CN104269452A - Perovskite solar battery made of silicon-based thin-film materials and manufacturing method thereof - Google Patents
Perovskite solar battery made of silicon-based thin-film materials and manufacturing method thereof Download PDFInfo
- Publication number
- CN104269452A CN104269452A CN201410535451.5A CN201410535451A CN104269452A CN 104269452 A CN104269452 A CN 104269452A CN 201410535451 A CN201410535451 A CN 201410535451A CN 104269452 A CN104269452 A CN 104269452A
- Authority
- CN
- China
- Prior art keywords
- silica
- perovskite
- type
- silicon
- base film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 49
- 239000010409 thin film Substances 0.000 title claims abstract description 28
- 229910052710 silicon Inorganic materials 0.000 title abstract description 33
- 239000010703 silicon Substances 0.000 title abstract description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title abstract description 28
- 238000004519 manufacturing process Methods 0.000 title description 4
- 239000011521 glass Substances 0.000 claims abstract description 52
- 239000010408 film Substances 0.000 claims abstract description 41
- 238000002360 preparation method Methods 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 238000000151 deposition Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 229910001199 N alloy Inorganic materials 0.000 claims description 12
- 229910000979 O alloy Inorganic materials 0.000 claims description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 12
- UMVBXBACMIOFDO-UHFFFAOYSA-N [N].[Si] Chemical compound [N].[Si] UMVBXBACMIOFDO-UHFFFAOYSA-N 0.000 claims description 12
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 claims description 12
- 229910021483 silicon-carbon alloy Inorganic materials 0.000 claims description 12
- 238000005229 chemical vapour deposition Methods 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 6
- 239000011787 zinc oxide Substances 0.000 claims description 6
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims description 5
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 230000027756 respiratory electron transport chain Effects 0.000 claims 9
- 230000005540 biological transmission Effects 0.000 claims 8
- 239000013081 microcrystal Substances 0.000 claims 6
- 238000005137 deposition process Methods 0.000 claims 4
- 239000013078 crystal Substances 0.000 claims 2
- 229960001296 zinc oxide Drugs 0.000 claims 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 230000005525 hole transport Effects 0.000 abstract description 23
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 abstract description 3
- 239000011368 organic material Substances 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 230000004044 response Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 67
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 238000000137 annealing Methods 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 150000003376 silicon Chemical class 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000010549 co-Evaporation Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004050 hot filament vapor deposition Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- FZHSXDYFFIMBIB-UHFFFAOYSA-L diiodolead;methanamine Chemical compound NC.I[Pb]I FZHSXDYFFIMBIB-UHFFFAOYSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/128—Annealing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
一种硅基薄膜材料的钙钛矿太阳电池及其制备方法,其中硅基薄膜材料的钙钛矿太阳电池结构,包括:一导电玻璃;一n型电子传输层,其制作在导电玻璃上;一钙钛矿光敏层,其制作在n型电子传输层上;一p型空穴传输层,其制作在钙钛矿光敏层上;一金属对电极,其制作在p型空穴传输层上。本发明,具有用成本低廉,易于合成的p型硅基薄膜材料作为空穴传输层,取代价格昂贵的spiro-OMeTAD有机材料,提高硅太阳电池的长波响应和电池效率的优点。
A silicon-based thin film material perovskite solar cell and a preparation method thereof, wherein the silicon-based thin film material perovskite solar cell structure includes: a conductive glass; an n-type electron transport layer made on the conductive glass; A perovskite photosensitive layer, which is fabricated on the n-type electron transport layer; a p-type hole transport layer, which is fabricated on the perovskite photosensitive layer; a metal counter electrode, which is fabricated on the p-type hole transport layer . The invention has the advantages of using low-cost and easy-to-synthesize p-type silicon-based film material as the hole transport layer to replace the expensive spiro-OMeTAD organic material, and improving the long-wave response and battery efficiency of silicon solar cells.
Description
技术领域technical field
本发明涉及太阳电池技术领域,特别是指一种硅基薄膜材料的钙钛矿太阳电池及其制备方法。The invention relates to the technical field of solar cells, in particular to a silicon-based thin-film material perovskite solar cell and a preparation method thereof.
背景技术Background technique
当前薄膜电池主要以碲化镉(CdTe)和铜铟镓硒太阳(CIGS)电池为主要代表,目前世界报道的小面积电池转换效率已分别达到19.6%和19.8%。但以上薄膜电池制备材料中涉及昂贵的稀有元素碲、铟、镓以及对人体和环境有巨大污染的镉元素,故这些薄膜电池在未来太瓦级装机总量水平上的发展会受到极大限制。The current thin-film batteries are mainly represented by cadmium telluride (CdTe) and copper indium gallium selenide solar (CIGS) batteries. The conversion efficiency of small-area batteries reported in the world has reached 19.6% and 19.8% respectively. However, the above-mentioned thin-film battery preparation materials involve expensive rare elements tellurium, indium, gallium, and cadmium elements that have great pollution to the human body and the environment, so the development of these thin-film batteries at the level of total installed capacity of terawatts in the future will be greatly restricted. .
近期,作为染料敏化电池“升级版”的新型钙钛矿结构薄膜太阳电池吸引了光伏电池界的极大兴趣。在短短的四年时间内,基于钙钛矿结构的有机-无机混合甲胺铅碘材料制备的太阳电池效率突飞猛进。该电池制备材料均为地壳储量丰富的元素,制备方法简单,全制程低温,因而具有非常广阔的产业化前景。这种钙钛矿结构铅卤化物光敏材料,具有典型的半导体材料特性和合适的禁带宽度,对小于800nm波长太阳光的吸收效率可以达到95%以上,而且载流子具有很高的迁移率和扩散长度,特别适合于光伏应用。Recently, new perovskite-structured thin-film solar cells, which are an "upgraded version" of dye-sensitized cells, have attracted great interest in the photovoltaic cell community. In just four years, the efficiency of solar cells based on perovskite-structured organic-inorganic hybrid methylamine lead-iodide materials has improved by leaps and bounds. The battery preparation materials are all elements with abundant reserves in the earth's crust, the preparation method is simple, and the whole process is low temperature, so it has very broad industrialization prospects. This perovskite structure lead halide photosensitive material has typical semiconductor material characteristics and a suitable band gap. The absorption efficiency of sunlight with a wavelength of less than 800nm can reach more than 95%, and the carrier has a high mobility. and diffusion length, especially suitable for photovoltaic applications.
然而现有的效率超过15%的高效钙钛矿电池无一例外的都采用了螺二芴(spiro-OMeTAD)这一有机化合物作为p型空穴传输层(HTM),其价格为黄金的十倍以上(4000RMB/g),极大的限制了钙钛矿电池的产业化应用进程,寻求更加合适的易于合成的廉价p型空穴传输层成为推动器件发展的重要驱动力。作为p型空穴传输层的材料必须在与钙钛矿层的交界面处形成典型的空穴选择、电子排斥的异质结接触,即要求其具有合适的带隙宽度、电子亲和势与带边位置,并具有良好的光电导率和迁移率。为满足上述要求,可以在p型硅基薄膜材料中掺杂适当的氮元素或碳元素或氧元素,从而显著改变p型硅基薄膜材料的能带结构。本发明提出利用p型硅基薄膜材料带隙可调,掺杂类型可变,对太阳光有一定的吸收等优异特性,实现对spiro-OMeTAD有机材料的替代,进而大大推进非晶硅产业与钙钛矿电池的有机结合。However, the existing high-efficiency perovskite cells with an efficiency exceeding 15% all use the organic compound spiro-OMeTAD as the p-type hole transport layer (HTM) without exception, and its price is ten times that of gold. More than twice (4000RMB/g), which greatly limits the industrial application process of perovskite batteries, the search for a more suitable and easy-to-synthesize p-type hole transport layer has become an important driving force to promote the development of devices. The material used as the p-type hole transport layer must form a typical hole-selective, electron-repulsive heterojunction contact at the interface with the perovskite layer, that is, it is required to have a suitable band gap width, electron affinity and band gap. edge position, and has good photoconductivity and mobility. In order to meet the above requirements, the p-type silicon-based thin film material can be doped with appropriate nitrogen, carbon or oxygen elements, thereby significantly changing the energy band structure of the p-type silicon-based thin film material. The invention proposes to use the p-type silicon-based thin film material with adjustable band gap, variable doping type, and certain excellent characteristics such as absorption of sunlight to realize the replacement of spiro-OMeTAD organic materials, thereby greatly promoting the development of the amorphous silicon industry and An organic combination of perovskite cells.
发明内容Contents of the invention
本发明的目的在于,提供一种硅基薄膜材料的钙钛矿太阳电池结构及其制备方法,具有用成本低廉,易于合成的p型硅基薄膜材料作为空穴传输层,取代价格昂贵的spiro-OMeTAD有机材料,提高硅太阳电池的长波响应和电池效率的优点。The purpose of the present invention is to provide a perovskite solar cell structure of a silicon-based thin film material and a preparation method thereof, which has a low cost and easy-to-synthesize p-type silicon-based thin film material as a hole transport layer to replace the expensive spiro - OMeTAD organic material, the advantage of improving the long-wave response and cell efficiency of silicon solar cells.
为达到上述目的,本发明提出一种硅基薄膜材料的钙钛矿太阳电池结构,包括:In order to achieve the above object, the present invention proposes a perovskite solar cell structure of a silicon-based thin film material, including:
一导电玻璃;a conductive glass;
一n型电子传输层,其制作在导电玻璃上;An n-type electron transport layer made on conductive glass;
一钙钛矿光敏层,其制作在n型电子传输层上;A perovskite photosensitive layer fabricated on the n-type electron transport layer;
一p型空穴传输层,其制作在钙钛矿光敏层上;A p-type hole transport layer, which is fabricated on the perovskite photosensitive layer;
一金属对电极,其制作在p型空穴传输层上。A metal counter electrode is fabricated on the p-type hole transport layer.
本发明还提供一种硅基薄膜材料的钙钛矿太阳电池结构,包括:The present invention also provides a perovskite solar cell structure of a silicon-based thin film material, comprising:
一导电玻璃;a conductive glass;
一p型空穴传输层,其制作在导电玻璃上;A p-type hole transport layer made on conductive glass;
一钙钛矿光敏层,其制作在p型电子传输层上;A perovskite photosensitive layer fabricated on the p-type electron transport layer;
一n型电子传输层,其制作在钙钛矿光敏层上;An n-type electron transport layer fabricated on the perovskite photosensitive layer;
一金属对电极,其制作在n型空穴传输层上。A metal counter electrode is fabricated on the n-type hole transport layer.
本发明又提供一种硅基薄膜材料的钙钛矿太阳电池的制备方法,包括如下步骤:The present invention provides a kind of preparation method of the perovskite solar cell of silicon base film material again, comprises the steps:
步骤1:取一导电玻璃;Step 1: Take a conductive glass;
步骤2:清洗、吹干;Step 2: Wash and dry;
步骤3:在导电玻璃上依次沉积n型电子传输层、钙钛矿光敏层、p型空穴传输层和金属对电极,完成制备。Step 3: sequentially depositing an n-type electron transport layer, a perovskite photosensitive layer, a p-type hole transport layer and a metal counter electrode on the conductive glass to complete the preparation.
本发明再提供一种硅基薄膜材料的钙钛矿太阳电池的制备方法,包括如下步骤:The present invention provides a kind of preparation method of the perovskite solar cell of silicon base film material again, comprises the steps:
步骤1:取一导电玻璃;Step 1: Take a conductive glass;
步骤2:清洗、吹干;Step 2: Wash and dry;
步骤3:在导电玻璃上依次沉积p型空穴传输层、钙钛矿光敏层、n型电子传输层和金属对电极,完成制备。Step 3: sequentially depositing a p-type hole transport layer, a perovskite photosensitive layer, an n-type electron transport layer and a metal counter electrode on the conductive glass to complete the preparation.
本发明具有以下有益效果:The present invention has the following beneficial effects:
1.利用本发明,可以保证长波光激发的载流子在最近的硅基薄膜/钙钛矿异质结处分开,并且给器件增加了额外的异质结电势,显著提高器件的短路电流和开路电压。1. Utilizing the present invention, it can ensure that the carriers excited by long-wavelength light are separated at the nearest silicon-based film/perovskite heterojunction, and an additional heterojunction potential is added to the device, which significantly improves the short-circuit current and open circuit voltage.
2.相比于其他p型空穴选择层材料,非晶硅带隙可调,尤其是价廉易制的特点,可以大大降低钙钛矿太阳电池的生产成本,加速钙钛矿电池的推广。2. Compared with other p-type hole-selective layer materials, amorphous silicon has an adjustable band gap, especially the characteristics of low cost and easy manufacture, which can greatly reduce the production cost of perovskite solar cells and accelerate the promotion of perovskite solar cells .
3.利用本发明,可以实现电池全制程真空沉积工艺,避免了溶液法制备p型空穴传输层技术,与现有的非晶硅电池生产技术完全兼容,因而利于规模化生产。3. Utilizing the present invention, the vacuum deposition process of the whole process of the battery can be realized, the technology of preparing the p-type hole transport layer by the solution method is avoided, and it is completely compatible with the existing amorphous silicon battery production technology, thus facilitating large-scale production.
附图说明Description of drawings
为进一步说明本发明的技术内容,以下结合实施例及附图详细说明如后,其中:In order to further illustrate the technical content of the present invention, the following detailed description is as follows in conjunction with the embodiments and accompanying drawings, wherein:
图1为钙钛矿/硅基薄膜叠层能带结构示意图;Figure 1 is a schematic diagram of the energy band structure of a perovskite/silicon-based film stack;
图2为本发明的第一实施例的结构示意图;Fig. 2 is the structural representation of the first embodiment of the present invention;
图3为本发明的第二实施例的结构示意图;Fig. 3 is the structural representation of the second embodiment of the present invention;
图4为本发明第一实施例的制备流程图;Fig. 4 is the preparation flowchart of the first embodiment of the present invention;
图5为本发明第二实施例的制备流程图。Fig. 5 is a preparation flow chart of the second embodiment of the present invention.
具体实施方式Detailed ways
请参阅图1所示,本发明提供硅基薄膜材料的钙钛矿太阳电池的工作原理,简述如下:Please refer to shown in Fig. 1, the working principle of the perovskite solar cell that the present invention provides silicon-based thin film material is briefly described as follows:
针对NIP结构的钙钛矿太阳电池,钙钛矿材料的导带底为-3.93eV(相对于真空能级),价带顶为-5.43eV,而p型非晶薄膜通过碳、氮、氧等合金掺杂,可将导带边和价带边调节至高于钙钛矿I层相应的带边,形成的分立能带结构如图1(a)所示,无光照热平衡时能带结构如图1(b)所示,此时费米能级达到统一。连接后形成的异质结构适合空穴从钙钛矿I层向P型层输送、但电子被导带阻挡,即具有明显的空穴载流子收集能力。PIN结构中钙钛矿I层在两边异质结自建场贯通下能带发生倾斜,将加速光生电子流向N区,光生空穴流向P区,产生显著的光生载流子场助收集效应。For perovskite solar cells with NIP structure, the bottom of the conduction band of the perovskite material is -3.93eV (relative to the vacuum energy level), the top of the valence band is -5.43eV, and the p-type amorphous film passes carbon, nitrogen, oxygen Doping with other alloys, the conduction band edge and valence band edge can be adjusted to be higher than the corresponding band edge of the perovskite I layer, and the formed discrete energy band structure is shown in Figure 1(a). As shown in Figure 1(b), the Fermi level reaches unity at this time. The heterostructure formed after connection is suitable for transporting holes from the perovskite I layer to the P-type layer, but the electrons are blocked by the conduction band, that is, it has obvious hole carrier collection ability. In the PIN structure, the energy band of the perovskite I layer tilts under the penetration of the heterojunction self-built field on both sides, which will accelerate the flow of photogenerated electrons to the N region, and the flow of photogenerated holes to the P region, resulting in a significant field-assisted collection effect of photogenerated carriers.
请参阅图2所示,本发明提供一种硅基薄膜材料的钙钛矿太阳电池结构,包括:Please refer to Fig. 2, the present invention provides a perovskite solar cell structure of a silicon-based thin film material, including:
一导电玻璃1,所述导电玻璃1的材料可以为FTO玻璃、ITO玻璃、AZO玻璃或IZO玻璃,玻璃的方块电阻为5-30Ω/□;A conductive glass 1, the material of the conductive glass 1 can be FTO glass, ITO glass, AZO glass or IZO glass, and the sheet resistance of the glass is 5-30Ω/□;
一n型电子传输层2,其制作在导电玻璃1上,所述n型电子传输层2为n型氧化锌薄膜、n型氧化钛薄膜或者n型硅基薄膜,膜厚为5nm-50nm;An n-type electron transport layer 2, which is made on the conductive glass 1, the n-type electron transport layer 2 is an n-type zinc oxide film, an n-type titanium oxide film or an n-type silicon-based film, and the film thickness is 5nm-50nm;
一钙钛矿光敏层3,其制作在n型电子传输层2上,所述钙钛矿光敏层3为CH3NH3PbI3或CH3NH3PbI3-xClx,厚度为50nm-2000nm;A perovskite photosensitive layer 3, which is fabricated on the n-type electron transport layer 2, the perovskite photosensitive layer 3 is CH 3 NH 3 PbI 3 or CH 3 NH 3 PbI 3-x Cl x , with a thickness of 50nm- 2000nm;
一p型空穴传输层4,其制作在钙钛矿光敏层3上,所述p型空穴传输层4为p型硅基薄膜,包括硅基合金薄膜,如微晶硅碳合金、微晶硅氮合金、微晶硅氧合金、非晶硅碳合金、非晶硅氮合金或非微晶硅氧合金中的一种或其组合。沉积方法为等离子体增强化学气相沉积,厚度在10nm-100nm,含碳的原子分数在10%-30%,含氮的原子分数在10%-30%,含氧的原子分数在10%-30%;A p-type hole transport layer 4, which is made on the perovskite photosensitive layer 3, the p-type hole transport layer 4 is a p-type silicon-based film, including a silicon-based alloy film, such as microcrystalline silicon-carbon alloy, microcrystalline One or a combination of crystalline silicon-nitrogen alloys, microcrystalline silicon-oxygen alloys, amorphous silicon-carbon alloys, amorphous silicon-nitrogen alloys or amorphous silicon-oxygen alloys. The deposition method is plasma enhanced chemical vapor deposition, the thickness is 10nm-100nm, the atomic fraction of carbon is 10%-30%, the atomic fraction of nitrogen is 10%-30%, and the atomic fraction of oxygen is 10%-30 %;
一金属对电极5,其制作在p型空穴传输层4上,所述金属对电极5为金、银、铜或铝中的一种或其组合。A metal counter electrode 5 is fabricated on the p-type hole transport layer 4, and the metal counter electrode 5 is one of gold, silver, copper or aluminum or a combination thereof.
请参阅图3所示,本发明另外提供一种硅基薄膜材料的钙钛矿太阳电池结构,包括:Please refer to Fig. 3, the present invention additionally provides a perovskite solar cell structure of a silicon-based thin film material, including:
一导电玻璃1,所述导电玻璃1的材料可以为FTO玻璃、ITO玻璃、AZO玻璃或IZO玻璃,玻璃的方块电阻为5-30Ω/□;A conductive glass 1, the material of the conductive glass 1 can be FTO glass, ITO glass, AZO glass or IZO glass, and the sheet resistance of the glass is 5-30Ω/□;
一p型空穴传输层4,其制作在导电玻璃1上,所述p型空穴传输层4为p型硅基薄膜,包括硅基合金薄膜,如微晶硅碳合金、微晶硅氮合金、微晶硅氧合金、非晶硅碳合金、非晶硅氮合金或非微晶硅氧合金中的一种或其组合。沉积方法为等离子体增强化学气相沉积,厚度在10nm-100nm,含碳的原子分数在10%-30%,含氮的原子分数在10%-30%,含氧的原子分数在10%-30%;A p-type hole transport layer 4, which is made on the conductive glass 1, the p-type hole transport layer 4 is a p-type silicon-based film, including a silicon-based alloy film, such as microcrystalline silicon-carbon alloy, microcrystalline silicon nitrogen alloy, microcrystalline silicon-oxygen alloy, amorphous silicon-carbon alloy, amorphous silicon-nitrogen alloy, or amorphous silicon-oxygen alloy, or a combination thereof. The deposition method is plasma enhanced chemical vapor deposition, the thickness is 10nm-100nm, the atomic fraction of carbon is 10%-30%, the atomic fraction of nitrogen is 10%-30%, and the atomic fraction of oxygen is 10%-30 %;
一钙钛矿光敏层3,其制作在p型电子传输层4上,所述钙钛矿光敏层3为CH3NH3PbI3或CH3NH3PbI3-xClx,厚度为50nm-2000nm;A perovskite photosensitive layer 3, which is fabricated on the p-type electron transport layer 4, the perovskite photosensitive layer 3 is CH 3 NH 3 PbI 3 or CH 3 NH 3 PbI 3-x Cl x , with a thickness of 50nm- 2000nm;
一n型电子传输层2,其制作在钙钛矿光敏层3上,所述n型电子传输层2为n型氧化锌薄膜、n型氧化钛薄膜或者n型硅基薄膜,膜厚为5nm-50nm;An n-type electron transport layer 2, which is made on the perovskite photosensitive layer 3, the n-type electron transport layer 2 is an n-type zinc oxide film, an n-type titanium oxide film or an n-type silicon-based film, and the film thickness is 5nm -50nm;
一金属对电极5,其制作在n型电子传输层2上,所述金属对电极5为金、银、铜或铝中的一种或其组合。A metal counter electrode 5, which is fabricated on the n-type electron transport layer 2, and the metal counter electrode 5 is one of gold, silver, copper or aluminum or a combination thereof.
请参阅图4,结合参阅图2,一种硅基薄膜材料的钙钛矿太阳电池制备方法,包括如下步骤:Please refer to FIG. 4, and refer to FIG. 2 in conjunction with a method for preparing a perovskite solar cell made of a silicon-based thin film material, including the following steps:
步骤1:取一导电玻璃1。所述导电玻璃1的材料可以为FTO玻璃、ITO玻璃、AZO玻璃或IZO玻璃,玻璃的方块电阻为5-30Ω/□,起到后续镀膜层的支撑和导电作用。Step 1: Take a conductive glass 1 . The material of the conductive glass 1 can be FTO glass, ITO glass, AZO glass or IZO glass, and the sheet resistance of the glass is 5-30Ω/□, which plays the role of support and conduction of the subsequent coating layer.
步骤2:清洗、吹干。通过超声波有机溶剂清洗后,用氮气吹干。在导电层上进行局域腐蚀或遮蔽,避免后续镀膜时上下电极形成短路。Step 2: Rinse and blow dry. After cleaning with an ultrasonic organic solvent, blow dry with nitrogen. Local corrosion or masking is carried out on the conductive layer to avoid short-circuiting of the upper and lower electrodes during subsequent coating.
步骤3:在导电玻璃1上依次沉积n型电子传输层2、钙钛矿光敏层3、p型空穴传输层4和金属对电极5,完成制备。所述n型电子传输层2为氧化锌或氧化钛薄膜,膜厚为5nm-50nm,沉积方法为磁控溅射法,也可以为n型硅基薄膜,包括氢稀释或未氢稀释的n型微晶硅或n型非晶硅,膜厚为5-50nm,沉积方法为化学气相沉积法。沉积n型电子传输层2之前可以用酸溶液对玻璃导电层进行腐蚀以界定有源区图形,并可以用氧或氮等离子体对表面进行清洁。所述钙钛矿光敏层3为CH3NH3PbI3或CH3NH3PbI3-xClx,沉积方法为有机-无机双源共蒸发方法或旋涂法,厚度为50nm-2000nm,沉积后经过退火步骤,形成稳定的钙钛矿光敏层,退火方式包括热板退火、烘箱退火、炉管退火或烧结炉退火,退火温度为70-200℃,时间为10min-100min。所述p型空穴传输层4为p型硅基合金薄膜,包括微晶硅碳合金、微晶硅氮合金、微晶硅氧合金、非晶硅碳合金、非晶硅氮合金或非微晶硅氧合金中的一种或其组合。沉积方法为化学气相沉积,包括等离子体化学气相沉积、热丝化学气相沉积、光诱导化学气相沉积,厚度在10nm-100nm,含碳的原子分数在10%-30%,含氮的原子分数在10%-30%,含氧的原子分数在10%-30%。所述金属对电极5为金、银、铜或铝中的一种或其组合,沉积方法包括电子束蒸发或电阻热蒸发。Step 3: Depositing an n-type electron transport layer 2, a perovskite photosensitive layer 3, a p-type hole transport layer 4 and a metal counter electrode 5 sequentially on the conductive glass 1 to complete the preparation. The n-type electron transport layer 2 is a thin film of zinc oxide or titanium oxide, with a film thickness of 5nm-50nm, deposited by magnetron sputtering, or an n-type silicon-based thin film, including hydrogen diluted or undiluted n Type microcrystalline silicon or n-type amorphous silicon, the film thickness is 5-50nm, and the deposition method is chemical vapor deposition. Before depositing the n-type electron transport layer 2, the glass conductive layer can be etched with an acid solution to define the pattern of the active region, and the surface can be cleaned with oxygen or nitrogen plasma. The perovskite photosensitive layer 3 is CH 3 NH 3 PbI 3 or CH 3 NH 3 PbI 3-x Cl x , the deposition method is organic-inorganic dual-source co-evaporation method or spin coating method, the thickness is 50nm-2000nm, and the deposition method is After the annealing step, a stable perovskite photosensitive layer is formed. The annealing method includes hot plate annealing, oven annealing, furnace tube annealing or sintering furnace annealing. The annealing temperature is 70-200°C and the time is 10min-100min. The p-type hole transport layer 4 is a p-type silicon-based alloy thin film, including microcrystalline silicon-carbon alloy, microcrystalline silicon-nitrogen alloy, microcrystalline silicon-oxygen alloy, amorphous silicon-carbon alloy, amorphous silicon-nitrogen alloy or non-microcrystalline One or a combination of crystalline silicon-oxygen alloys. The deposition method is chemical vapor deposition, including plasma chemical vapor deposition, hot wire chemical vapor deposition, light-induced chemical vapor deposition, the thickness is 10nm-100nm, the atomic fraction of carbon is 10%-30%, and the atomic fraction of nitrogen is in 10%-30%, the atomic fraction of oxygen is 10%-30%. The metal counter electrode 5 is one or a combination of gold, silver, copper or aluminum, and the deposition method includes electron beam evaporation or resistance thermal evaporation.
请参阅图5,结合参阅图3,另外一种硅基薄膜材料的钙钛矿太阳电池制备方法,包括如下步骤:Please refer to Fig. 5, and refer to Fig. 3 in conjunction with Fig. 3, another method for preparing a perovskite solar cell made of a silicon-based thin film material, including the following steps:
步骤1:取一导电玻璃1。所述导电玻璃1的材料可以为FTO玻璃、ITO玻璃、AZO玻璃或IZO玻璃,玻璃的方块电阻为5-30Ω/□,起到后续镀膜层的支撑和导电作用。Step 1: Take a conductive glass 1 . The material of the conductive glass 1 can be FTO glass, ITO glass, AZO glass or IZO glass, and the sheet resistance of the glass is 5-30Ω/□, which plays the role of support and conduction of the subsequent coating layer.
步骤2:清洗、吹干。通过超声波有机溶剂清洗后,用氮气吹干。在导电层上进行局域腐蚀或遮蔽,避免后续镀膜时上下电极形成短路。Step 2: Rinse and blow dry. After cleaning with an ultrasonic organic solvent, blow dry with nitrogen. Local corrosion or masking is carried out on the conductive layer to avoid short-circuiting of the upper and lower electrodes during subsequent coating.
步骤3:在导电玻璃1上依次沉积p型空穴传输层4、钙钛矿光敏层3、n型电子传输层2和金属对电极5,完成制备。所述p型空穴传输层4为p型硅基合金薄膜,包括微晶硅碳合金、微晶硅氮合金、微晶硅氧合金、非晶硅碳合金、非晶硅氮合金或非微晶硅氧合金中的一种或其组合。沉积方法为化学气相沉积,包括等离子体化学气相沉积、热丝化学气相沉积、光诱导化学气相沉积,厚度在10nm-100nm,含碳的原子分数在10%-30%,含氮的原子分数在10%-30%,含氧的原子分数在10%-30%。所述钙钛矿光敏层3为CH3NH3PbI3或CH3NH3PbI3-xClx,沉积方法为有机-无机双源共蒸发方法或旋涂法,厚度为50nm-2000nm,沉积后经过退火步骤,形成稳定的钙钛矿光敏层,退火方式包括热板退火、烘箱退火、炉管退火或烧结炉退火,退火温度为70-200℃,时间为10min-100min。所述n型电子传输层2为氧化锌或氧化钛薄膜,膜厚为5nm-50nm,沉积方法为磁控溅射法,也可以为n型硅基薄膜,包括氢稀释或未氢稀释的n型微晶硅或n型非晶硅,膜厚为5-50nm,沉积方法为化学气相沉积法。沉积n型电子传输层2之前可以用酸溶液对玻璃导电层进行腐蚀以界定有源区图形,并可以用氧或氮等离子体对表面进行清洁。所述金属对电极5为金、银、铜或铝中的一种或其组合,沉积方法包括电子束蒸发或电阻热蒸发。Step 3: sequentially depositing a p-type hole transport layer 4, a perovskite photosensitive layer 3, an n-type electron transport layer 2 and a metal counter electrode 5 on the conductive glass 1 to complete the preparation. The p-type hole transport layer 4 is a p-type silicon-based alloy thin film, including microcrystalline silicon-carbon alloy, microcrystalline silicon-nitrogen alloy, microcrystalline silicon-oxygen alloy, amorphous silicon-carbon alloy, amorphous silicon-nitrogen alloy or non-microcrystalline One or a combination of crystalline silicon-oxygen alloys. The deposition method is chemical vapor deposition, including plasma chemical vapor deposition, hot wire chemical vapor deposition, light-induced chemical vapor deposition, the thickness is 10nm-100nm, the atomic fraction of carbon is 10%-30%, and the atomic fraction of nitrogen is in 10%-30%, the atomic fraction of oxygen is 10%-30%. The perovskite photosensitive layer 3 is CH 3 NH 3 PbI 3 or CH 3 NH 3 PbI 3-x Cl x , the deposition method is organic-inorganic dual-source co-evaporation method or spin coating method, the thickness is 50nm-2000nm, and the deposition method is After the annealing step, a stable perovskite photosensitive layer is formed. The annealing method includes hot plate annealing, oven annealing, furnace tube annealing or sintering furnace annealing. The annealing temperature is 70-200°C and the time is 10min-100min. The n-type electron transport layer 2 is a thin film of zinc oxide or titanium oxide, with a film thickness of 5nm-50nm, deposited by magnetron sputtering, or an n-type silicon-based thin film, including hydrogen diluted or undiluted n Type microcrystalline silicon or n-type amorphous silicon, the film thickness is 5-50nm, and the deposition method is chemical vapor deposition. Before depositing the n-type electron transport layer 2, the glass conductive layer can be etched with an acid solution to define the pattern of the active region, and the surface can be cleaned with oxygen or nitrogen plasma. The metal counter electrode 5 is one or a combination of gold, silver, copper or aluminum, and the deposition method includes electron beam evaporation or resistance thermal evaporation.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不限制本发明。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and do not limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410535451.5A CN104269452A (en) | 2014-10-11 | 2014-10-11 | Perovskite solar battery made of silicon-based thin-film materials and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410535451.5A CN104269452A (en) | 2014-10-11 | 2014-10-11 | Perovskite solar battery made of silicon-based thin-film materials and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104269452A true CN104269452A (en) | 2015-01-07 |
Family
ID=52160959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410535451.5A Pending CN104269452A (en) | 2014-10-11 | 2014-10-11 | Perovskite solar battery made of silicon-based thin-film materials and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104269452A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104934503A (en) * | 2015-06-12 | 2015-09-23 | 辽宁工业大学 | Preparation method of perovskite solar cell light absorption layer material methylamine lead dibromide |
CN104952963A (en) * | 2015-04-14 | 2015-09-30 | 上海大学 | A preparation method of TiO2-ZnO heterojunction nanorods for perovskite solar cells |
CN105047823A (en) * | 2015-06-24 | 2015-11-11 | 华南师范大学 | Semitransparent perovskite and crystalline silicon tandem laminated solar cell and preparation method thereof |
CN105118922A (en) * | 2015-09-14 | 2015-12-02 | 昆明学院 | Perovskite-type light-sensitive material in cubic system structure and preparation method therefor |
CN105226187A (en) * | 2015-11-15 | 2016-01-06 | 河北工业大学 | Film crystal silicon perovskite heterojunction solar cell and preparation method thereof |
CN105244442A (en) * | 2015-11-15 | 2016-01-13 | 河北工业大学 | Thin film crystal silicon perovskite heterojunction solar cell manufacturing method |
CN106299126A (en) * | 2015-06-08 | 2017-01-04 | 南开大学 | Perovskite battery of amorphous silicon membrane electric transmission Rotating fields and preparation method thereof |
CN104362253B (en) * | 2014-10-23 | 2017-03-22 | 河北工业大学 | All solid state perovskite microcrystalline silicon composite solar battery and preparation method thereof |
CN106784316A (en) * | 2016-07-22 | 2017-05-31 | 河北工业大学 | Thin film solar cell that a kind of perovskite monocrystal material is combined with crystallite silicon composite and preparation method thereof |
CN106449845B (en) * | 2016-09-14 | 2018-05-04 | 南昌大学 | One kind is based on Si/TiOxThe two-sided crystal-silicon solar cell of hetero-junctions |
CN110444671A (en) * | 2019-07-26 | 2019-11-12 | 杭州众能光电科技有限公司 | A kind of perovskite solar battery based on ultra thin p-type polysilicon film |
CN111244210A (en) * | 2018-11-29 | 2020-06-05 | 中国科学院大连化学物理研究所 | Flexible perovskite/microcrystalline silicon laminated solar cell and manufacturing method thereof |
EP3657554A4 (en) * | 2017-07-21 | 2021-03-17 | LG Electronics Inc. | PEROWSKIT SOLAR BATTERY AND TANDEM SOLAR BATTERY WITH IT |
CN115626924A (en) * | 2022-12-22 | 2023-01-20 | 北京绿人科技有限责任公司 | Amine derivative organic compound, application thereof and perovskite solar cell containing amine derivative |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013171520A1 (en) * | 2012-05-18 | 2013-11-21 | Isis Innovation Limited | Optoelectronic device comprising perovskites |
CN103681886A (en) * | 2013-12-26 | 2014-03-26 | 中国科学院物理研究所 | Support layer for perovskite base thin film solar cell and production method of support layer |
WO2014045021A1 (en) * | 2012-09-18 | 2014-03-27 | Isis Innovation Limited | Optoelectronic device |
CN103904218A (en) * | 2014-03-28 | 2014-07-02 | 中国科学院上海技术物理研究所 | Perovskite thin-film solar cell structure based on metal particles |
-
2014
- 2014-10-11 CN CN201410535451.5A patent/CN104269452A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013171520A1 (en) * | 2012-05-18 | 2013-11-21 | Isis Innovation Limited | Optoelectronic device comprising perovskites |
WO2014045021A1 (en) * | 2012-09-18 | 2014-03-27 | Isis Innovation Limited | Optoelectronic device |
CN103681886A (en) * | 2013-12-26 | 2014-03-26 | 中国科学院物理研究所 | Support layer for perovskite base thin film solar cell and production method of support layer |
CN103904218A (en) * | 2014-03-28 | 2014-07-02 | 中国科学院上海技术物理研究所 | Perovskite thin-film solar cell structure based on metal particles |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104362253B (en) * | 2014-10-23 | 2017-03-22 | 河北工业大学 | All solid state perovskite microcrystalline silicon composite solar battery and preparation method thereof |
CN104952963A (en) * | 2015-04-14 | 2015-09-30 | 上海大学 | A preparation method of TiO2-ZnO heterojunction nanorods for perovskite solar cells |
CN106299126A (en) * | 2015-06-08 | 2017-01-04 | 南开大学 | Perovskite battery of amorphous silicon membrane electric transmission Rotating fields and preparation method thereof |
CN104934503A (en) * | 2015-06-12 | 2015-09-23 | 辽宁工业大学 | Preparation method of perovskite solar cell light absorption layer material methylamine lead dibromide |
CN104934503B (en) * | 2015-06-12 | 2017-03-08 | 辽宁工业大学 | A kind of preparation method of perovskite solar cell light absorption layer material methylamine lead bromide |
CN105047823A (en) * | 2015-06-24 | 2015-11-11 | 华南师范大学 | Semitransparent perovskite and crystalline silicon tandem laminated solar cell and preparation method thereof |
CN105118922A (en) * | 2015-09-14 | 2015-12-02 | 昆明学院 | Perovskite-type light-sensitive material in cubic system structure and preparation method therefor |
CN105118922B (en) * | 2015-09-14 | 2017-12-22 | 昆明学院 | A kind of cubic crystal structure Ca-Ti ore type light-sensitive material and preparation method thereof |
CN105226187A (en) * | 2015-11-15 | 2016-01-06 | 河北工业大学 | Film crystal silicon perovskite heterojunction solar cell and preparation method thereof |
CN105244442A (en) * | 2015-11-15 | 2016-01-13 | 河北工业大学 | Thin film crystal silicon perovskite heterojunction solar cell manufacturing method |
CN105226187B (en) * | 2015-11-15 | 2018-01-30 | 河北工业大学 | Film crystal silicon perovskite heterojunction solar battery and preparation method thereof |
CN106784316A (en) * | 2016-07-22 | 2017-05-31 | 河北工业大学 | Thin film solar cell that a kind of perovskite monocrystal material is combined with crystallite silicon composite and preparation method thereof |
CN106449845B (en) * | 2016-09-14 | 2018-05-04 | 南昌大学 | One kind is based on Si/TiOxThe two-sided crystal-silicon solar cell of hetero-junctions |
EP3657554A4 (en) * | 2017-07-21 | 2021-03-17 | LG Electronics Inc. | PEROWSKIT SOLAR BATTERY AND TANDEM SOLAR BATTERY WITH IT |
CN111244210A (en) * | 2018-11-29 | 2020-06-05 | 中国科学院大连化学物理研究所 | Flexible perovskite/microcrystalline silicon laminated solar cell and manufacturing method thereof |
CN110444671A (en) * | 2019-07-26 | 2019-11-12 | 杭州众能光电科技有限公司 | A kind of perovskite solar battery based on ultra thin p-type polysilicon film |
CN115626924A (en) * | 2022-12-22 | 2023-01-20 | 北京绿人科技有限责任公司 | Amine derivative organic compound, application thereof and perovskite solar cell containing amine derivative |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104269452A (en) | Perovskite solar battery made of silicon-based thin-film materials and manufacturing method thereof | |
Zhao et al. | Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer | |
Shi et al. | Interfaces in perovskite solar cells | |
CN110246923A (en) | A kind of tandem type perovskite/homojunction silicon lamination solar cell and preparation method thereof | |
Fan et al. | Delayed annealing treatment for high-quality CuSCN: Exploring its impact on bifacial semitransparent nip planar perovskite solar cells | |
CN105810772B (en) | A kind of antimony trisulfide/silicon stacked solar cell, cascade solar cell and preparation method thereof | |
Noorasid et al. | SCAPS numerical analysis of solid-state dye-sensitized solar cell utilizing copper (I) iodide as hole transport layer | |
CN105720197B (en) | It is a kind of to respond silicon-based hybrid heterojunction photovoltaic sensor and preparation method thereof from driving wide spectrum | |
CN104134720A (en) | Preparation method of organic and inorganic hybridization perovskite material growing by single-source flash evaporation method and plane solar cell of material | |
CN108123000A (en) | A kind of nano-rod shaped antimony selenide solar cell and preparation method thereof | |
CN104157789A (en) | Novel two-sided thin film solar cell and industrial manufacturing method thereof | |
CN101217167A (en) | A Mechanically Laminated AlSb/CIS Thin Film Solar Cell | |
CN103426943B (en) | A kind of copper-zinc-tin-sulfur film solar cell rhythmo structure and its preparation method | |
CN104916785A (en) | A kind of preparation method of CH3NH3PbI3 thin film solar cell | |
CN105977386A (en) | Perovskite solar cell of nano metal oxide hole transport layer and preparation method thereof | |
CN104241415A (en) | Graphene/gallium arsenide solar cell and manufacturing method thereof | |
CN110289332A (en) | A kind of preparation method and structure of laminated battery | |
CN113707735A (en) | Novel double-sided undoped heterojunction solar cell and preparation method thereof | |
CN107394044A (en) | A kind of perovskite solar cell of high-performance conductive electrode and electron transfer layer and preparation method thereof | |
CN103296211A (en) | Organic-two-dimensional crystal-inorganic hybrid heterojunction solar cell device and preparation method thereof | |
CN110416413B (en) | A kind of perovskite solar cell with high-performance gradient electron transport layer and its preparation method | |
CN104115283B (en) | Solar cell module and method of fabricating the same | |
CN114335348B (en) | PN heterojunction antimony selenide/perovskite solar cell and preparation method thereof | |
CN114914365A (en) | A perovskite/perovskite tandem solar cell with an inverted structure | |
CN106684179A (en) | Antimony selenide double-junction thin-film solar cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150107 |