | Invensas Corporation | High performance light emitting diode |
TWI570955B (en) | 2013-01-10 | 2017-02-11 | 晶元光電股份有限公司 | Light-emitting device |
WO2014128574A1 (en) * | 2013-02-19 | 2014-08-28 | Koninklijke Philips N.V. | A light emitting die component formed by multilayer structures |
DE102013102667A1 (en) | 2013-03-15 | 2014-10-02 | Osram Opto Semiconductors Gmbh | display device |
US9577151B2 (en) * | 2013-04-23 | 2017-02-21 | Koninklijke Philips N.V. | Side interconnect for light emitting device |
KR102075147B1 (en) * | 2013-06-05 | 2020-02-10 | 엘지이노텍 주식회사 | Light emitting device and light emitting device package |
KR102075655B1 (en) | 2013-06-24 | 2020-02-10 | 엘지이노텍 주식회사 | Light emitting device and light emitting device package |
US9761774B2 (en) * | 2014-12-16 | 2017-09-12 | Epistar Corporation | Light-emitting element with protective cushioning |
TWI616004B (en) * | 2013-11-27 | 2018-02-21 | 晶元光電股份有限公司 | Semiconductor light-emitting element |
KR102114932B1 (en) * | 2013-11-12 | 2020-05-25 | 엘지이노텍 주식회사 | Light emitting device and package including the device |
KR102116986B1 (en) * | 2014-02-17 | 2020-05-29 | 삼성전자 주식회사 | LED package |
CN104953000B (en) * | 2014-03-27 | 2019-02-15 | 首尔伟傲世有限公司 | Light-emitting diodes and light-emitting devices |
KR102162437B1 (en) * | 2014-05-15 | 2020-10-07 | 엘지이노텍 주식회사 | Light emitting device and light emitting device package including the device |
US10008635B2 (en) * | 2014-06-10 | 2018-06-26 | Semicon Light Co., Ltd. | Semiconductor light-emitting element |
KR102019914B1 (en) * | 2014-06-11 | 2019-11-04 | 엘지이노텍 주식회사 | Light Emitting Device |
KR102197082B1 (en) * | 2014-06-16 | 2020-12-31 | 엘지이노텍 주식회사 | Light emitting device and light emitting device package including the same |
KR102407827B1 (en) * | 2015-01-27 | 2022-06-13 | 서울바이오시스 주식회사 | Light emitting device |
US9543488B2 (en) | 2014-06-23 | 2017-01-10 | Seoul Viosys Co., Ltd. | Light emitting device |
KR20160016361A (en) * | 2014-08-05 | 2016-02-15 | 서울바이오시스 주식회사 | Light emitting diode and method of fabricating the same |
US10074777B2 (en) | 2014-08-27 | 2018-09-11 | Epistar Corporation | Light emitting diode structure with dielectric reflective layer |
KR101719628B1 (en) * | 2014-10-27 | 2017-03-24 | 엘지이노텍 주식회사 | Light emitting device package |
KR102263066B1 (en) * | 2014-11-12 | 2021-06-10 | 서울바이오시스 주식회사 | Light emitting device |
WO2016080768A1 (en) * | 2014-11-18 | 2016-05-26 | 서울반도체 주식회사 | Light emitting device and vehicular lamp comprising same |
KR102309670B1 (en) * | 2014-12-24 | 2021-10-07 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Light emitting device, light emitting package and lighting system |
CN105810672A (en) * | 2014-12-30 | 2016-07-27 | 晶能光电(江西)有限公司 | Flip LED chip and preparation method thereof |
KR102402260B1 (en) * | 2015-01-08 | 2022-05-27 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Light emitting device package |
DE102015100578A1 (en) | 2015-01-15 | 2016-07-21 | Osram Opto Semiconductors Gmbh | Component and method for manufacturing a device |
CN104681704B (en) * | 2015-01-30 | 2017-08-29 | 大连德豪光电科技有限公司 | Flip LED chips and preparation method thereof |
KR101669122B1 (en) * | 2015-02-26 | 2016-10-25 | 엘지이노텍 주식회사 | The light- |
US10270008B2 (en) | 2015-03-16 | 2019-04-23 | Seoul Viosys Co., Ltd. | Light emitting element including metal bulk |
JP2016174015A (en) * | 2015-03-16 | 2016-09-29 | 株式会社東芝 | Semiconductor light emitting device |
KR102434778B1 (en) * | 2015-03-26 | 2022-08-23 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Light emitting device package |
KR102474695B1 (en) * | 2015-04-02 | 2022-12-06 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Light emitting device |
KR102458090B1 (en) * | 2015-04-03 | 2022-10-24 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | light emitting device |
CN104795474B (en) * | 2015-04-20 | 2018-10-16 | 映瑞光电科技(上海)有限公司 | High-power LED chip and its manufacturing method |
KR102348511B1 (en) * | 2015-05-11 | 2022-01-07 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | light emitting device |
KR102380825B1 (en) * | 2015-05-29 | 2022-04-01 | 삼성전자주식회사 | Semiconductor light emitting diode chip and light emitting device having the same |
JP2017005191A (en) | 2015-06-15 | 2017-01-05 | 株式会社東芝 | Semiconductor light emitting device |
DE212016000126U1 (en) | 2015-06-26 | 2018-01-29 | Seoul Semiconductor Co., Ltd | Backlight unit using multi-cell LEDs |
WO2016209025A2 (en) * | 2015-06-26 | 2016-12-29 | 서울반도체 주식회사 | Backlight unit using multi-cell light emitting diode |
KR102422246B1 (en) * | 2015-07-30 | 2022-07-19 | 삼성전자주식회사 | Light emitting diode(LED) package |
DE102015114590B4 (en) | 2015-09-01 | 2020-01-02 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic component |
CN106558597B (en) * | 2015-09-30 | 2020-03-06 | 三星电子株式会社 | Light emitting device package |
KR102487989B1 (en) | 2015-09-30 | 2023-01-12 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Light emitting device |
KR102413224B1 (en) * | 2015-10-01 | 2022-06-24 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Light emitting device, manufacturing method for light emittin device, and lighting module |
CN105390583A (en) * | 2015-10-28 | 2016-03-09 | 江苏新广联半导体有限公司 | White light flip chip and preparation method thereof |
CN106711316B (en) * | 2015-11-18 | 2020-09-04 | 晶元光电股份有限公司 | Light emitting element |
KR102509144B1 (en) * | 2015-12-28 | 2023-03-13 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Light emitting device |
CN111129248B (en) * | 2016-01-13 | 2024-03-08 | 首尔伟傲世有限公司 | Ultraviolet light-emitting element |
KR102624111B1 (en) | 2016-01-13 | 2024-01-12 | 서울바이오시스 주식회사 | UV Light Emitting Device |
CN111128987A (en) * | 2016-05-03 | 2020-05-08 | 首尔伟傲世有限公司 | led |
KR102559136B1 (en) * | 2016-06-08 | 2023-07-25 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Semiconductor device and lighting apparatus |
CN107689408B (en) * | 2016-08-04 | 2020-03-17 | 展晶科技(深圳)有限公司 | Light emitting diode flip chip die and display |
KR102553630B1 (en) * | 2016-08-11 | 2023-07-10 | 삼성전자주식회사 | Led lighting device package and display apparatus using the same |
CN107146833B (en) * | 2017-04-25 | 2020-05-29 | 淮安澳洋顺昌光电技术有限公司 | Preparation method of LED flip chip |
CN107123707A (en) * | 2017-04-25 | 2017-09-01 | 淮安澳洋顺昌光电技术有限公司 | The preparation method of simple upside-down mounting high voltage LED chip |
CN108877538B (en) * | 2017-05-16 | 2021-08-24 | 英属开曼群岛商錼创科技股份有限公司 | Miniature light-emitting diode device and display panel |
TWI790249B (en) * | 2017-07-13 | 2023-01-21 | 大陸商蘇州樂琻半導體有限公司 | Light emitting device and light emitting device package |
WO2019039914A2 (en) | 2017-08-25 | 2019-02-28 | 엘지이노텍 주식회사 | Semiconductor device and semiconductor device package |
CN107658372A (en) * | 2017-09-21 | 2018-02-02 | 山西飞虹微纳米光电科技有限公司 | Deep etching Cutting Road flip LED chips and preparation method, LED display |
KR101930006B1 (en) * | 2017-09-26 | 2018-12-17 | 에피스타 코포레이션 | Light-emitting device |
US12100696B2 (en) * | 2017-11-27 | 2024-09-24 | Seoul Viosys Co., Ltd. | Light emitting diode for display and display apparatus having the same |
FR3077160B1 (en) * | 2018-01-19 | 2022-01-21 | Commissariat Energie Atomique | OPTOELECTRONIC DEVICE COMPRISING A GRID AND A CATHODE COUPLED TO EACH OTHER |
CN117174732A (en) * | 2018-01-23 | 2023-12-05 | 晶元光电股份有限公司 | Light emitting element, method of manufacturing the same, and display module |
CN108288666A (en) * | 2018-01-26 | 2018-07-17 | 扬州乾照光电有限公司 | A kind of light emitting diode and electronic equipment of included radiator structure |
US10269711B1 (en) * | 2018-03-16 | 2019-04-23 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor device and method for manufacturing the same |
CN109031779B (en) * | 2018-07-25 | 2024-06-11 | 京东方科技集团股份有限公司 | Light-emitting diode substrate, backlight module and display device |
CN109326686A (en) * | 2018-09-12 | 2019-02-12 | 聚灿光电科技(宿迁)有限公司 | A kind of manufacturing method of flip-chip light-emitting diode chip |
CN109638124A (en) * | 2018-12-11 | 2019-04-16 | 合肥彩虹蓝光科技有限公司 | Flip-over type light-emitting diode chip for backlight unit and preparation method thereof |
KR102756386B1 (en) | 2019-01-15 | 2025-01-21 | 삼성디스플레이 주식회사 | Light emitting device, display device having the same |
KR102737506B1 (en) * | 2019-03-18 | 2024-12-05 | 삼성전자주식회사 | Semiconductor light emitting device and Manufacturing method of the same |
KR20210155801A (en) * | 2019-05-14 | 2021-12-23 | 서울바이오시스 주식회사 | LED package and its manufacturing method |
BR112021023317A2 (en) * | 2019-05-21 | 2022-06-07 | Seoul Viosys Co Ltd | Light emitting device and display apparatus |
KR102170219B1 (en) * | 2019-09-03 | 2020-10-26 | 엘지이노텍 주식회사 | Light Emitting Device and light emitting device package |
CN110931619A (en) * | 2019-11-20 | 2020-03-27 | 厦门士兰明镓化合物半导体有限公司 | Flip LED chip and manufacturing method thereof |
CN110911537B (en) * | 2019-11-29 | 2021-12-28 | 东莞市中晶半导体科技有限公司 | Common cathode LED chip and manufacturing method thereof |
CN111416027B (en) * | 2020-04-27 | 2022-08-12 | 厦门三安光电有限公司 | A flip-chip high-voltage light-emitting diode and light-emitting device |
CN114497104B (en) * | 2020-11-12 | 2024-08-30 | 京东方科技集团股份有限公司 | Display module and display device |
CN112670391A (en) * | 2020-12-31 | 2021-04-16 | 深圳第三代半导体研究院 | Light emitting diode and manufacturing method thereof |
CN113921673B (en) * | 2021-08-26 | 2023-10-20 | 深圳市隆利科技股份有限公司 | Light emitting diode for display |
CN113903843B (en) * | 2021-09-27 | 2023-01-17 | 厦门三安光电有限公司 | Light-emitting diodes and light-emitting devices |
KR102752045B1 (en) * | 2021-10-05 | 2025-01-09 | 삼성전자주식회사 | Semiconductor light emitting device, display apparatus including the same, and method of manufacturaing the same |
CN113793889A (en) * | 2021-10-14 | 2021-12-14 | 淮安澳洋顺昌光电技术有限公司 | LED chip and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1734797A (en) * | 2004-08-02 | 2006-02-15 | 晶元光电股份有限公司 | Light Emitting Diodes with Thermal Via Bond |
CN101026212A (en) * | 2006-02-24 | 2007-08-29 | 三星电机株式会社 | Nitride-based semiconductor light-emitting device and method of manufacturing the same |
US20070284598A1 (en) * | 2004-09-02 | 2007-12-13 | Yukio Shakuda | Semiconductor Light Emitting Device |
US20090283787A1 (en) * | 2007-11-14 | 2009-11-19 | Matthew Donofrio | Semiconductor light emitting diodes having reflective structures and methods of fabricating same |
CN101764183A (en) * | 2008-12-23 | 2010-06-30 | 启耀光电股份有限公司 | light emitting device |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6463088B1 (en) * | 2000-07-07 | 2002-10-08 | Lucent Technologies Inc. | Mesa geometry semiconductor light emitter having chalcogenide dielectric coating |
US6630689B2 (en) * | 2001-05-09 | 2003-10-07 | Lumileds Lighting, U.S. Llc | Semiconductor LED flip-chip with high reflectivity dielectric coating on the mesa |
EP2149907A3 (en) | 2002-08-29 | 2014-05-07 | Seoul Semiconductor Co., Ltd. | Light-emitting device having light-emitting diodes |
JP4143732B2 (en) * | 2002-10-16 | 2008-09-03 | スタンレー電気株式会社 | In-vehicle wavelength converter |
US7179670B2 (en) * | 2004-03-05 | 2007-02-20 | Gelcore, Llc | Flip-chip light emitting diode device without sub-mount |
JP2005347622A (en) * | 2004-06-04 | 2005-12-15 | Seiko Epson Corp | Semiconductor device, circuit board and electronic equipment |
US9368428B2 (en) * | 2004-06-30 | 2016-06-14 | Cree, Inc. | Dielectric wafer level bonding with conductive feed-throughs for electrical connection and thermal management |
US7821023B2 (en) * | 2005-01-10 | 2010-10-26 | Cree, Inc. | Solid state lighting component |
US7736945B2 (en) | 2005-06-09 | 2010-06-15 | Philips Lumileds Lighting Company, Llc | LED assembly having maximum metal support for laser lift-off of growth substrate |
US7777240B2 (en) * | 2006-10-17 | 2010-08-17 | Epistar Corporation | Optoelectronic device |
KR100818466B1 (en) * | 2007-02-13 | 2008-04-02 | 삼성전기주식회사 | Semiconductor light emitting device |
DE102007019776A1 (en) * | 2007-04-26 | 2008-10-30 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for producing a plurality of optoelectronic components |
KR100838197B1 (en) * | 2007-08-10 | 2008-06-16 | 서울옵토디바이스주식회사 | Light Emitting Diodes with Improved Current Dissipation Performance |
KR101423723B1 (en) * | 2007-10-29 | 2014-08-04 | 서울바이오시스 주식회사 | Light emitting diode package |
US8643034B2 (en) * | 2008-02-29 | 2014-02-04 | Osram Opto Semiconductors Gmbh | Monolithic, optoelectronic semiconductor body and method for the production thereof |
CN101685842B (en) * | 2008-09-25 | 2012-12-05 | 晶元光电股份有限公司 | Optoelectronic semiconductor device |
KR101017394B1 (en) * | 2008-09-30 | 2011-02-28 | 서울옵토디바이스주식회사 | Light emitting device and method of manufacturing the same |
TWI464900B (en) * | 2008-11-26 | 2014-12-11 | Epistar Corp | Photoelectric semiconductor device |
JP4724222B2 (en) * | 2008-12-12 | 2011-07-13 | 株式会社東芝 | Method for manufacturing light emitting device |
KR20100076083A (en) * | 2008-12-17 | 2010-07-06 | 서울반도체 주식회사 | Light emitting diode having plurality of light emitting cells and method of fabricating the same |
TWI473246B (en) * | 2008-12-30 | 2015-02-11 | Epistar Corp | LED Diode Grade Package |
KR101557362B1 (en) * | 2008-12-31 | 2015-10-08 | 서울바이오시스 주식회사 | A light emitting device having a plurality of non-polar light emitting cells and a method of manufacturing the same |
CN101937962A (en) * | 2010-07-30 | 2011-01-05 | 晶科电子(广州)有限公司 | A kind of LED packaging structure and packaging method thereof |
JP2012054423A (en) * | 2010-09-01 | 2012-03-15 | Hitachi Cable Ltd | Light-emitting diode |
-
2010
- 2010-09-24 KR KR1020100092807A patent/KR101142965B1/en active IP Right Grant
-
2011
- 2011-09-05 CN CN201610133009.9A patent/CN105679751B/en active Active
- 2011-09-05 DE DE202011110832.9U patent/DE202011110832U1/en not_active Expired - Lifetime
- 2011-09-05 DE DE112011103186T patent/DE112011103186T5/en active Pending
- 2011-09-05 CN CN201610131393.9A patent/CN105575990B/en active Active
- 2011-09-05 CN CN201180046150.0A patent/CN103119735B/en active Active
- 2011-09-05 WO PCT/KR2011/006544 patent/WO2012039555A2/en active Application Filing
- 2011-09-05 CN CN201610131814.8A patent/CN105789234B/en active Active
- 2011-09-05 CN CN201610132965.5A patent/CN105789235B/en active Active
- 2011-09-05 DE DE112011106156.0T patent/DE112011106156B4/en active Active
- 2011-09-05 CN CN201610132992.2A patent/CN105789236B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1734797A (en) * | 2004-08-02 | 2006-02-15 | 晶元光电股份有限公司 | Light Emitting Diodes with Thermal Via Bond |
US20070284598A1 (en) * | 2004-09-02 | 2007-12-13 | Yukio Shakuda | Semiconductor Light Emitting Device |
CN101026212A (en) * | 2006-02-24 | 2007-08-29 | 三星电机株式会社 | Nitride-based semiconductor light-emitting device and method of manufacturing the same |
US20090283787A1 (en) * | 2007-11-14 | 2009-11-19 | Matthew Donofrio | Semiconductor light emitting diodes having reflective structures and methods of fabricating same |
CN101764183A (en) * | 2008-12-23 | 2010-06-30 | 启耀光电股份有限公司 | light emitting device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112467020A (en) * | 2019-09-09 | 2021-03-09 | 中国科学院苏州纳米技术与纳米仿生研究所 | Flip-chip LED light source |
Also Published As
Publication number | Publication date |
---|---|
CN105789236B (en) | 2019-06-11 |
CN105789236A (en) | 2016-07-20 |
KR101142965B1 (en) | 2012-05-08 |
CN105789235A (en) | 2016-07-20 |
KR20120031342A (en) | 2012-04-03 |
CN105679751B (en) | 2020-06-09 |
CN105789235B (en) | 2019-05-03 |
WO2012039555A3 (en) | 2012-06-28 |
CN105575990B (en) | 2018-12-07 |
CN103119735B (en) | 2016-04-06 |
CN105789234A (en) | 2016-07-20 |
DE112011103186T5 (en) | 2013-07-18 |
DE202011110832U1 (en) | 2016-09-22 |
CN105679751A (en) | 2016-06-15 |
DE112011106156B4 (en) | 2024-02-01 |
CN105789234B (en) | 2020-06-09 |
CN103119735A (en) | 2013-05-22 |
WO2012039555A2 (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105575990B (en) | Wafer LED packaging part and its manufacturing method | |
US10892386B2 (en) | Wafer-level light emitting diode package and method of fabricating the same | |
CN205944139U (en) | Ultraviolet ray light -emitting diode spare and contain this emitting diode module | |
KR101138952B1 (en) | Wafer-level light emitting diode package having plurality of light emitting cells and method of fabricating the same | |
KR101423717B1 (en) | Light emitting diode package having plurality of light emitting cells and method of fabricating the same | |
KR101634369B1 (en) | Wafer-level light emitting diode package having plurality of light emitting cells and method of fabricating the same | |
KR101660020B1 (en) | Wafer-level light emitting diode package and method of fabricating the same | |
KR20120031472A (en) | Wafer-level light emitting diode package and method of fabricating the same | |
KR101797561B1 (en) | Wafer-level light emitting diode package and method of fabricating the same | |
KR101731058B1 (en) | Wafer-level light emitting diode package and method of fabricating the same | |
KR101775664B1 (en) | Wafer-level light emitting diode package and method of fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |