CN105283202A - 用于淋巴结检测的低渗溶液 - Google Patents
用于淋巴结检测的低渗溶液 Download PDFInfo
- Publication number
- CN105283202A CN105283202A CN201480013822.1A CN201480013822A CN105283202A CN 105283202 A CN105283202 A CN 105283202A CN 201480013822 A CN201480013822 A CN 201480013822A CN 105283202 A CN105283202 A CN 105283202A
- Authority
- CN
- China
- Prior art keywords
- suspension
- hypotonic
- magnetic particles
- lymph nodes
- hypotonic suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1806—Suspensions, emulsions, colloids, dispersions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1827—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
- A61K49/1851—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
- A61K49/1863—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being a polysaccharide or derivative thereof, e.g. chitosan, chitin, cellulose, pectin, starch
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N2/00—Magnetotherapy
- A61N2/002—Magnetotherapy in combination with another treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Radiology & Medical Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
- Magnetic Treatment Devices (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明提供了用于淋巴结的快速检测的组合物。该组合物包括诸如氧化铁的磁性粒子以及溶质,溶质存在的量导致低渗溶液。也提供了用于检测淋巴结的方法。
Description
相关申请的交叉引用
本申请要求于2013年3月11日提交的美国临时专利申请第61/775,780号的优先权,其全部内容通过引用结合于此作为参考。
技术领域
本申请通常涉及内科诊断学领域和诊断方法以及用于对外科切除的组织进行定位的器件。
背景技术
每年大约有1250000例新发乳腺癌病例被诊断。在大多数情况下,迫切需要手术去除肿瘤,和切除前哨淋巴结,并组织学地检测它们以确定癌症是否已扩散到体内的其他部位。前哨淋巴结是从肿瘤接受淋巴引流的第一结。之所以这样称呼是因为它们可靠地提醒临床医生任何癌症的扩散。前哨淋巴结活检是当今乳腺癌手术中的医疗标准。
在手术中定位前哨淋巴结是很困难的。定位前哨淋巴结的一种方法是将深蓝色染料注入乳腺中的淋巴系统内。然后染料分散在整个乳腺淋巴系统并且外科医生移除任何有颜色的结。这种方法被公认为容易出错。
一种改进的方法包括将放射性染料注入淋巴结内。以类似的方式,染料引流穿过整个淋巴系统和然后外科医生使用辐射探测器以帮助定位前哨淋巴结。然而,放射性同位素的使用提出了重大的和昂贵的后勤负担,这是因为除了需要用于常规手术的外科医生之外,还需要分配核医学放射学家的时间和资源。此外,许多患者都不愿意接受放射性注射。这些因素可以成为使用放射性同位素定位前哨淋巴结的重要障碍。
进一步改进的方法包括将磁性粒子的悬浮液注射到淋巴结内,并等待磁性粒子引流穿过整个淋巴系统。然后使用磁力计检测粒子,其揭示了淋巴结的位置。参见美国专利公开号US2011/0133730。现有的溶液,诸如具有约30mOsm/kg的非常低的渗透压。是以羧基葡聚糖包衣的磁赤铁矿纳米粒子的水溶液,具有约25.5mg/mL至29.5mg/mL的铁浓度。注射剂中的磁粒子需要大约30分钟以充分地引流穿过整个淋巴系统以确保准确的淋巴结检测,这可能潜在地导致在手术操作期间的重大的和代价高昂的停工时间。因此,不耐烦的医生可能会尝试太快地检测淋巴结-即,在磁性粒子充分地引流穿过整个淋巴系统之前-这可以导致不完整的淋巴结检测。
因此,需要存在能够使更有效的程序成为可能的组合物。
本发明解决这方面的需要。
发明内容
本发明涉及一种用于医用注射的低渗悬浮液。在一个实施例中,该组合物包括约13mg/mL至约200mg/mL的磁性粒子,和选自约0.01%w/v至约0.6%w/v的无机盐(例如,氯化钠)或约0.5%w/v至约1.5%w/v的二元醇的渗透物。
低渗悬浮液的实施例可以包括一个或多个下列特征:
磁性粒子可以是氧化铁粒子,诸如超顺磁性氧化铁粒子(例如,磁赤铁矿)。
所述磁性粒子可以被包衣,诸如被葡聚糖(例如,羧基葡聚糖)包衣。
悬浮液可以具有约13mg/mL的磁性粒子,约28mg/mL的磁性粒子,56mg/mL的磁性粒子,100mg/mL的磁性粒子,140mg/mL的磁性粒子或约200mg/mL的磁性粒子。
悬浮液可以具有约80mOsm/kg至约160mOsm/kg的渗透压。
悬浮液可以包括辅料(赋形剂)。
无机盐可以存在的量为约0.01%w/v至0.6%w/v,约0.05%w/v至0.3%w/v,约0.1%w/v至0.3%w/v,小于约0.6%w/v或者小于约0.3%w/v。
本发明还提供了一种在患者(例如,人)中定位淋巴结的方法。该方法包括以下步骤:提供低渗悬浮液;将低渗悬浮液注射到患者体内;等待直至磁性粒子被截留在淋巴结中;和通过检测磁性粒子的位置来检测淋巴结的位置。
该方法可包括一个或多个下列特征:
该方法可以包括将0.2mL的低渗悬浮液,0.4mL的低渗悬浮液或0.8mL的低渗悬浮液注射到患者体内。
可使用磁力计实施检测。
本发明还提供了一种快速定位患者(例如,人)体内淋巴结的方法。该方法包括下述步骤:提供包括磁性粒子的低渗悬浮液;将低渗悬浮液注射至患者体内;并通过检测磁性粒子的位置在注射的10分钟内或在短短的5分钟内检测淋巴结,基于检测,检测足以立即开始淋巴结上的医疗程序。
本发明还提供一种使用磁热疗治疗患者的方法,该方法包括以下步骤:提供低渗悬浮液;将低渗悬浮液注射到患者体内;和将患者暴露于交变磁场。
附图说明
不必按照比例绘制附图,相反,通常应该强调,基于示例性原则来设置附图。附图在所有方面被认为是说明性的并且不旨在限制本发明,本发明的范围仅受权利要求的限定。
图1示出了对于不同的盐基低渗溶液在淋巴腺处的磁力计测量(Abs单位)。结果表示为从0至2小时的平均值±SEM,n=3。
图2示出了对于不同的盐基和非盐基低渗溶液在淋巴结处的磁力计测量(Abs单位)。结果表示为从0至120分钟的平均值±SEM,n=3。
具体实施方式
本发明部分涉及发现的用于快速检测患者体内的淋巴结的组合物。这些组合物包括低渗溶液中的磁性粒子的悬浮液。低渗溶液的渗透压有利于在注射之后磁性粒子快速引流或传输穿过淋巴系统,从而降低初始注射和淋巴结检测之间的停工时间。在初始注射之后的短短5到15分钟内,可以鲁棒(robustly)地检测邻近注射位点的淋巴结,这比当前方法快至少50%,从而允许更有效的术前检查。此外,本发明的低渗溶液是通用溶剂,并且与等渗或高渗溶液相比,可以与更宽范围内的辅料一起使用。此外,快速移动到淋巴结可以减少在注射部位处的残留标记或纹身(tattooing)。
在本发明的意义内的低渗溶液是具有约80mOsm至约160mOsm的渗透压的水溶液。等渗溶液具有大约300mOsm的渗透压,并且高渗溶液具有大于350mOsm的渗透压。
在优选实施例中,无机盐(例如,氯化钠)或二元醇(例如,丙二醇)用来配制低渗溶液。具有约0.01%w/v至约0.6%w/v的盐的无机盐溶液(例如,氯化钠)产生适用于本发明的低渗溶液。具有约0.5%w/v至约1.5%w/v的二元醇的二元醇溶液(例如,丙二醇)适用于本发明的低渗溶液。
可以使用合适的无机盐来制备低渗溶液,例如,无机盐包括一价和二价盐,诸如氯化钠、氯化钾、氯化镁、氯化铵、碳酸氢钠、硫酸氢钠、硫酸钠、硫酸铵、磷酸钠、磷酸钾、氯化钙、硫酸镁、醋酸钾和醋酸钠。
可以使用合适的二元醇来制备低渗溶液,例如,二元醇包括短链、直链或支链烷基二醇类,诸如丙二醇。
磁性粒子可以由合适的磁性材料和一个或多个包衣组成。在一些实施例中,磁性粒子含有诸如磁铁矿或磁赤铁矿的氧化铁。磁性核可由生物相容性包衣包围,以减小毒性,防止粒子结块,或修改在体内的残留时间。例如,合适的包衣包括葡聚糖、羧基葡聚糖、其他糖类、白蛋白、聚乙二醇(PEG)、可生物相容的聚合物、聚乙二醇化淀粉、聚乙烯醇(PVA)、聚乙烯吡咯烷酮(PVP)、聚乙烯亚胺(PEI)、聚葡萄糖山梨醇羧基甲基醚和壳聚糖。其他包衣材料包括诸如金的金属、聚乙二醇胶体金纳米粒子、银、碳、硅、硅树脂、氨基硅烷和陶瓷。为了表现出超顺磁性行为,粒子的磁性核应当低于特定的直径,取决于材料和结构,通常在3-25nm的范围内。
磁性粒子还可以被功能化,以允许它们停留在例如癌细胞的特定的组织或细胞类型中,或靶向特定的生物系统,以将治疗方法传递至这些区域。通过附接或者包衣生物载体来实现功能化,生物载体包括诸如抗体、酶或蛋白质。
在一个实施例中,氧化铁由于其毒性低而可用作磁性核,但可形成超顺磁性核的其他材料也是可以接受的。核材料应该是能够被磁有序化的。核材料可以是金属,诸如钴、铁或镍、金属合金、稀土和过渡金属合金、含有铝、钡、铋、铈、铬、钴、铜、镝、铒、铕、钆、钬、铁、镧、镥、锰、钼、钕、镍、铌、钯、铂、镨、钷、钐、锶、铽、铥、钛、钒、镱和钇或它们的混合物的M型或尖晶石铁氧体。也可以通过氧化铁(II)盐和另一种金属盐的组合来形成核。有益的金属盐包括铝、钡、铋、铈、铬、钴、铜、镝、铒、铕、钆、钬、铁、镧、镥、锰、钼、钕、镍、铌、钯、铂、镨、钷、钐、锶、铽、铥、钛、钒、镱和钇的盐。
低渗溶液的渗透压具有允许与各种辅料相结合的进一步优势,从而导致不同的配方选择。例如,可以与本发明的低渗溶液一起使用的合适的辅料包括:
·共溶剂,诸如乙醇、丙二醇、聚丙二醇、PEG400、甘油、苄醇及其组合;
·油,诸如油脂、液体石蜡、芝麻油,PEG植物油以及它们的组合;表面活性剂,诸如聚氧乙烯脂肪酸酯、聚乙二醇40蓖麻油、聚山梨酯20、聚山梨酯80和它们的组合;
·脂质体,诸如卵磷脂、蛋黄卵磷脂、磷脂酰甘油、磷脂、蛋黄磷脂以及它们的组合;
·碳水化合物,诸如葡萄糖;
·氨基酸或氨基酸混合物,诸如II、和Hepat
·增稠剂/稳定剂,诸如羧甲基纤维素;和
·缓冲剂,适用于注射。
如果辅料增加溶液的渗透压,则可以调整无机盐和/或二元醇的用量,从而使得低渗溶液的总渗透压介于约80mOsm和约160mOsm之间。
本发明的组合物可用于检测人类或任何其他哺乳动物(诸如猪)内的淋巴结。例如,包括磁性粒子的低渗溶液可以注射到乳腺癌患者内。然后使用诸如(英国,剑桥,Endomagnetics)的磁力计来检测溶液中的磁性粒子,以揭示患者体内前哨淋巴结的位置。
低渗溶液的进一步应用是磁热疗,其中,将溶液施用至身体以用于加热组织的目的。在该应用中,纳米粒子的浓度是在20mg/mL和200mg/mL之间,更优选在100mg/mL和140mg/mL之间。
本发明的低渗组合物可以作为试剂盒的部分随时可用地供给,试剂盒包括容器,诸如小瓶或注射器和用于给药组合物的说明书。
实例
实例1
示出对人类患者使用2ml(英国,剑桥,Endomagnetics)的临床试验,表明在腋淋巴结中表现出缓慢的吸收,和在30分钟之后的较差的外部信号。是高度低渗的,具有30mOsm/kg的渗透压。据推测,当将注入到间质组织内时,周围的细胞迅速从注射液吸收水以维持渗透压力。这将留下更多集中质量的而同时降低间质压力,有效减少了至淋巴系统的传输。据信,体积的增加增大了间质压力,从而增加了由淋巴系统吸收的速度。然而,体积的较大增加可能被证明使患者不舒服。此外,用于前哨淋巴结活检(例如,肠、黑素瘤、一些头部和颈部癌症)的一些潜在应用将不允许增加注射体积。据推测,由于间质液流体中的流体体积和压力将保持(等渗)或甚至增加(对于高渗注射液,其中周围的细胞会逐水),增加渗透压的溶液将提供更快的响应,因此增加至淋巴结的流动。
方法
猪乳房用作活体淋巴结模型。实施调查以在将溶液直接注入至3rd腹股沟乳头之后,评估羧基葡聚糖包衣的磁赤铁矿纳米粒子溶液的浓度和体积对猪中的超顺磁性氧化铁粒子的生物分布的影响。磁赤铁矿的核具有约5nm的直径,并且羧基葡聚糖包衣将粒子直径增加至约60-70nm。本研究的目的是在注射以0.3%、0.6%和0.9%w/v氯化钠制备的磁赤铁矿纳米粒子溶液之后评估猪淋巴结中的超顺磁性氧化铁粒子的生物分布。通过使用磁探针评估张力对粒子的淋巴结生物分布的影响。
在注射前,对猪肌肉注射阿扎哌隆和氯胺酮的组合以使其镇静,接着是通过静脉注射硫喷妥钠使其全身麻醉。在给药之前,对给药区进行清洗和标记。
在第三腹股沟乳头的基部内直接地实施所有的注射。每头猪在左乳头和右乳头接受不同的注射。将每份测试溶液注入至三个不同猪的乳头(n=3)。表1示出了测试的配方。在表1中,“体系”列对应于图1中的曲线。
表1:测试的配方
在水中制备羧基葡聚糖包衣的磁赤铁矿纳米粒子溶液。向磁赤铁矿溶液中添加NaCl至合适的浓度。例如,通过向预稀释的磁赤铁矿纳米粒子溶液添加0.3mg的NaCl来配制0.3%盐磁性粒子悬浮液。(约26mg/mL磁赤铁矿,0.4mL剂量;体系g)用作对照。
使用器件对于每头猪进行多次读数,如在表2中所详述的。在72小时的读数之后,从所有的动物移除乳头和淋巴结的部位以用于组织学分析。图1中的结果是在淋巴结处的测量值的平均值(n=3)。
表2测量部位和时间点
结果:
发现0.3%w/v生理盐水溶液中的(图1,体系a)与0.6%和0.9%生理盐水溶液(图1,分别为体系b和c)同样有效。这是令人惊讶的,这是因为与0.6%w/v(270mOsm-大约等渗)和0.9%w/v(384mOsm-高渗)相比,0.3%w/v溶液是低渗(156mOsm)。对于0.3%w/v溶液的这样好的结果是意想不到的。据信,与0.6%和0.9%的溶液相比,低张力将扩展可以使用的配方添加剂(辅料)的范围。
具体来说,增加张力导致铁粒子穿过淋巴系统的显著地更快速的传输。在注射后5分钟,将0.3%、0.6%和0.9%的盐添加至(图1,分别为体系a、b和c)导致与对照(图1,体系g)相比,在淋巴腺处测量的信号增长了五倍。结果,治疗医生在开始程序之前仅仅需要等待5-15分钟,与单独的相比,这降低了至少50%的等待时间。
此外,在30分钟的时间点,添加0.3%、0.6%或0.9%w/v氯化钠至(图1,分别为体系a、b和c)的影响与使铁浓度增加一倍(图1,体系f)是等同的。因此,增加张力使每次注射所需要使用的总铁更少,从而降低了成本和副作用。
因此,低渗<0.6%NaCl溶液和更优选的<0.3%的NaCl溶液提供了与等渗(例如,0.6%氯化钠)或甚至高渗(例如,0.9%氯化钠)溶液同样快速的至淋巴结的运输,而在该溶液中不需要包括这样大量的盐。
含有0.05%w/v氯化钠的更低渗溶液与相比,没有显示出显著的改进。用于张力益处的“触发点”因此在一定程度上介于约80mOsm和约156mOsm之间。因此,0.05%到0.3%的NaCl溶液或优选地0.1%至0.3%的NaCl溶液,或更优选0.2%至0.3%的NaCl溶液表现出快速吸收和作为辅料的通用性。
实例2
进行了类似的活体猪的研究以研究包括可选溶质的低渗溶液。在第三腹股沟乳头的基部内直接地实施所有的注射。每头猪在左乳头和右乳头接受不同的注射。将每份测试溶液注入至不同的猪的三个乳头(n=3)。表3示出了测试的配方。在表3中,“体系”列对应于图2中的曲线。
表3:测试的配方
体系 | 溶液 | 张力(mOsm/kg) |
1 | 具有0.3%NaCl和0.1%HA的Sienna+ | 132 |
3 | 具有0.3%NaCl和1%聚山梨酯20的Sienna+ | 135 |
5 | 具有0.5%丙二醇的Sienna+ | 128 |
6 | 具有0.3%NaCl的Sienna+(对照) | 126 |
7 | 具有0.75%丙三醇的Sienna+ | 136 |
13 | 具有0.5%丙二醇和1.8%丙三醇的Sienna+ | 297 |
体系6,具有0.3%NaCl的Sienna+用作对照。对于每头猪使用器件进行多次读数,如在表4中所详述的。表2中的结果是在淋巴结处的测量值的平均值(n=3)。
表4测量部位和时间点
如图2所示,体系6(Sienna+0.3%NaCl-对照)导致至淋巴腺的最快的传递。因此盐似乎是用于传递的最佳增效剂。0.5%聚乙二醇(体系5)也似乎是有效的,从而导致注射的5-15分钟内至淋巴腺的快速传递。因此,在一些实施例中,二元醇可作为溶质以配制包括磁性粒子的低渗溶液。
聚山梨酯(体系3)和丙三醇(体系7)配方是在前两小时内表现最差的配方,尽管张力等于NaCl对照(体系6)的张力,表明聚山梨酯和丙三醇潜在地抑制到淋巴腺的传递。同样,添加的透明质酸(MW108000道尔顿)当与0.3%氯化钠结合时,似乎延迟传递。
应注意的是,溶液的施用方法取决于将被施用的身体中的特定部位。对于前哨淋巴结活检,注射可以是间质、皮下、皮内或肌肉注射。对于磁热疗,可通过任何这些注射方法或通过导管或灌注到组织、体腔或血管的区域来施用这些溶液。
应理解,步骤的顺序或用于实施特定行为的顺序是不重要的,条件是本发明仍是可操作的。此外,可以同时地进行两个以上的步骤或动作。
当提供范围或列举数值时,介于该范围的上限和下限之间的中间值或列举的值单独考虑,并且涵盖在本发明内,犹如每个值在本文中被明确列举。此外,介于给定范围的上限和下限之间并且包括给定范围的上限和下限的较小的范围预期并且涵盖在本发明内。所列举的示例性数值或范围并不是对其他数值或介于给定范围的上限和下限之间并且包括上限和下限的范围的放弃。
Claims (28)
1.一种用于医用注射的低渗悬浮液,包括:
约13mg/mL至约200mg/mL的磁性粒子;以及
选自约0.01%w/v至约0.6%w/v的无机盐或约0.5%w/v至约1.5%w/v的二元醇的渗透物。
2.根据权利要求1所述的低渗悬浮液,其中,所述磁性粒子是氧化铁。
3.根据权利要求2所述的低渗悬浮液,其中,所述氧化铁粒子是超顺磁的。
4.根据权利要求1所述的低渗悬浮液,包括约13mg/mL的磁性粒子。
5.根据权利要求1所述的低渗悬浮液,包括约26mg/mL的磁性粒子。
6.根据权利要求1所述的低渗悬浮液,包括约52mg/mL的磁性粒子。
7.根据权利要求1所述的低渗悬浮液,其中,所述低渗悬浮液具有约80mOsm/kg至约160mOsm/kg的渗透压。
8.根据权利要求1所述的低渗悬浮液,还包括辅料。
9.根据权利要求1所述的低渗悬浮液,其中,所述磁性粒子是包衣的。
10.根据权利要求9所述的低渗悬浮液,其中,所述包衣包括葡聚糖。
11.根据权利要求1所述的低渗悬浮液,其中,所述无机盐是氯化钠。
12.根据权利要求1所述的低渗悬浮液,其中,所述悬浮液用于检测前哨淋巴结并且包括约0.05%w/v至0.3%w/v的无机盐。
13.根据权利要求1所述的低渗悬浮液,其中,所述悬浮液用于检测前哨淋巴结并且包括约0.1%w/v至0.3%w/v的无机盐。
14.根据权利要求1所述的低渗悬浮液,其中,所述悬浮液用于检测前哨淋巴结并且包括小于或等于约0.6%w/v的无机盐。
15.根据权利要求1所述的低渗悬浮液,其中,所述悬浮液用于检测前哨淋巴结并且包括小于或等于约0.3%w/v的无机盐。
16.根据权利要求1所述的低渗悬浮液,其中,所述二元醇是丙二醇。
17.根据权利要求1所述的低渗悬浮液,其中,所述悬浮液用于磁热疗治疗并且包括约20mg/ml至200mg/ml的磁性粒子。
18.根据权利要求1所述的低渗悬浮液,其中,所述悬浮液用于磁热疗治疗并且包括约58mg/ml至140mg/ml的磁性粒子。
19.根据权利要求1所述的低渗悬浮液,其中,所述悬浮液用于磁热疗治疗并且包括约56mg/ml至140mg/ml的磁性粒子。
20.根据权利要求1所述的低渗悬浮液,其中,所述悬浮液用于磁热疗治疗并且包括约100mg/ml至140mg/ml的磁性粒子。
21.一种用于定位患者中淋巴结的方法,所述方法包括以下步骤:
提供权利要求1所述的低渗悬浮液;
将所述低渗悬浮液注射至所述患者体内;
等待直至所述磁性粒子被截留在淋巴结中;以及
通过检测所述磁性粒子的位置来检测所述淋巴结的位置。
22.根据权利要求21所述的方法,包括注射0.2mL的低渗悬浮液。
23.根据权利要求21所述的方法,包括注射0.4mL的低渗悬浮液。
24.根据权利要求21所述的方法,包括注射0.8mL的低渗悬浮液。
25.根据权利要求21所述的方法,其中,使用磁力计实施所述检测。
26.一种定位患者中淋巴结的方法,所述方法包括以下步骤:
提供包括磁性粒子的低渗悬浮液;
将所述低渗悬浮液注射至所述患者体内;以及
通过检测所述磁性粒子的位置在注射的10分钟内检测淋巴结,基于所述检测,所述检测足以立即开始所述淋巴结上的医疗程序。
27.根据权利要求26所述的方法,包括通过检测所述磁性粒子的位置在注射的5分钟内检测淋巴结。
28.一种使用磁热疗治疗患者的方法,所述方法包括以下步骤:
提供权利要求1所述的低渗悬浮液;
将所述低渗悬浮液注射到所述患者体内;以及
将所述患者暴露于交变磁场。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361775780P | 2013-03-11 | 2013-03-11 | |
US61/775,780 | 2013-03-11 | ||
PCT/GB2014/050698 WO2014140543A1 (en) | 2013-03-11 | 2014-03-10 | Hypoosmotic solutions for lymph node detection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105283202A true CN105283202A (zh) | 2016-01-27 |
CN105283202B CN105283202B (zh) | 2019-04-23 |
Family
ID=50342341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480013822.1A Expired - Fee Related CN105283202B (zh) | 2013-03-11 | 2014-03-10 | 用于淋巴结检测的低渗溶液 |
Country Status (10)
Country | Link |
---|---|
US (2) | US9808539B2 (zh) |
EP (1) | EP2968560B1 (zh) |
JP (1) | JP6351639B2 (zh) |
CN (1) | CN105283202B (zh) |
AU (1) | AU2014229811B2 (zh) |
BR (1) | BR112015022129B1 (zh) |
CA (1) | CA2904779C (zh) |
ES (1) | ES2803506T3 (zh) |
MX (1) | MX378185B (zh) |
WO (1) | WO2014140543A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016154552A1 (en) * | 2015-03-25 | 2016-09-29 | Lodespin Labs, Llc | The use of iron oxide nanoparticles in magnetically guided sentinel lymph node biopsy |
AU2016272550B2 (en) | 2015-06-04 | 2021-01-28 | Endomagnetics Ltd. | Marker materials and forms for magnetic marker localization (MML) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5368840A (en) * | 1990-04-10 | 1994-11-29 | Imarx Pharmaceutical Corp. | Natural polymers as contrast media for magnetic resonance imaging |
WO2008003524A2 (en) * | 2006-07-03 | 2008-01-10 | Università Degli Studi Di Urbino 'carlo Bo' | Delivery of contrasting agents for magnetic resonance imaging |
JP2011079781A (ja) * | 2009-10-08 | 2011-04-21 | Keio Gijuku | センチネルリンパ節の造影剤ないし同定剤、温熱療法剤 |
EP2339343A1 (en) * | 2009-12-08 | 2011-06-29 | JNC Corporation | Magnetic particles and method for producing thereof |
CN102740768A (zh) * | 2009-12-04 | 2012-10-17 | 安都磁学有限公司 | 磁探针设备 |
Family Cites Families (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2614164A (en) | 1947-11-12 | 1952-10-14 | Schlumberger Well Surv Corp | Mutual inductance system |
US3449662A (en) | 1963-10-16 | 1969-06-10 | American Mach & Foundry | Magnetic inspection method and apparatus using resilient magnetizing means and resilient sensors |
US3445928A (en) | 1966-03-25 | 1969-05-27 | Bunker Ramo | Magnetometer method of manufacture |
US4324255A (en) | 1980-03-07 | 1982-04-13 | Barach John P | Method and apparatus for measuring magnetic fields and electrical currents in biological and other systems |
GB2109112A (en) | 1981-10-06 | 1983-05-25 | Pantatron Systems Limited | Eddy current test probe |
JPH0768117B2 (ja) | 1983-05-06 | 1995-07-26 | ベスター・インコーポレイテツド | 薬剤放出調整用小胞製剤 |
US5261403A (en) | 1987-03-30 | 1993-11-16 | Hitachi, Ltd. | Magnetic resonance imaging apparatus |
US5414356A (en) | 1987-09-21 | 1995-05-09 | Hitachi, Ltd. | Fluxmeter including squid and pickup coil with flux guiding core and method for sensing degree of deterioration of an object |
US4825162A (en) | 1987-12-07 | 1989-04-25 | General Electric Company | Nuclear magnetic resonance (NMR) imaging with multiple surface coils |
JP2613275B2 (ja) | 1988-09-16 | 1997-05-21 | 株式会社日立製作所 | 超電導量子干渉素子を用いた磁束計 |
EP0390935A1 (de) | 1989-03-29 | 1990-10-10 | Siemens Aktiengesellschaft | Verfahren zum Kalibrieren von Mehrkanal-Squid-Systemen mit Gradiometern beliebiger Ordnung |
US5442289A (en) | 1989-07-31 | 1995-08-15 | Biomagnetic Technologies, Inc. | Biomagnetometer having flexible sensor |
DE4003330A1 (de) | 1990-02-05 | 1991-08-08 | Foerster Inst Dr Friedrich | Wirbelstrompruefgeraet |
US5005001A (en) | 1990-04-05 | 1991-04-02 | Pitney Bowes Inc. | Field generation and reception system for electronic article surveillance |
IL98744A0 (en) * | 1990-07-06 | 1992-07-15 | Gen Hospital Corp | Method of studying biological tissue using monocrystalline particles |
US5512821A (en) | 1991-06-04 | 1996-04-30 | Nkk Corporation | Method and apparatus for magnetically detecting defects in an object with compensation for magnetic field shift by means of a compensating coil |
US5293119A (en) | 1992-02-20 | 1994-03-08 | Sqm Technology, Inc. | Electromagnetic microscope for evaluation of electrically conductive and magnetic materials |
JP2882167B2 (ja) | 1992-03-06 | 1999-04-12 | ダイキン工業株式会社 | Squid磁束計 |
FR2689638B1 (fr) | 1992-04-06 | 1996-08-09 | Aerospatiale | Capteur a courants de foucault. |
DE4226814A1 (de) | 1992-08-13 | 1994-02-17 | Philips Patentverwaltung | Spulenanordnung für MR-Untersuchungen der Mamma |
US6023165A (en) | 1992-09-28 | 2000-02-08 | Fonar Corporation | Nuclear magnetic resonance apparatus and methods of use and facilities for incorporating the same |
US5575794A (en) | 1993-02-12 | 1996-11-19 | Walus; Richard L. | Tool for implanting a fiducial marker |
US5537037A (en) | 1993-03-16 | 1996-07-16 | Hitachi, Ltd. | Apparatus with cancel coil assembly for cancelling a field parallel to an axial direction to the plural coils and to a squid pick up coil |
JPH06324021A (ja) | 1993-03-16 | 1994-11-25 | Hitachi Ltd | 非破壊検査装置 |
EP0997109B1 (en) | 1993-04-26 | 2003-06-18 | ST. Louis University | Indicating the position of a surgical probe |
US5590654A (en) | 1993-06-07 | 1997-01-07 | Prince; Martin R. | Method and apparatus for magnetic resonance imaging of arteries using a magnetic resonance contrast agent |
US5534241A (en) * | 1993-07-23 | 1996-07-09 | Torchilin; Vladimir P. | Amphipathic polychelating compounds and methods of use |
US5363845A (en) | 1993-08-13 | 1994-11-15 | Medical Advances, Inc. | Breast coil for magnetic resonance imaging |
BE1007459A3 (nl) | 1993-08-24 | 1995-07-04 | Philips Electronics Nv | Magnetisch resonantie apparaat. |
US5437280A (en) | 1993-09-20 | 1995-08-01 | Hussman; Karl L. | Magnetic resonance breast localizer |
JPH0815229A (ja) | 1994-06-27 | 1996-01-19 | Mitsubishi Heavy Ind Ltd | 高分解能渦電流探傷装置 |
US5402094A (en) | 1994-08-15 | 1995-03-28 | Enge; Harald A. | MRI mammography magnet |
EP0781114B1 (en) | 1994-09-16 | 2005-05-25 | Ethicon Endo-Surgery, Inc. | Devices for defining and marking tissue |
JP3910222B2 (ja) | 1995-03-10 | 2007-04-25 | 株式会社豊田中央研究所 | 疲労度測定装置 |
US5657756A (en) | 1995-06-07 | 1997-08-19 | Ctf Systems Inc. | Method and systems for obtaining higher order gradiometer measurements with lower order gradiometers |
JP3580905B2 (ja) | 1995-06-13 | 2004-10-27 | 大日本印刷株式会社 | 磁気センサ |
JP3499054B2 (ja) | 1995-07-11 | 2004-02-23 | 独立行政法人 国立印刷局 | 安全保護紙の真偽判定装置 |
US5842986A (en) | 1995-08-16 | 1998-12-01 | Proton Sciences Corp. | Ferromagnetic foreign body screening method and apparatus |
DE19532676C1 (de) | 1995-09-05 | 1997-05-07 | Inst Physikalische Hochtech Ev | Anordnung zur Bestimmung der Position eines Markers in einem Hohlraum innerhalb des Organismus eines Lebewesens |
GB9600427D0 (en) * | 1996-01-10 | 1996-03-13 | Nycomed Imaging As | Contrast media |
IL124676A0 (en) | 1996-01-25 | 1998-12-06 | Schering Ag | Improved concentrated injection and infusion solutions for intravenous use |
AU712953B2 (en) | 1996-03-11 | 1999-11-18 | Focal, Inc. | Polymeric delivery of radionuclides and radiopharmaceuticals |
US6549800B1 (en) | 1996-04-25 | 2003-04-15 | Johns Hopkins Unversity School Of Medicine | Methods for in vivo magnetic resonance imaging |
JPH1038854A (ja) | 1996-07-17 | 1998-02-13 | Agency Of Ind Science & Technol | 導電性材料の非破壊検査方法および装置 |
EP1284123B1 (en) | 1996-08-12 | 2005-07-20 | Ethicon Endo-Surgery, Inc. | Apparatus for marking tissue |
AU4070697A (en) | 1996-08-16 | 1998-03-06 | Jon Neal Weaver | Anti-shoplifting security system |
US5844140A (en) | 1996-08-27 | 1998-12-01 | Seale; Joseph B. | Ultrasound beam alignment servo |
US5997473A (en) | 1996-09-06 | 1999-12-07 | Olympus Optical Co., Ltd. | Method of locating a coil which consists of determining the space occupied by a source coil generating a magnetic field |
DE29724862U1 (de) | 1996-09-18 | 2004-12-30 | Ifm Electronic Gmbh | Induktiver Näherungsschalter |
EP1007909A1 (de) | 1996-12-27 | 2000-06-14 | Bic-Neisse GmbH | Magnetischer resonanzsensor |
US6406420B1 (en) | 1997-01-02 | 2002-06-18 | Myocor, Inc. | Methods and devices for improving cardiac function in hearts |
WO2000045697A1 (en) | 1997-02-27 | 2000-08-10 | Uri Rapoport | Method and apparatus for detecting a magnetically responsive substance |
GB9712524D0 (en) | 1997-06-16 | 1997-08-20 | Nycomed Imaging As | Method |
FR2770779B1 (fr) | 1997-11-10 | 2000-07-21 | Bernstein Veronique | Solute hypotonique ou hypoosmolaire au plasma utilise dans le traitement de la cellulite, les fibroses, et de l'hirsutisme |
US6270464B1 (en) | 1998-06-22 | 2001-08-07 | Artemis Medical, Inc. | Biopsy localization method and device |
US6205352B1 (en) | 1997-11-19 | 2001-03-20 | Oncology Innovations, Inc. | Sentinel node identification using non-isotope means |
US6347241B2 (en) | 1999-02-02 | 2002-02-12 | Senorx, Inc. | Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it |
US6161034A (en) | 1999-02-02 | 2000-12-12 | Senorx, Inc. | Methods and chemical preparations for time-limited marking of biopsy sites |
RU2207808C2 (ru) * | 1998-04-09 | 2003-07-10 | Амершем Хелт АС | Применение контрастных агентов в форме частиц в диагностической визуализации для изучения физиологических параметров |
US5941890A (en) | 1998-06-26 | 1999-08-24 | Ethicon Endo-Surgery, Inc. | Implantable surgical marker |
US6356782B1 (en) | 1998-12-24 | 2002-03-12 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6371904B1 (en) | 1998-12-24 | 2002-04-16 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6230038B1 (en) | 1999-02-01 | 2001-05-08 | International Business Machines Corporation | Imaging of internal structures of living bodies by sensing implanted magnetic devices |
US6725083B1 (en) | 1999-02-02 | 2004-04-20 | Senorx, Inc. | Tissue site markers for in VIVO imaging |
US6862470B2 (en) | 1999-02-02 | 2005-03-01 | Senorx, Inc. | Cavity-filling biopsy site markers |
US7983734B2 (en) | 2003-05-23 | 2011-07-19 | Senorx, Inc. | Fibrous marker and intracorporeal delivery thereof |
US6173715B1 (en) | 1999-03-01 | 2001-01-16 | Lucent Medical Systems, Inc. | Magnetic anatomical marker and method of use |
WO2000066180A2 (en) | 1999-04-21 | 2000-11-09 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services, The National Institutes Of Health | Method for enhancing contrast produced by mri |
US6766186B1 (en) | 1999-06-16 | 2004-07-20 | C. R. Bard, Inc. | Post biospy tissue marker and method of use |
JP2001000430A (ja) | 1999-06-24 | 2001-01-09 | Alcare Co Ltd | 画像撮影用のマ−カ− |
US6835572B1 (en) | 1999-10-18 | 2004-12-28 | Institute For Magnetic Resonance Research | Magnetic resonance spectroscopy of breast biopsy to determine pathology, vascularization and nodal involvement |
JP2001255358A (ja) | 2000-03-10 | 2001-09-21 | Sumitomo Electric Ind Ltd | 磁気センサ |
US7283868B2 (en) | 2000-04-07 | 2007-10-16 | The Johns Hopkins University | Apparatus for sensing human prostate tumor |
US6889073B2 (en) | 2000-05-08 | 2005-05-03 | David A. Lampman | Breast biopsy and therapy system for magnetic resonance imagers |
US6544269B2 (en) | 2000-08-10 | 2003-04-08 | Cook Incorporated | Localizer needle |
US6394965B1 (en) | 2000-08-15 | 2002-05-28 | Carbon Medical Technologies, Inc. | Tissue marking using biocompatible microparticles |
EP1545705A4 (en) | 2000-11-16 | 2010-04-28 | Microspherix Llc | FLEXIBLE AND / OR ELASTIC BRACHYTHERAPY SEED OR STRAND |
ATE456332T1 (de) | 2000-11-17 | 2010-02-15 | Calypso Medical Inc | System zur lokalisierung und definition einer zielposition in einem menschlichen körper |
FR2823092B1 (fr) | 2001-04-10 | 2004-03-05 | Eurorad 2 6 | Dispositif per-operatoire pour la localisation de tissus marques et procede utilisant un tel dispositif |
JP4193382B2 (ja) | 2001-07-19 | 2008-12-10 | 株式会社日立製作所 | 磁場計測装置 |
US6850065B1 (en) | 2001-07-27 | 2005-02-01 | General Electric Company | MRI coil system for breast imaging |
US6592608B2 (en) | 2001-12-07 | 2003-07-15 | Biopsy Sciences, Llc | Bioabsorbable sealant |
ITSV20010029A1 (it) | 2001-08-14 | 2003-02-14 | Esaote Spa | Macchina per il rilevamento di immagini in risonanza magnetica nucleare (mri) |
US20030141868A1 (en) | 2001-08-23 | 2003-07-31 | Bakharev Alexander A. | High balance gradiometer |
US7135978B2 (en) | 2001-09-14 | 2006-11-14 | Calypso Medical Technologies, Inc. | Miniature resonating marker assembly |
US7701209B1 (en) | 2001-10-05 | 2010-04-20 | Fonar Corporation | Coils for horizontal field magnetic resonance imaging |
JP4090722B2 (ja) | 2001-10-23 | 2008-05-28 | 純一 小川 | 磁性流体検出装置 |
US20030216632A1 (en) | 2001-10-29 | 2003-11-20 | Mednovus, Inc. | Ferromagnetic sensing method and apparatus |
JP2003149212A (ja) | 2001-11-09 | 2003-05-21 | Japan Science & Technology Corp | 非破壊検査装置 |
ES2305320T3 (es) | 2001-12-14 | 2008-11-01 | Monteris Medical Inc. | Tratamiento de hipertermia y sonda para ello. |
JP2003315373A (ja) | 2002-04-18 | 2003-11-06 | Toshiba Corp | 電流検出装置及び半導体装置 |
US7329414B2 (en) | 2002-05-03 | 2008-02-12 | Biopsy Sciences, Llc | Biodegradable polymer for marking tissue and sealing tracts |
JP4221192B2 (ja) | 2002-06-14 | 2009-02-12 | 株式会社日立ハイテクノロジーズ | 生体磁気計測装置 |
US20040162477A1 (en) | 2002-10-04 | 2004-08-19 | Olympus Corporation | Apparatus for detecting magnetic fluid identifying sentinel-lymph node |
US20060173283A1 (en) | 2002-11-27 | 2006-08-03 | Oskar Axelsson | Method of magnetic resonance imaging |
US7412275B2 (en) | 2002-12-13 | 2008-08-12 | Mauro Marinelli | Susceptometer for non-invasive iron level measurement in a body |
US7009398B2 (en) | 2003-03-20 | 2006-03-07 | Siemens Aktiengesellschaft | Portable magnetic resonance surface coil unit with an access opening for manual gripping |
US7877133B2 (en) | 2003-05-23 | 2011-01-25 | Senorx, Inc. | Marker or filler forming fluid |
US7783336B2 (en) | 2003-06-06 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | Subcutaneous biopsy cavity marker device |
US7744852B2 (en) | 2003-07-25 | 2010-06-29 | Rubicor Medical, Llc | Methods and systems for marking post biopsy cavity sites |
US20050033157A1 (en) | 2003-07-25 | 2005-02-10 | Klein Dean A. | Multi-modality marking material and method |
US7001341B2 (en) | 2003-08-13 | 2006-02-21 | Scimed Life Systems, Inc. | Marking biopsy sites |
US7084631B2 (en) | 2003-11-19 | 2006-08-01 | General Electric Company | Magnetic resonance imaging array coil system and method for breast imaging |
JP4217599B2 (ja) | 2003-12-09 | 2009-02-04 | オリンパス株式会社 | 磁性流体検出装置 |
US20050148863A1 (en) | 2003-12-09 | 2005-07-07 | Toshiro Okamura | Magnetic fluid detection device |
US8118754B1 (en) | 2007-11-15 | 2012-02-21 | Flynn Edward R | Magnetic needle biopsy |
US7386338B2 (en) | 2004-04-30 | 2008-06-10 | General Electric Company | Bilateral imaging apparatus |
US7708751B2 (en) | 2004-05-21 | 2010-05-04 | Ethicon Endo-Surgery, Inc. | MRI biopsy device |
JP3896489B2 (ja) | 2004-07-16 | 2007-03-22 | 国立大学法人 岡山大学 | 磁気検知装置及び物質判定装置 |
US7116094B2 (en) | 2004-07-28 | 2006-10-03 | International Business Machines Corporation | Apparatus and method for transmission and remote sensing of signals from integrated circuit devices |
US20080097199A1 (en) | 2004-08-20 | 2008-04-24 | David Mullen | Tissue Marking Devices and Systems |
US20060074295A1 (en) | 2004-10-01 | 2006-04-06 | Nexgen | Combined MR coil technology in medical devices |
US8060183B2 (en) | 2004-10-13 | 2011-11-15 | Suros Surgical Systems, Inc. | Site marker visible under multiple modalities |
US8280486B2 (en) | 2004-10-13 | 2012-10-02 | Suros Surgical Systems, Inc. | Site marker visable under multiple modalities |
US20100125191A1 (en) | 2004-11-18 | 2010-05-20 | Nedim Turan Sahin | Mri as a therapeutic device |
WO2006056739A2 (en) | 2004-11-23 | 2006-06-01 | Quantum Medical Technology Limited | Surgical tag, magnetometer, and associated system |
US8467849B2 (en) | 2005-02-03 | 2013-06-18 | ORGAMEND Inc. | Magnetic resonance imaging device |
GB2425610A (en) | 2005-04-29 | 2006-11-01 | Univ London | Magnetic properties sensing system |
US7831293B2 (en) | 2005-05-10 | 2010-11-09 | Advanced Clinical Solutions, Inc. | Method of defining a biological target for treatment |
US20060293581A1 (en) | 2005-05-12 | 2006-12-28 | Sunnybrook And Women's College Health Sciences Centre | Marker device for X-ray, ultrasound and MR imaging |
US7570056B2 (en) | 2005-08-10 | 2009-08-04 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging apparatus |
GB0519391D0 (en) | 2005-09-22 | 2005-11-02 | Aion Diagnostics Ltd | Imaging agents |
US7479784B2 (en) | 2005-10-12 | 2009-01-20 | New York University | Arrangements, systems and methods for facilitating and collecting information associated with fluxes of magnetic fields provided at various angles from one another |
NO347263B1 (no) | 2005-11-01 | 2023-08-14 | Wyeth Llc | Fremgangsmåte for fremstilling av en Faktor IX formulering for intravenøs injeksjon |
US8193804B2 (en) | 2005-11-16 | 2012-06-05 | Rex Chin-Yih Hong | Device for measuring AC magnetization of materials |
US7702378B2 (en) | 2005-11-17 | 2010-04-20 | Breast-Med, Inc. | Tissue marker for multimodality radiographic imaging |
US8078260B2 (en) | 2006-05-02 | 2011-12-13 | ORGAMEND Inc. | Method for improving magnetic resonance imaging of the breast |
US8064987B2 (en) | 2006-10-23 | 2011-11-22 | C. R. Bard, Inc. | Breast marker |
US20090024022A1 (en) | 2006-10-25 | 2009-01-22 | Siemens Corporate Research, Inc. | System and method for lymph node imaging using co-registration of ct and mr imagery |
US20080146914A1 (en) | 2006-12-19 | 2008-06-19 | General Electric Company | System, method and apparatus for cancer imaging |
DE102007009016A1 (de) | 2007-02-23 | 2008-08-28 | Siemens Ag | Markierung und Verfahren zur Positionsbestimmung eines Zielgewebes |
US20080228164A1 (en) | 2007-03-14 | 2008-09-18 | Nicoson Zachary R | Implant delivery system |
US8062215B2 (en) | 2007-04-13 | 2011-11-22 | Ethicon Endo-Surgery, Inc. | Fluorescent nanoparticle scope |
WO2008131391A1 (en) | 2007-04-23 | 2008-10-30 | Device Evolutions, Llc | Surgical metal detection apparatus and methods |
US8137320B2 (en) | 2007-05-01 | 2012-03-20 | Suros Surgical Systems, Inc. | Securement for a surgical site marker and deployment device for same |
US9763597B2 (en) | 2007-05-03 | 2017-09-19 | Wisconsin Alumni Research Foundation | Local MRI breast coil and method of use |
US20090082662A1 (en) | 2007-09-24 | 2009-03-26 | Israel Henry M | Mri breast image magnet structure |
DE102007046186A1 (de) | 2007-09-26 | 2009-04-02 | Amedo Smart Tracking Solutions Gmbh | Gewebemarkierung |
US8731635B2 (en) | 2007-11-07 | 2014-05-20 | University of Pittsburgh—of the Commonwealth System of Higher Education | Coils for magnetic resonance spectroscopy and imaging of human breast |
US8050742B2 (en) | 2008-07-30 | 2011-11-01 | Devicor Medical Products, Inc. | Biopsy device |
DE102008048291B4 (de) | 2008-09-22 | 2012-02-16 | Siemens Aktiengesellschaft | Brustspulenanordnung für Magnetresonanzanwendungen |
US8892185B2 (en) | 2009-06-26 | 2014-11-18 | Cianna Medical, Inc. | Apparatus, systems, and methods for localizing markers or tissue structures within a body |
GB0916334D0 (en) | 2009-09-17 | 2009-10-28 | Renovo Ltd | Inhibition of tendon adhesions |
US9427186B2 (en) | 2009-12-04 | 2016-08-30 | Endomagnetics Ltd. | Magnetic probe apparatus |
US20130236530A1 (en) * | 2012-03-09 | 2013-09-12 | Howard Rosen | Pain reliever composition |
US20140018663A1 (en) * | 2012-07-16 | 2014-01-16 | Endomagnetics Ltd. | Magnetic Marker for Surgical Localization |
-
2014
- 2014-03-10 EP EP14711560.4A patent/EP2968560B1/en active Active
- 2014-03-10 ES ES14711560T patent/ES2803506T3/es active Active
- 2014-03-10 US US14/202,178 patent/US9808539B2/en active Active
- 2014-03-10 MX MX2015012587A patent/MX378185B/es unknown
- 2014-03-10 CA CA2904779A patent/CA2904779C/en active Active
- 2014-03-10 CN CN201480013822.1A patent/CN105283202B/zh not_active Expired - Fee Related
- 2014-03-10 JP JP2015562299A patent/JP6351639B2/ja active Active
- 2014-03-10 BR BR112015022129-7A patent/BR112015022129B1/pt active IP Right Grant
- 2014-03-10 WO PCT/GB2014/050698 patent/WO2014140543A1/en active Application Filing
- 2014-03-10 AU AU2014229811A patent/AU2014229811B2/en active Active
-
2017
- 2017-10-09 US US15/727,690 patent/US20180028692A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5368840A (en) * | 1990-04-10 | 1994-11-29 | Imarx Pharmaceutical Corp. | Natural polymers as contrast media for magnetic resonance imaging |
WO2008003524A2 (en) * | 2006-07-03 | 2008-01-10 | Università Degli Studi Di Urbino 'carlo Bo' | Delivery of contrasting agents for magnetic resonance imaging |
JP2011079781A (ja) * | 2009-10-08 | 2011-04-21 | Keio Gijuku | センチネルリンパ節の造影剤ないし同定剤、温熱療法剤 |
CN102740768A (zh) * | 2009-12-04 | 2012-10-17 | 安都磁学有限公司 | 磁探针设备 |
EP2339343A1 (en) * | 2009-12-08 | 2011-06-29 | JNC Corporation | Magnetic particles and method for producing thereof |
Also Published As
Publication number | Publication date |
---|---|
EP2968560A1 (en) | 2016-01-20 |
US20180028692A1 (en) | 2018-02-01 |
CA2904779A1 (en) | 2014-09-18 |
ES2803506T3 (es) | 2021-01-27 |
BR112015022129A2 (pt) | 2017-07-18 |
JP6351639B2 (ja) | 2018-07-04 |
EP2968560B1 (en) | 2020-04-29 |
BR112015022129B1 (pt) | 2022-04-19 |
CN105283202B (zh) | 2019-04-23 |
MX2015012587A (es) | 2016-10-13 |
MX378185B (es) | 2025-03-07 |
US20140314679A1 (en) | 2014-10-23 |
CA2904779C (en) | 2019-04-09 |
WO2014140543A1 (en) | 2014-09-18 |
AU2014229811B2 (en) | 2018-02-15 |
AU2014229811A1 (en) | 2015-09-24 |
JP2016512221A (ja) | 2016-04-25 |
US9808539B2 (en) | 2017-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization | |
Chertok et al. | Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics | |
JP2865172B2 (ja) | 経皮のリンパ管造影 | |
Bu et al. | Assessment and comparison of magnetic nanoparticles as MRI contrast agents in a rodent model of human hepatocellular carcinoma | |
CN103536972B (zh) | 磁共振成像可检测的液体栓塞组合物及其制备和应用 | |
ES2980123T3 (es) | Composiciones para uso en el tratamiento de quistes epiteliales mediante inyección intraquística de partículas antineoplásicas | |
AU2021203094A1 (en) | Compositions and methods for delivering therapeutic agents into the colon | |
Yi et al. | Establishment of rabbit liver VX2 tumor model using percutaneous puncture inoculation of tumor fragment guided and evaluated by ultrasonography | |
US20180028692A1 (en) | Hypoosmotic Solutions for Lymph Node Detection | |
US7247501B2 (en) | Imaging and targeting tumors using sickle cells | |
WO2018160926A1 (en) | Methods for the treatment of cancer and benign lesions by ablation | |
US20240423917A1 (en) | Use of nanoparticles for the treatment of fistulizing anoperineal lesions | |
US20240016850A1 (en) | Cell-nanoparticle drug delivery system and use of the same for inhibiting growth of tumor cells and diagnosing tumor cells | |
CN103536974A (zh) | 磁共振成像可检测的原位液晶前体栓塞组合物及其制备和应用 | |
JP7545147B2 (ja) | リンパトレーサーおよびその調製方法 | |
CN107837404A (zh) | 一种纳米粒子肿瘤诊断治疗联用制剂及其制备方法和应用 | |
ES2396911T3 (es) | Suspensión de barrido que comprende una partícula cuyo diámetro alcanza al menos 1 micrómetro | |
RU2012153952A (ru) | Способ диагностики мультиформной глиобластомы с помошью мрт и контрастное вещество для проведения мрт-исследования | |
Kenyon et al. | X-Ray visualization of intraductal ethanol-based ablative treatment for prevention of breast cancer in rat models | |
Ma et al. | Manipulation of magnetic nanoparticle retention and hemodynamic consequences in microcirculation: assessment by laser speckle imaging | |
CN115006555B (zh) | 一种纳米级超声/磁共振双模态造影剂和其制备方法及应用 | |
CN107050467B (zh) | 一种多功能高分子纳米粒及制备方法和应用 | |
Komatsu et al. | A Novel Rat Model of Embolic Cerebral Ischemia Using a Cell-Implantable Radiopaque | |
JP3775736B2 (ja) | 超音波造影剤 | |
Zhang et al. | Experiment studies of iodinated oil nanometer ferrofluid retention in rabbit liver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190423 Termination date: 20200310 |