JP3910222B2 - 疲労度測定装置 - Google Patents
疲労度測定装置 Download PDFInfo
- Publication number
- JP3910222B2 JP3910222B2 JP07990095A JP7990095A JP3910222B2 JP 3910222 B2 JP3910222 B2 JP 3910222B2 JP 07990095 A JP07990095 A JP 07990095A JP 7990095 A JP7990095 A JP 7990095A JP 3910222 B2 JP3910222 B2 JP 3910222B2
- Authority
- JP
- Japan
- Prior art keywords
- fatigue
- phase
- excitation
- detection
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Description
【産業上の利用分野】
本発明は、オーステナイト系ステンレス鋼製の部品が疲労により亀裂を生じる前にその疲労度を測定する装置に関するものである。
【0002】
【従来の技術】
従来、金属疲労を検出する方法として最も一般的に行なわれているのは、金属内部に超音波を投入し、その反射波を検出する方法(超音波検出法)である。これは、検出部の近傍に亀裂が存在する場合、その亀裂の表面により超音波が反射されるため亀裂の検出が可能となるものであるが、このような検出原理のため、亀裂が相当程度大きくないと検出ができないという欠点がある。また、応力集中部等の亀裂の発生が予想される箇所に一定の直流又は交流電流を流しておき、その両端の電圧の変化により亀裂の発生を検出する方法(電位差法)もある。この方法によると、超音波検出法よりは微小な亀裂を検出することが可能である。さらに、励磁コイルにより交番磁界を印加しておき、フラックスゲート磁束計で磁界の微小変化を検出することにより亀裂を検出する方法(フラックスゲート磁束計法。特開平6−308092号公報)も考案されている。
【0003】
【発明が解決しようとする課題】
以上説明した従来の疲労検出装置はいずれも、亀裂が発生した後にそれを検出するものであった。このため、疲労が予想され、しかも疲労による破壊が極めて重大な問題となる部品では、亀裂が検出可能な程度にまで大きくなっても部品の破壊が発生しないように、非常に大きな安全率を見込む必要があった。また、金属疲労では一般に亀裂が発生するまでは非常に長い時間又は繰り返し数が必要であるが、一旦亀裂が発生すると、その後の亀裂の成長は非常に速いため、検査間隔を十分短くとる必要があった。さらに、破壊よりもむしろ内部のガスや液体等の漏れが問題となる場合には、亀裂の存在自体が許されない場合もあり得る。なお、フラックスゲート磁束計法については、フラックスゲート磁束計が外部磁界に対しても極めて敏感であるため、不要な雑音磁界によって検出精度が悪化するという問題もある。
【0004】
本発明はこのような課題を解決するために成されたものであり、オーステナイト系ステンレス鋼製の部品について、疲労により亀裂が発生する前に、その疲労度を測定することができる装置を開発したものである。
【0005】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係る疲労度測定装置は、
a)1本の強磁性体棒、強磁性体棒の略中央に巻かれた1つの励磁コイル、及び、その両側に巻かれた2つの検出コイルから成る検出部と、
b)上記励磁コイルに交流励磁電流を供給する励磁回路部と、
c)上記2つの検出コイルを差動変圧器構成に接続し、その出力信号を励磁電流の位相に基づいて位相解析することにより、オーステナイト系ステンレス鋼製の被検査物の透磁率に応じた電気信号を取り出す処理回路部と、
d) 鋼種毎の疲労度と透磁率の変化の関係を示すデータを格納したメモリと、
e)処理回路部から取り出される、被検査物の疲労に伴う透磁率変化に応じた電気信号の変化に基づき、前記メモリを参照することによりオーステナイト系ステンレス鋼製の被検査物の疲労度を算出する疲労度算出部と、
を備えることを特徴とするものである。
【0006】
【作用】
本発明の疲労度測定装置の構成及び作用を図1及び図2により説明する。検出部2は図2に示すように1本の強磁性体棒21、その略中央に巻かれた1つの励磁コイル22、及び、その両側に巻かれた2つの検出コイル23、24から成る。励磁コイルは励磁回路部4に接続され、励磁回路部4より交流励磁電流の供給を受ける。2つの検出コイル23、24は、励磁コイル22と共に差動変圧器構成となるように処理回路部3に接続されている。なお、処理回路部3は励磁回路部4から励磁電流の位相を表わす信号を受け取る。
【0007】
励磁回路部4から検出部2の励磁コイル22に交流の励磁電流を供給すると、検出部2の強磁性体棒21の両端からは交番磁束が放出される。この検出部2の一端を疲労していないオーステナイト系ステンレス鋼製の被検査物1の表面に接触させると、被検査物1の表面には渦電流が生成され、検出コイル23、24の両端には渦電流により起電力が生成される。処理回路部3は、励磁電流の位相に基づいて検出コイル23、24の出力の位相解析を行なうことにより、被検査物1の透磁率に応じた電気信号を取り出す。
【0008】
被検査物1に多数回の繰り返し応力が加わり、疲労が進むと、被検査物1のオーステナイト相が加工変態によりマルテンサイト相に変化する。これにより被検査物1の透磁率が変化し、検出コイル23、24の出力の位相状態が変化する。処理回路部3はこの位相状態の変化を検出し、疲労度算出部5はこの変化に基づいて被検査物1の疲労度を算出する。なお、本発明に係る疲労度測定装置はこのような原理を利用するものであるため、被検査物1の材質としてはマルテンサイト相への加工変態が生じやすい準オーステナイト相を有するステンレス鋼が望ましい。
【0009】
【発明の効果】
本発明に係る疲労度測定装置では、オーステナイト系ステンレス鋼製の被検査物の相変化による透磁率の変化を検出し、それに基づいて疲労度を測定するため、被検査物に亀裂が入る前に疲労が蓄積していることを検出することができる。すなわち、破壊が発生する前にその可能性を検出することができるため、亀裂の存在を前提とした無駄に大きい安全率を設定する必要がない。また、疲労蓄積が検出された場合でも、実際に微小な亀裂が発生する迄には長い時間がかかるため、検査間隔を比較的長くとることができる。さらに、本発明に係る疲労度測定装置は、亀裂自体が問題となるような部品に対しても有効に対処することができる。
【0010】
【実施例】
本発明の一実施例を図3に示す。本実施例の疲労度測定装置の基本的構成は図1及び2に示したものと同じであるため、同じ要素には同じ記号を使用する。本実施例では、検出部2の強磁性体棒21としては、直径1mm、長さ15mmの軟鉄棒を使用する。処理回路部3は、検出部2の2つの検出コイル23、24からの電圧信号を加算し、増幅する入力回路31、位相検波回路32及びローパスフィルタ33から構成される。励磁回路部4は正弦波電流発生回路41と移相回路42から構成される。また、疲労度算出部5は、処理回路部3のアナログ出力信号をデジタル値に変換するA/D変換器51、被検査物1の透磁率に応じた信号によって被検査物1の疲労度を算出するためのCPU52、及び、予め鋼種毎の試験片等を用いて計測した、透磁率変化に応じた出力値と疲労度との関係のデータを格納しておくメモリ53から構成される。
【0011】
本実施例の疲労度測定装置の作用は次の通りである。まず、検出部2を被検査物1から遠く離した状態で、正弦波電流発生回路41から励磁コイル22に交流電流を流し、2つの検出コイル23、24に誘起される電圧の絶対値が同じになるように入力回路31をバランスさせて入力回路31の出力電圧がゼロとなるようにする。その後、検出部2の強磁性体棒21の一端を疲労していないオーステナイト系ステンレス鋼製の被検査物1の表面に接触させる。被検査物1は導電体であるため、励磁コイル22によって発生する交流磁界に誘起されて、接触部を中心とした渦電流が生成される。この渦電流の影響により上記バランスが崩れ、2つの検出コイル23、24の入力回路31の出力電圧はゼロではなくなる。入力回路31の出力電圧は位相検波回路32に送られ、そこで移相回路42からの基準ベクトル電圧信号を基に位相解析される。このとき、位相検波回路32の出力がゼロとなるように位相検波回路32のパラメータ調整を行なっておく。
【0012】
次に、上記被検査物1に多数回の繰り返し負荷を加えて疲労させた後、強磁性体棒21の上記一端を被検査物1の上記と同じ箇所に接触させる。この場合、被検査物1のオーステナイト相の一部は繰り返し負荷により加工変態を生じ、マルテンサイトとなる。オーステナイト相は非磁性であるのに対しマルテンサイト相は強磁性であるため、強磁性体棒21の先端から放出される交番磁束により誘起される被検査物1の渦電流に変化が生じ、検出コイル23、24の出力電圧の位相に僅かの変化を生ずる。位相検波回路32はこの位相変化を検出し、出力する。位相検波回路32の出力(アナログ)はローパスフィルタ33を通して疲労度算出部5のA/D変換器51に送られ、デジタル値に変換される。CPU52は、メモリ53に格納されているデータを参照することにより、位相検波回路32の出力データに基づいて被検査物1の疲労度を決定する。決定された疲労度は、予め定められたフォーマットで表示装置6に表示される。
【0013】
メモリ53に格納しておく参照データの決定方法の一例を次に説明する。まず、被検査物1と同じ材質で図4に示すような試験片8を作成する。この試験片8は、縦48×横50mmの平板の中央に、負荷線からの深さが24.5mmの切り込み81を入れたもので、切り込み81の先端にはドリルで半径4mmのアールを付けておく。負荷用の孔83、84にピンを差し込み、油圧式疲労試験機により切り込み81が開く方向に所定の振幅の荷重を繰り返し負荷する。所定回数毎に疲労試験機を停止し、切り込み81先端のアール部分82の先の方の疲労度を上記実施例の疲労測定装置で測定する。こうして、負荷の繰り返し回数とA/D変換器51のデジタル出力値のデータを多数採取し、グラフにプロットすると、図5及び図6に示すようなグラフが得られる。図5はSUS304について得られた結果であり、図6はSUS316について得られた結果である。いずれの鋼種においても、負荷の繰り返し回数が増えるに従ってA/D変換器51のデジタル出力(すなわち、位相検波回路32の出力)の値は増加してゆく。また、その増加の速度も繰り返し回数の増加に従って大きくなり、或る時点で亀裂が発生する。なお、亀裂発生後は渦電流の形状が大きく変化するため、位相検波回路32の出力も大きく変化する。従って、図5及び図6では亀裂発生後のデータは記入していない。このようなデータをメモリ53に格納しておくことにより、ローパスフィルタ33及びA/D変換器51を経由した後の位相検波回路32の出力に基づいて疲労度を算出することができる。なお、疲労度としてはそれまでの負荷回数(繰り返し回数)を採用してもよいし、亀裂発生までの負荷回数、或いは亀裂発生時の繰り返し回数を1とした指数等で表わしてもよい。なお、図5、図6に示すように、鋼種により繰り返し回数と位相検波回路32の出力の関係は異なるため、各種鋼種及び各種条件についてこのようなデータを作成しておき、メモリ53に格納しておくことが望ましい。そして、本疲労度測定装置を使用する際は、どの鋼種、どの条件で測定を行なうかを入力することにより、使用する参照データを決定し、それに基づいてCPU52が疲労度を算出して表示装置6に表示を行なう。
【0014】
被検査物がオーステナイト系ステンレス鋼製でない場合は、オーステナイト系ステンレス鋼製の薄板をその被検査物に固定し、被検査物と同じ負荷の繰り返しを受けるようにしておけば、本発明に係る疲労度測定装置により、オーステナイト系ステンレス鋼製でない被検査物についても、疲労度を測定することが可能となる。
【図面の簡単な説明】
【図1】 本発明の構成を示すブロック図。
【図2】 本発明の疲労度測定装置の検出部の概略構成図。
【図3】 本発明の一実施例である疲労度測定装置の構成を示すブロック図。
【図4】 参照データを作成するための疲労試験片の一例の平面図。
【図5】 SUS304の参照データの一例のグラフ。
【図6】 SUS316の参照データの一例のグラフ。
【符号の説明】
1…被検査物
2…検出部
21…強磁性体棒
22…励磁コイル
23、24…検出コイル
3…処理回路部
31…入力回路
32…位相検波回路
33…ローパスフィルタ
4…励磁回路部
41…正弦波電流発生回路
42…移相回路
5…疲労度算出部
51…A/D変換器
52…CPU
53…メモリ
6…表示装置
8…試験片
Claims (1)
- a)1本の強磁性体棒、強磁性体棒の略中央に巻かれた1つの励磁コイル、及び、その両側に巻かれた2つの検出コイルから成る検出部と、
b)上記励磁コイルに交流励磁電流を供給する励磁回路部と、
c)上記2つの検出コイルを差動変圧器構成に接続し、その出力信号を励磁電流の位相に基づいて位相解析することにより、オーステナイト系ステンレス鋼製の被検査物の透磁率に応じた電気信号を取り出す処理回路部と、
d) 鋼種毎の疲労度と透磁率の変化の関係を示すデータを格納したメモリと、
e)処理回路部から取り出される、被検査物の疲労に伴う透磁率変化に応じた電気信号の変化に基づき、前記メモリを参照することによりオーステナイト系ステンレス鋼製の被検査物の疲労度を算出する疲労度算出部と、
を備えることを特徴とする疲労度測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07990095A JP3910222B2 (ja) | 1995-03-10 | 1995-03-10 | 疲労度測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07990095A JP3910222B2 (ja) | 1995-03-10 | 1995-03-10 | 疲労度測定装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08248004A JPH08248004A (ja) | 1996-09-27 |
JP3910222B2 true JP3910222B2 (ja) | 2007-04-25 |
Family
ID=13703164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07990095A Expired - Fee Related JP3910222B2 (ja) | 1995-03-10 | 1995-03-10 | 疲労度測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3910222B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4013056B2 (ja) * | 2002-12-18 | 2007-11-28 | 日本精工株式会社 | 軸受負荷状態診断方法 |
JP4287187B2 (ja) * | 2003-04-24 | 2009-07-01 | 株式会社東芝 | 欠陥検査装置 |
JP5026195B2 (ja) * | 2007-08-27 | 2012-09-12 | 株式会社マエダ | 金属疲労識別装置および金属疲労識別方法 |
US9427186B2 (en) | 2009-12-04 | 2016-08-30 | Endomagnetics Ltd. | Magnetic probe apparatus |
US10634741B2 (en) | 2009-12-04 | 2020-04-28 | Endomagnetics Ltd. | Magnetic probe apparatus |
WO2011074654A1 (ja) | 2009-12-17 | 2011-06-23 | 日本精工株式会社 | 軸受の残存寿命予測方法及び残存寿命診断装置並びに軸受診断システム |
CA2904779C (en) | 2013-03-11 | 2019-04-09 | Endomagnetics Ltd. | Hypoosmotic solutions for lymph node detection |
US9239314B2 (en) | 2013-03-13 | 2016-01-19 | Endomagnetics Ltd. | Magnetic detector |
US9234877B2 (en) | 2013-03-13 | 2016-01-12 | Endomagnetics Ltd. | Magnetic detector |
CA2988065C (en) | 2015-06-04 | 2024-03-26 | Endomagnetics Ltd. | Marker materials and forms for magnetic marker localization (mml) |
-
1995
- 1995-03-10 JP JP07990095A patent/JP3910222B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08248004A (ja) | 1996-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6239593B1 (en) | Method and system for detecting and characterizing mechanical damage in pipelines using nonlinear harmonics techniques | |
US4528856A (en) | Eddy current stress-strain gauge | |
EP2707705B1 (en) | Surface property inspection device and surface property inspection method | |
EP2124043B1 (en) | Eddy current inspection method and eddy current inspection device for carrying out the eddy current inspection method | |
JP4998821B2 (ja) | 渦流検査方法及び該渦流検査方法を実施するための渦流検査装置 | |
JP3910222B2 (ja) | 疲労度測定装置 | |
US7215117B2 (en) | Measurement with a magnetic field | |
WO2008072508A1 (ja) | 非破壊検査装置及び非破壊検査方法 | |
JP2766929B2 (ja) | 非破壊検査装置 | |
Wei et al. | A transducer made up of fluxgate sensors for testing wire rope defects | |
Uchanin et al. | Nondestructive determination of stresses in steel components by eddy current method | |
Theiner et al. | Determination of residual stresses using micromagnetic parameters | |
JPH03255380A (ja) | 透磁率測定装置 | |
JP4804006B2 (ja) | 探傷プローブ及び探傷装置 | |
KR101999945B1 (ko) | 강자성체 응력 측정 장치 | |
JPH0545184B2 (ja) | ||
JP3572452B2 (ja) | 渦流探傷用プローブ | |
US5423223A (en) | Fatigue detection in steel using squid magnetometry | |
WO2006113504A2 (en) | Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers | |
JPH01269049A (ja) | 金属材料の劣化検査方法 | |
JPS59112257A (ja) | 強磁性材料の非破壊検査方法及び装置 | |
Ji et al. | Real‐Time Strain Detection Technology for Steel Structures Based on Eddy Current Effect | |
Gu et al. | The principle and application of a new technique for detecting wire rope defects | |
JP7454165B2 (ja) | 磁性体材料計測プローブおよび磁性体材料計測装置 | |
Bernieri et al. | Improving non-destructive testing probe performance by digital processing techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040428 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040511 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040618 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060922 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070124 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |