CN104885269A - 锂二次电池用负极活性材料、包含其的锂二次电池、及其制备方法 - Google Patents
锂二次电池用负极活性材料、包含其的锂二次电池、及其制备方法 Download PDFInfo
- Publication number
- CN104885269A CN104885269A CN201480003402.5A CN201480003402A CN104885269A CN 104885269 A CN104885269 A CN 104885269A CN 201480003402 A CN201480003402 A CN 201480003402A CN 104885269 A CN104885269 A CN 104885269A
- Authority
- CN
- China
- Prior art keywords
- cmc
- sio
- cnt
- active material
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/049—Manufacturing of an active layer by chemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及锂二次电池用负极活性材料、包含其的锂二次电池及制备该负极活性材料的方法。本发明一个实施方式提供锂二次电池用负极活性材料,包含SiOx-CMC-CNT复合物,其中碳纳米管(CNT)通过羧甲基纤维素(CMC)结合至SiOx(0<x≤1);以及碳基材料。另外,本发明另一实施方式提供制备锂二次电池用负极活性材料的方法,包括用CNT与CMC在SiOx(0<x≤1)表面上进行预处理,以形成SiOx-CMC-CNT复合物;和将该SiOx-CMC-CNT复合物与碳基材料混合。与仅用CNT进行SiO表面预处理的负极活性材料相比,本发明负极活性材料与锂二次电池提供提高的电池容量和改进的寿命特性。
Description
技术领域
本公开内容涉及锂二次电池用负极活性材料,更具体地涉及如下的锂二次电池用负极活性材料,其包含SiOx-羧甲基纤维素(CMC)-碳纳米管(CNT)的复合物;使用该负极活性材料的锂二次电池;以及制备该负极活性材料的方法。
本申请要求于2013年6月19日在韩国提交的韩国专利申请第10-2013-0070602号以及于2014年6月13日在韩国提交的韩国专利申请第10-2014-0072057号的优先权,将该两案通过参考方式并入本文中。
背景技术
近来,能源储存技术越来越受到关注。电化学装置已经广泛用作移动电话、摄录像机、笔记本电脑、PC以及电动车辆领域中的电源,造成对于电化学装置的大量研究与发展。
在这方面,电化学装置是极大关注的对象之一。特别地,可再充电的二次电池的发展已经成为关注焦点。近来,这种电池的研究与发展已经着重于新电极与电池的设计,以改进容量密度(capacity density)与比能(specific energy)。
目前可获得许多二次电池。在这些二次电池中,与基于常规水性电解质的电池如Ni-MH、Ni-Cd、和H2SO4-Pb电池相比,1990年代早期研发的锂二次电池因其操作电压更高且电流密度更高的优点而特别受到关注。
通常,通过使用正极和负极制备锂二次电池,所述正极和负极各自由能够嵌入和脱嵌锂离子的材料所制成,并且在该正极与该负极之间填充有机或聚合物电解液,当锂离子在正极与负极中嵌入与脱嵌时,该电池通过氧化与还原产生电能。
在目前可获得的锂二次电池中,负极主要是由作为电极活性材料的碳基材料制成。特别地,可商购的石墨的实际容量约为350mAh/g至360mAh/g,这接近其约为372mAh/g的理论容量。虽然诸如石墨的碳基材料具有这种程度的容量,然而其不符合用于高容量锂二次电池作为负极活性材料的需求。
为了符合这种需求,已经尝试使用金属作为负极活性材料,例如Si、Sn、其氧化物与合金,其具有比碳材料更高的充电/放电容量,并且允许与锂电化学合金化。然而,这一金属基电极活性材料在充电/放电过程中具有大的体积变化,这可对活性材料造成破裂与微粒化(micronization)。使用这一金属基负极活性材料的二次电池在重复的充电/放电循环中,可能在容量上突然劣化或是循环寿命缩短。因此,需要解决使用这种金属基电极活性材料的容量与循环寿命劣化的问题。
特别地,因为SiO具有低的初始效率、电传导性以及寿命特性,所以通过将SiO与石墨混合并将导电材料分散于该混合物中而常规使用SiO。然而,该导电材料因其分散性差而不均匀分布在SiO的表面上,这种不均匀的分布可能大幅劣化电池的循环性能。为了解决该问题,尝试在SiO的表面上预处理碳纳米管(CNT)以改进电池的寿命特性,然而CNT还没能很好地附着至SiO的表面。
发明内容
技术问题
设计本公开内容以解决上述问题,因而本公开内容的目的是提供:负极活性材料,其中CNT很好地附着至SiO的表面以改进电池的寿命特性;包含该负极活性材料的锂二次电池;以及制备该负极活性材料的方法。
技术手段
为了实现该目的,根据本公开内容的一个方面,提供锂二次电池用负极活性材料,其包含SiOx-羧甲基纤维素(CMC)-碳纳米管(CNT)的复合物,其中CNT通过CMC结合至SiOx(0<x≤1);以及碳基材料。
根据本公开内容的一个实施方式,在SiOx-CMC-CNT复合物中,SiOx(0<x≤1)、CMC与CNT的重量比可在98:1:1至94:3:3的范围。
根据本公开内容的一个实施方式,该SiOx-CMC-CNT复合物与该碳基材料可以以5:95至15:85的重量比存在。
根据本公开内容的一个实施方式,该碳基材料可为选自石墨、可石墨化碳、难石墨化碳(non-graphitizable carbon)、炭黑、石墨烯、氧化石墨烯及其混合物中的任一种。
另外,根据本公开内容的另一方面,提供锂二次电池用负极,其包含集电器,以及形成于该集电器的至少一个表面上且包含负极活性材料的负极活性材料层,其中该负极活性材是在本公开内容中所限定的负极活性材料。
此外,根据本公开内容的又一个方面,提供锂二次电池,其包含正极、负极以及置于该正极与该负极之间的隔膜,其中该负极是在本公开内容中所限定的负极。
另外,根据本公开内容的再一个方面,提供制备锂二次电池用负极活性材料的方法,其包括用碳纳米管(CNT)及羧甲基纤维素(CMC)对SiOx(0<x≤1)进行表面处理以形成SiOx-CMC-CNT复合物;以及将该SiOx-CMC-CNT复合物与碳基材料混合。
在本公开内容的优选实施方式中,所述形成SiOx-CMC-CNT复合物的步骤可包括:(S1)将SiOx(0<x≤1)添加并混合至溶剂中;(S2)将CNT与CMC添加并混合至该包含SiOx的溶液中;以及(S3)使包含SiOx、CNT与CMC的溶液进行旋转蒸发以移除所使用的溶剂从而获得SiOx-CMC-CNT复合物。
根据本公开内容的一个实施方式,SiOx(0<x≤1)、CMC与CNT可以以98:1:1至94:3:3的重量比使用。
根据本公开内容的一个实施方式,SiOx-CMC-CNT复合物与碳基材料可以以5:95至15:85的重量比使用。
有益效果
与仅用碳纳米管进行SiO表面处理的负极活性材料相比,本公开内容的负极活性材料与锂二次电池提供提高的电池容量以及改进的寿命特性。
附图说明
所附的附图说明本公开内容的优选实施方式,且与前述公开内容一起,用以提供对本公开内容的技术主旨的进一步理解。然而,本公开内容不应理解为受限于附图。
图1是根据本公开内容的一个实施方式的SiO-CMC-CNT复合物的扫描式电子显微镜(SEM)照片;
图2是图1的放大图。
具体实施方式
下文中,将详述本公开内容。在说明之前,应理解说明书与所附权利要求书中所使用的术语不应解读为受限于一般或字典的意义,而是在允许本发明人能够适当定义术语以作最佳解释的原则的基础上,基于对应于本公开内容的技术方面的意义与概念来解释。因此,本文中提出的实施方式与附图仅是为了说明目的的优选实施例,而非用于限制本公开内容的范围,因而应理解在不背离本公开内容的主旨与范围的情况下,可做出其他的等价物与修饰。
在使用常规硅基粒子作为负极活性材料的情况中,当锂充电与放电时,这些粒子发生体积变化,因而可能破裂与微粒化。因此,使用这种负极活性材料的二次电池在重复的充电/放电循环过程中,容量可能突然劣化并且缩短循环寿命。为了解决这种问题,已尝试通过将硅基材料与碳基材料以及导电材料混合来使用硅基材料。然而,该导电材料不均匀地分布在SiO的表面上,从而劣化电池的循环性能。另外,另尝试在SiO表面上预处理碳纳米管(CNT),以改进电池的寿命特性,然而该CNT还不能很好地附着至SiO的表面。
因此,本申请的发明人致力于开发用于将CNT稳固结合至SiO(0<x≤1)的表面的方法,以更有效地改进电池的寿命特性,并且发现羧甲基纤维素(CMC)可用于使得CNT很好附着至SiO(0<x≤1)的表面,由此改进寿命特性。
本公开内容的负极活性材料包含SiOx-羧甲基纤维素(CMC)-碳纳米管(CNT)的复合物,其中CNT通过CMC结合至SiOx(0<x≤1);以及碳基材料。
本公开内容的SiOx-CMC-CNT复合物可包含SiOx、CMC与CNT的各种组合,用以实现其目的。在充电与放电过程中,CMC具有结合能力,并且可有效分散CNT而不造成副反应如气体生成。相对地,在使用苯乙烯-丁二烯橡胶(SBR)以形成SiOx-SBR-CNT复合物的情况中,已经发现由于SBR具有结合能力而不是分散性,因此CNT会聚结而不会分散在SiO的表面上。即,已经确认可由SiOx-CMC-CNT的组合而实现本公开内容的目的,其中CNT均匀地分散在SiO的表面上,并且由于CMC良好的分散与合适的结合能力而很好地附着至SiO的表面。
在本公开内容中,碳纳米管(CNT)没有特别限制,并且可主要分类为单壁碳纳米管(SWCNT)以及多壁碳纳米管(MWCNT)。
在SiOx-CMC-CNT复合物中,SiOx(0<x≤1):CMC:CNT的重量比可以在98:1:1至94:3:3的范围内。当SiOx-CMC-CNT复合物满足这种重量比范围时,CMC可维持SiOx与CNT之间的稳固结合,因此含有这种复合物的负极活性材料可具有改进的寿命特性。更具体地,如果CNT的比例小于此范围,则寿命特性变差,而如果CNT的比例大于此范围,则初始效率变低。再者,如果CMC的比例小于此范围,则可能因SiOx与CNT之间的结合弱而致寿命特性差,而如果CMC的比例大于此范围,则CMC本身可作为电阻起作用而致寿命特性降低。因此,为了实现本公开内容的目的,优选满足SiOx-CMC-CNT复合物中各个成分的此重量比范围。更优选地,在SiOx-CMC-CNT复合物中,CNT与CMC具有1:1的重量比。
SiOx-CMC-CNT复合物及碳基材料可以以5:95至15:85的重量比存在。当负极活性材料包含此重量比的复合物及碳基材料时,可显著降低负极活性材料的体积膨胀,因而出人意料地改进循环与寿命特性。更具体地,如果SiOx-CMC-CNT复合物的量小于此范围,则容量变低,而如果其量大于此范围,则可得到高容量,然而可能导致差的寿命特性。因此,为了实现本公开内容的目的,优选满足SiOx-CMC-CNT复合物及碳基材料的此重量比范围。
可用于本公开内容中的碳基材料的非限制性实例包括石墨、可石墨化碳(亦称为‘软碳’)、难石墨化碳(亦称为‘硬碳’)、炭黑、石墨烯、氧化石墨烯及其混合物。具体地,石墨的实例可包括天然石墨,人造石墨,例如中间相碳微珠(MCMB)以及中间相沥青基碳纤维(MPCF)。另外,炭黑的实例可包括科琴黑、乙炔黑、槽法炭黑、炉黑、热裂法炭黑、灯黑、象牙黑(Ivory black)以及葡萄黑(Vine black)。
图1与图2显示负极活性材料,其包含本公开内容的SiO-CMC-CNT复合物,其中CNT均匀地分散在SiO的表面上。
可根据本领域中已知的常规方法将如此制备的负极活性材料用于负极中。另外,本公开内容中,与负极相似,可通过本领域中已知的常规方法制备正极。例如,将本公开内容的负极活性材料与粘合剂、溶剂、以及任选的导电材料与分散剂混合并搅拌,以制造浆料,并且将该浆料施加在集电器上,而后进行压缩,从而制备电极。
因此,本公开内容提供锂二次电池用负极,其包含集电器以及形成于该集电器的至少一个表面上且包含负极活性材料的负极活性材料层,其中该负极活性材料是在本公开内容中所限定的一种。
可用于本公开内容中的粘合剂包括各种种类的粘合剂聚合物,包括:偏二氟乙烯-六氟丙烯共聚物(PVDF-co-HFP)、聚偏二氟乙烯、聚丙烯腈以及聚甲基丙烯酸甲酯。
可用于本公开内容中的正极活性材料优选包括含锂的过渡金属氧化物,例如选自如下的任一种:LixCoO2(0.5<x<1.3)、LixNiO2(0.5<x<1.3)、LixMnO2(0.5<x<1.3)、LixMn2O4(0.5<x<1.3)、Lix(NiaCobMnc)O2(0.5<x<1.3、0<a<1、0<b<1、0<c<1、a+b+c=1)、LixNi1-yCoyO2(0.5<x<1.3、0<y<1)、LixCo1-yMnyO2(0.5<x<1.3、0≤y<1)、LixNi1-yMnyO2(0.5<x<1.3、O≤y<1)、Lix(NiaCobMnc)O4(0.5<x<1.3、0<a<2、0<b<2、0<c<2、a+b+c=2)、LixMn2-zNizO4(0.5<x<1.3、0<z<2)、LixMn2-zCozO4(0.5<x<1.3、0<z<2)、LixCoPO4(0.5<x<1.3)、LixFePO4(0.5<x<1.3)、及其混合物。该含锂的过渡金属氧化物可被金属如Al或金属氧化物涂布。此外,也可使用含锂过渡金属硫化物、硒化物、或卤化物。
在制备电极之后,可制备包含正极、负极、置于正极与负极之间的隔膜以及电解液的常规锂二次电池。
因此,本公开内容提供锂二次电池,其包含正极、上述负极、以及置于该正极与该负极之间的隔膜。
本公开内容中所使用的电解液包含锂盐作为电解质盐。锂盐可为常规用于锂二次电池用电解液中的任一种。例如,锂盐的阴离子可为选自如下的任一种:F-、Cl-、Br-、I-、NO3 -、N(CN)2 -、BF4 -、ClO4 -、PF6 -、(CF3)2PF4 -、(CF3)3PF3 -、(CF3)4PF2 -、(CF3)5PF-、(CF3)6P-、CF3SO3 -、CF3CF2SO3 -、(CF3SO2)2N-、(FSO2)2N-、CF3CF2(CF3)2CO-、(CF3SO2)2CH-、(SF5)3C-、(CF3SO2)3C-、CF3(CF2)7SO3 -、CF3CO2 -、CH3CO2 -、SCN-以及(CF3CF2SO2)2N-。
本公开内容中所使用的电解液包含常规用于锂二次电池用电解液中的有机溶剂,例如碳酸亚丙酯(PC)、碳酸亚乙酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸甲丙酯、碳酸二丙酯、二甲基亚砜、乙腈、二甲氧基乙烷、二乙氧基乙烷、碳酸亚乙烯酯、环丁砜(sulforane)、γ-丁内酯、亚硫酸亚丙酯与四氢呋喃以及其混合物。特别地,在以上碳酸酯基有机溶剂中,作为环状碳酸酯的碳酸亚乙酯与碳酸亚丙酯是优选的,这是由于其具有高粘度且因而具有高介电常数而在电解质中容易解离锂盐。更优选地,此环状碳酸酯作为与具有低粘度和低介电常数的直链碳酸酯如碳酸二甲酯与碳酸二乙酯以适当比例的混合物而使用,以提供具有高导电性的电解质。
任选地,用于本公开内容中的电解液可还包含添加剂,例如常规用于电解质中的过充电抑制剂(overcharge inhibitor)。
另外,可用于本公开内容中的隔膜包括常规用作隔膜的单层或多层多孔聚合物膜,以及常规用作隔膜的多孔无纺布等。该多孔聚合物膜可由聚烯烃基聚合物制成,例如乙烯均聚物、丙烯均聚物、乙烯/丁烯共聚物、乙烯/己烯共聚物以及乙烯/甲基丙烯酸酯共聚物,且该多孔无纺布可由例如高熔点玻璃纤维、聚对苯二甲酸乙二醇酯纤维等制成。然而,本公开内容不限于此。
用于本公开内容中的电池壳可以是常规用于本领域中的任一种,电池壳的形状依其用途而定,并没有特别限制。例如,电池壳的形状可为圆柱状、棱柱状、袋状或是硬币状。
另外,根据本公开内容的再一个方面,提供制备锂二次电池用负极活性材料的方法,其包括用碳纳米管(CNT)以及羧甲基纤维素(CMC)对SiOx(0<x≤1)进行表面处理以形成SiOx-CMC-CNT复合物;以及将该SiOx-CMC-CNT复合物与碳基材料混合。
另外,形成SiOx-CMC-CNT复合物的步骤可包括:(S1)将SiOx(0<x≤1)添加并混合至溶剂中;(S2)将CNT与CMC添加并混合至该包含SiOx的溶液中;以及(S3)对该包含SiOx、CNT与CMC的溶液进行旋转蒸发以移除所使用的溶剂而获得SiOx-CMC-CNT复合物。由于羧甲基纤维素(CMC)可溶于水,因而此处所使用的溶剂可为水,然而本公开内容不限于此。
如已经关于负极活性材料所提到的,SiOx(0<x≤1)、CMC与CNT的重量比可以在98:1:1至94:3:3的范围内。另外,SiOx-CMC-CNT复合物与碳基材料的重量比可以在5:95至15:85的范围内。
在下文中,将通过具体实施例对本公开容进行详细说明。然而,本文中所提出的说明仅是为了说明目的的优选实施例,并非用于限制本发明的范围,因而应理解所述实施例是为了向本领域中的普通技术人员作更明确的解释而提供。
<实施例1>
步骤1:负极活性材料的制备
将98克的SiO添加至作为溶剂的400克的水中,彼此充分混合30分钟,向其中加入1克的碳纳米管(CNT)与1克的羧甲基纤维素(CMC),并且充分混合1小时。将包含SiO、CNT与CMC的所得溶液置于2L圆底烧瓶并且进行旋转蒸发,以移除所使用的溶剂。由此得到移除溶剂的SiO-CMC-CNT复合物。将移除溶剂的SiO-CMC-CNT复合物在烘箱中于130℃下真空干燥10小时,而后在研钵中磨碎,得到95克磨碎的SiO-CMC-CNT复合物。
用扫描式电子显微镜(SEM)对如此获得的SiO-CMC-CNT复合物进行分析,其SEM图像显示CNT很好地附着至SiO的表面(参见图1与2)。
步骤2:负极的制备
包含上述制备的SiO-CMC-CNT复合物的负极活性材料、作为导电材料的乙炔炭黑(denka black)、作为粘合剂的苯乙烯-丁二烯橡胶(SBR)、及作为增稠剂的羧甲基纤维素(CMC)以96.8:1:1:1.2的重量比混合,向其中加入水以得到浆料。将所得到的浆料涂布在作为负极集电器的铜箔上,于130℃下真空干燥10小时,得到尺寸为14875cm2的负极。
步骤3:二次电池的制备
使用尺寸为1.8cm2的金属锂箔作为正极,将聚烯烃隔膜置于负极与正极之间,以得到电极组件。碳酸亚乙酯(EC)与碳酸二乙酯(DEC)以1:2(体积%)的比例混合,向其中加入LiPF6,以得到1M LiPF6的非水性电解液。然后,将该电解液导入该电极组件中,以制备硬币型半电池。
<实施例2>
重复实施例1的程序以制备硬币型半电池,不同之处在于将2克的CNT与2克的CMC添加至96克的SiO中,以得到SiO-CMC-CNT复合物,以及将该SiO-CMC-CNT复合物用作负极活性材料。
<实施例3>
重复实施例1的程序以制备硬币型半电池,不同之处在于将3克的CNT与3克的CMC添加至94克的SiO中,以得到SiO-CMC-CNT复合物,以及将该SiO-CMC-CNT复合物用作负极活性材料。
<比较例1>
重复实施例1的程序以制备二次电池,不同之处在于将未结合有CNT与CMC的SiO用作负极活性材料。
<比较例2>
重复实施例1的程序以制备二次电池,不同之处在于将作为负极活性材料的SiO与石墨(10:90(重量/重量))的混合物、作为导电材料的CNT与乙炔炭黑、作为粘合剂的SBR、以及作为增稠剂的CMC以96.6:0.2:1:1:1.2(负极活性材料:CNT:DB:SBR:CMC)的重量比混合。
<比较例3>
重复实施例1的程序,不同之处在于将1克的CNT添加至99克的SiO中以得到SiO-CNT复合物,以及将该SiO-CNT复合物用作负极活性材料,以制备硬币型半电池。
<比较例4>
重复实施例1的程序以制备硬币型半电池,不同之处在于将1克的CMC添加至99克的SiO中,以得到SiO-CMC复合物,以及将该SiO-CMC复合物用作负极活性材料。
<比较例5>
重复实施例1的程序以制备硬币型半电池,不同之处在于将0.5克的CNT与0.5克的CMC添加至99克的SiO中,以得到SiO-CMC-CNT复合物,以及将该SiO-CMC-CNT复合物用作负极活性材料。
<比较例6>
重复实施例1的程序以制备硬币型半电池,不同之处在于将4克的CNT与4克的CMC添加至92克的SiO中,以得到SiO-CMC-CNT复合物,以及将该SiO-CMC-CNT复合物用作负极活性材料。
<比较例7>
通过与实施例3相同的程序制备SiO-CMC-CNT复合物,而后重复实施例1的程序以制备硬币型半电池,不同之处在于将SiO-CMC-CNT复合物与石墨以3:97的重量比混合,以及将该混合物用作负极活性材料。
<比较例8>
通过与实施例3相同的程序制备SiO-CMC-CNT复合物,而后重复实施例1的程序以制备硬币型半电池,不同之处在于SiO-CMC-CNT复合物与石墨以20:80的重量比混合,以及将该混合物用作负极活性材料。
用于实施例1至3以及比较例1至8中的负极活性材料、导电材料、粘合剂以及增稠剂,将其重量比以及所制备的负极中CNT的量示出在表1中。
表1
对实施例1至3与比较例1至8中所制备的电池的容量、初始效率以及容量保持率进行评价,将其结果示于表2中。
表2
从表2可以看出,根据本公开内容的实施例1至3的电池与比较例1至4的电池显示几乎相似的容量与初始效率,而实施例1至3的电池的容量保持率远优于比较例1至4的电池的容量保持率。另外,其中SiOx-CMC-CNT复合物中CNT的量低的比较例5显示差的寿命特性,且其中SiOx-CMC-CNT复合物中CMC与CNT的比例高的比较例6显示低的初始效率与差的寿命特性。此外,其中负极活性材料中SiOx-CMC-CNT复合物的比例低的比较例7显示低容量;以及其中负极活性材料中SiOx-CMC-CNT复合物的比例高的比较例8显示高容量,然而却显示非常低的容量保持率。
Claims (10)
1.一种锂二次电池用负极活性材料,包含
SiOx-羧甲基纤维素(CMC)-碳纳米管(CNT)复合物,其中CNT通过CMC结合至SiOx(0<x≤1);以及
碳基材料。
2.权利要求1的锂二次电池用负极活性材料,其中所述SiOx-CMC-CNT复合物中SiOx(0<x≤1)、CMC与CNT的重量比在98:1:1至94:3:3的范围。
3.权利要求1的锂二次电池用负极活性材料,其中所述SiOx-CMC-CNT复合物与所述碳基材料以5:95至15:85的重量比存在。
4.权利要求1的锂二次电池用负极活性材料,其中所述碳基材料选自石墨、可石墨化碳、难石墨化碳、炭黑、石墨烯、氧化石墨烯及其混合物中的任一种。
5.一种锂二次电池用负极,包含:
集电器;以及
负极活性材料层,其形成于所述集电器的至少一个表面上并且包含负极活性材料,
其中所述负极活性材料如权利要求1至4任一项中所限定。
6.一种锂二次电池,包含:
正极;
负极;以及
隔膜,其置于所述正极与所述负极之间,
其中所述负极如权利要求5中所限定。
7.一种制备锂二次电池用负极活性材料的方法,包括:
用碳纳米管(CNT)及羧甲基纤维素(CMC)对SiOx(0<x≤1)进行表面处理,以形成SiOx-CMC-CNT复合物;以及
将所述SiOx-CMC-CNT复合物与碳基材料混合。
8.权利要求7的方法,其中所述形成SiOx-CMC-CNT复合物的步骤包括:
(S1)将SiOx(0<x≤1)添加并混合至溶剂中;
(S2)将CNT与CMC添加并混合至包含SiOx的溶液中;以及
(S3)对包含SiOx、CNT与CMC的溶液进行旋转蒸发以移除所使用的溶剂从而获得SiOx-CMC-CNT复合物。
9.权利要求8的方法,其中以98:1:1至94:3:3的重量比使用SiOx(0<x≤1)、CMC与CNT。
10.权利要求7的方法,其中以5:95至15:85的重量比使用所述SiOx-CMC-CNT复合物与所述碳基材料。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0070602 | 2013-06-19 | ||
KR20130070602 | 2013-06-19 | ||
KR10-2014-0072057 | 2014-06-13 | ||
KR1020140072057A KR101586015B1 (ko) | 2013-06-19 | 2014-06-13 | 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법 |
PCT/KR2014/005215 WO2014204141A1 (ko) | 2013-06-19 | 2014-06-13 | 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104885269A true CN104885269A (zh) | 2015-09-02 |
CN104885269B CN104885269B (zh) | 2017-04-19 |
Family
ID=52676399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480003402.5A Active CN104885269B (zh) | 2013-06-19 | 2014-06-13 | 锂二次电池用负极活性材料、包含其的锂二次电池、及其制备方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9276260B2 (zh) |
EP (1) | EP2908367B1 (zh) |
JP (1) | JP6068655B2 (zh) |
KR (1) | KR101586015B1 (zh) |
CN (1) | CN104885269B (zh) |
TW (1) | TWI549338B (zh) |
WO (1) | WO2014204141A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108140834A (zh) * | 2015-10-01 | 2018-06-08 | 昭和电工株式会社 | 锂离子二次电池的负电极制造用粒状复合材料 |
CN111133613A (zh) * | 2017-10-19 | 2020-05-08 | 株式会社Lg化学 | 负极活性材料、包含所述负极活性材料的负极和包含所述负极的二次电池 |
CN111146434A (zh) * | 2019-12-26 | 2020-05-12 | 宁德新能源科技有限公司 | 负极材料及包含其的电化学装置和电子装置 |
WO2021128197A1 (zh) * | 2019-12-26 | 2021-07-01 | 宁德新能源科技有限公司 | 负极材料及包含其的电化学装置和电子装置 |
WO2021128196A1 (zh) * | 2019-12-26 | 2021-07-01 | 宁德新能源科技有限公司 | 负极及包含其的电化学装置和电子装置 |
WO2023184098A1 (zh) * | 2022-03-28 | 2023-10-05 | 宁德时代新能源科技股份有限公司 | 含硅负极活性材料、以及包含其的负极极片、二次电池及用电装置 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017061514A1 (ja) * | 2015-10-05 | 2017-04-13 | 積水化学工業株式会社 | 負極材、負極及びリチウムイオン二次電池 |
EP3312909A1 (en) | 2016-10-24 | 2018-04-25 | Basf Se | Electroactive composites comprising silicon particles, metal nanoparticles and carbon nanostructures |
EP4009400B1 (en) | 2019-09-30 | 2024-01-31 | Lg Energy Solution, Ltd. | Composite anode active material, preparation method therefor, and anode comprising same |
JP7163489B2 (ja) * | 2019-11-14 | 2022-10-31 | 寧徳新能源科技有限公司 | 負極材料、それを含む電気化学デバイス、及び電子装置 |
CN111477854B (zh) * | 2020-04-20 | 2020-12-15 | 杭州鼎友五金机械制造有限公司 | 一种复合纳米材料及其制备方法和应用 |
KR20210130558A (ko) * | 2020-04-22 | 2021-11-01 | 주식회사 엘지에너지솔루션 | 실리콘-탄소 복합 음극 활물질, 상기 실리콘-탄소 복합 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 |
KR102166645B1 (ko) | 2020-08-19 | 2020-10-16 | 유성운 | 음극 활물질, 상기 음극 활물질의 제조방법 및 상기 음극 활물질을 포함하는 이차전지. |
JP7606615B2 (ja) | 2020-12-28 | 2024-12-25 | 寧徳新能源科技有限公司 | 負極材料、当該負極材料を含む極片及び電気化学装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1374712A (zh) * | 2001-03-02 | 2002-10-16 | 三星Sdi株式会社 | 含碳材料和包含该材料的锂二次电池 |
CN1667855A (zh) * | 2004-03-08 | 2005-09-14 | 三星Sdi株式会社 | 可充电锂电池的负极活性物质及其制法以及包含它的可充电锂电池 |
KR20060087003A (ko) * | 2005-01-27 | 2006-08-02 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극활물질 및 그의 제조 방법 |
CN101243566A (zh) * | 2005-09-06 | 2008-08-13 | Lg化学株式会社 | 包含碳纳米管的复合物粘合剂以及使用该粘合剂的锂二次电池 |
CN101510607A (zh) * | 2007-02-14 | 2009-08-19 | 三星Sdi株式会社 | 负极活性材料及其制备方法以及含该材料的负极和锂电池 |
JP2010118330A (ja) * | 2008-10-15 | 2010-05-27 | Furukawa Electric Co Ltd:The | リチウム二次電池用負極材料、リチウム二次電池用負極、それを用いたリチウム二次電池、リチウム二次電池用負極材料の製造方法、およびリチウム二次電池用負極の製造方法。 |
WO2011152263A1 (ja) * | 2010-05-31 | 2011-12-08 | 日産自動車株式会社 | 二次電池用負極およびその製造方法 |
JP2012014993A (ja) * | 2010-07-02 | 2012-01-19 | Hitachi Maxell Energy Ltd | 非水電解液二次電池 |
WO2012111918A2 (ko) * | 2011-02-15 | 2012-08-23 | 주식회사 엘지화학 | 음극 활물질의 제조방법 |
WO2012117991A1 (ja) * | 2011-02-28 | 2012-09-07 | 古河電気工業株式会社 | リチウムイオン二次電池用負極活物質材料、リチウムイオン二次電池用負極、およびリチウムイオン二次電池 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4104830B2 (ja) * | 2001-03-02 | 2008-06-18 | 三星エスディアイ株式会社 | 炭素質材料及びリチウム二次電池及び炭素質材料の製造方法 |
KR100578870B1 (ko) | 2004-03-08 | 2006-05-11 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지 |
-
2014
- 2014-06-13 KR KR1020140072057A patent/KR101586015B1/ko active Active
- 2014-06-13 EP EP14813307.7A patent/EP2908367B1/en active Active
- 2014-06-13 WO PCT/KR2014/005215 patent/WO2014204141A1/ko active Application Filing
- 2014-06-13 JP JP2015535591A patent/JP6068655B2/ja active Active
- 2014-06-13 CN CN201480003402.5A patent/CN104885269B/zh active Active
- 2014-06-13 US US14/427,365 patent/US9276260B2/en active Active
- 2014-06-17 TW TW103120846A patent/TWI549338B/zh active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1374712A (zh) * | 2001-03-02 | 2002-10-16 | 三星Sdi株式会社 | 含碳材料和包含该材料的锂二次电池 |
CN1667855A (zh) * | 2004-03-08 | 2005-09-14 | 三星Sdi株式会社 | 可充电锂电池的负极活性物质及其制法以及包含它的可充电锂电池 |
KR20060087003A (ko) * | 2005-01-27 | 2006-08-02 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극활물질 및 그의 제조 방법 |
CN101243566A (zh) * | 2005-09-06 | 2008-08-13 | Lg化学株式会社 | 包含碳纳米管的复合物粘合剂以及使用该粘合剂的锂二次电池 |
CN101510607A (zh) * | 2007-02-14 | 2009-08-19 | 三星Sdi株式会社 | 负极活性材料及其制备方法以及含该材料的负极和锂电池 |
JP2010118330A (ja) * | 2008-10-15 | 2010-05-27 | Furukawa Electric Co Ltd:The | リチウム二次電池用負極材料、リチウム二次電池用負極、それを用いたリチウム二次電池、リチウム二次電池用負極材料の製造方法、およびリチウム二次電池用負極の製造方法。 |
WO2011152263A1 (ja) * | 2010-05-31 | 2011-12-08 | 日産自動車株式会社 | 二次電池用負極およびその製造方法 |
JP2012014993A (ja) * | 2010-07-02 | 2012-01-19 | Hitachi Maxell Energy Ltd | 非水電解液二次電池 |
WO2012111918A2 (ko) * | 2011-02-15 | 2012-08-23 | 주식회사 엘지화학 | 음극 활물질의 제조방법 |
WO2012117991A1 (ja) * | 2011-02-28 | 2012-09-07 | 古河電気工業株式会社 | リチウムイオン二次電池用負極活物質材料、リチウムイオン二次電池用負極、およびリチウムイオン二次電池 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108140834A (zh) * | 2015-10-01 | 2018-06-08 | 昭和电工株式会社 | 锂离子二次电池的负电极制造用粒状复合材料 |
CN111133613A (zh) * | 2017-10-19 | 2020-05-08 | 株式会社Lg化学 | 负极活性材料、包含所述负极活性材料的负极和包含所述负极的二次电池 |
CN111133613B (zh) * | 2017-10-19 | 2022-08-23 | 株式会社Lg新能源 | 负极活性材料、包含所述负极活性材料的负极和包含所述负极的二次电池 |
CN111146434A (zh) * | 2019-12-26 | 2020-05-12 | 宁德新能源科技有限公司 | 负极材料及包含其的电化学装置和电子装置 |
WO2021128197A1 (zh) * | 2019-12-26 | 2021-07-01 | 宁德新能源科技有限公司 | 负极材料及包含其的电化学装置和电子装置 |
WO2021128196A1 (zh) * | 2019-12-26 | 2021-07-01 | 宁德新能源科技有限公司 | 负极及包含其的电化学装置和电子装置 |
WO2023184098A1 (zh) * | 2022-03-28 | 2023-10-05 | 宁德时代新能源科技股份有限公司 | 含硅负极活性材料、以及包含其的负极极片、二次电池及用电装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2908367A4 (en) | 2016-04-13 |
TWI549338B (zh) | 2016-09-11 |
WO2014204141A1 (ko) | 2014-12-24 |
EP2908367A1 (en) | 2015-08-19 |
US9276260B2 (en) | 2016-03-01 |
EP2908367B1 (en) | 2017-02-22 |
CN104885269B (zh) | 2017-04-19 |
JP6068655B2 (ja) | 2017-01-25 |
TW201519494A (zh) | 2015-05-16 |
KR101586015B1 (ko) | 2016-01-18 |
US20150236340A1 (en) | 2015-08-20 |
JP2015534240A (ja) | 2015-11-26 |
KR20140147699A (ko) | 2014-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104885269B (zh) | 锂二次电池用负极活性材料、包含其的锂二次电池、及其制备方法 | |
CN105794027B (zh) | 石墨次级粒子和包含其的锂二次电池 | |
CN102473912B (zh) | 锂二次电池用负极组合物和使用其的锂二次电池 | |
JP5611453B2 (ja) | リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池 | |
CN116914076A (zh) | 负极和包含所述负极的锂二次电池 | |
CN104011910B (zh) | 锂二次电池用负极活性材料、其制备方法和包含所述负极活性材料的锂二次电池 | |
KR101621519B1 (ko) | 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지 및 상기 음극의 제조방법 | |
CN102792491A (zh) | 用于锂二次电池的阴极和包含所述阴极的锂二次电池 | |
KR101626026B1 (ko) | 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지 | |
CN107210424A (zh) | 锂离子二次电池用负极及锂离子二次电池 | |
CN104396063B (zh) | 锂二次电池用负极活性材料和包含其的锂二次电池 | |
JP2016504739A (ja) | リチウム二次電池用負極、その製造方法、及びこれを含むリチウム二次電池 | |
CN114914397A (zh) | 用于二次电池的阳极和包括该阳极的锂二次电池 | |
US20190010057A1 (en) | Negative electrode active material for lithium secondary battery and method of preparing the same | |
KR101091546B1 (ko) | 리튬 이차전지용 음극 활물질과 이를 포함하는 리튬 이차전지 | |
CN106848379A (zh) | 含吸湿性物质的锂二次电池用电极及包含其的锂二次电池 | |
US11349125B2 (en) | Spacer included electrodes structure and its application for high energy density and fast chargeable lithium ion batteries | |
KR101853149B1 (ko) | 코어-쉘 구조의 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법 | |
KR102415162B1 (ko) | 황-셀레늄-탄소 복합체의 제조방법, 그 제조방법에 의해 제조되는 황-셀레늄-탄소 복합체를 포함하는 리튬 황-셀레늄 전지용 양극 및 이를 포함하는 리튬 황-셀레늄 전지 | |
JP2011029136A (ja) | 二次電池用電極、二次電池、及び二次電池用電極の製造方法 | |
KR102477833B1 (ko) | 양극활물질 조성물, 이로부터 제조된 양극 및 이를 채용한 이차전지 | |
KR20160075433A (ko) | 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차 전지 | |
CN115332533A (zh) | 电极结构和包括其的锂二次电池 | |
CN115207282A (zh) | 用于锂二次电池的负极及包括其的锂二次电池 | |
CN112106236A (zh) | 硫碳复合物和包含所述硫碳复合物的锂二次电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211202 Address after: Seoul, South Kerean Patentee after: LG Energy Solution Address before: Seoul, South Kerean Patentee before: LG CHEM, Ltd. |
|
TR01 | Transfer of patent right |