CN105226187A - Film crystal silicon perovskite heterojunction solar cell and preparation method thereof - Google Patents
Film crystal silicon perovskite heterojunction solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN105226187A CN105226187A CN201510785094.2A CN201510785094A CN105226187A CN 105226187 A CN105226187 A CN 105226187A CN 201510785094 A CN201510785094 A CN 201510785094A CN 105226187 A CN105226187 A CN 105226187A
- Authority
- CN
- China
- Prior art keywords
- crystal silicon
- perovskite
- solution
- layer
- film crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明薄膜晶硅钙钛矿异质结太阳电池及其制备方法,涉及专门适用于将光能转换为电能的半导体器件,由透明导电基底、P型薄膜晶硅空穴传输层、钙钛矿光吸收层、由致密二氧化钛构成的电子传输层和背电极构成,其中,钙钛矿光吸收层与P型薄膜晶硅空穴传输层具备相匹配的能级;组成方式是:P型薄膜晶硅空穴传输层置于透明导电基底上面,钙钛矿光吸收层置于P型薄膜晶硅空穴传输层的上面,钙钛矿光吸收层与P型薄膜晶硅空穴传输层形成薄膜晶硅钙钛矿异质结,由致密二氧化钛构成的电子传输层置于钙钛矿光吸收层上面,背电极置于由致密二氧化钛构成的电子传输层上面。克服了现有钙钛矿太阳电池稳定性不足、制备成本高或硅材料使用量大的缺陷。
The invention relates to a thin-film crystalline silicon perovskite heterojunction solar cell and a preparation method thereof, which relate to a semiconductor device specially suitable for converting light energy into electrical energy, which consists of a transparent conductive substrate, a P-type thin-film crystalline silicon hole transport layer, and a perovskite The light absorbing layer, the electron transport layer made of dense titanium dioxide and the back electrode are composed of the perovskite light absorbing layer and the P-type thin film crystalline silicon hole transport layer with matching energy levels; the composition method is: P-type thin film crystal The silicon hole transport layer is placed on the transparent conductive substrate, the perovskite light absorbing layer is placed on the top of the P-type thin film crystalline silicon hole transport layer, and the perovskite light absorbing layer and the P-type thin film crystalline silicon hole transport layer form a thin film In the crystalline silicon perovskite heterojunction, the electron transport layer composed of dense titanium dioxide is placed on the perovskite light absorbing layer, and the back electrode is placed on the electron transport layer composed of dense titanium dioxide. It overcomes the shortcomings of the existing perovskite solar cells, such as insufficient stability, high manufacturing cost or large amount of silicon materials used.
Description
技术领域technical field
本发明的技术方案涉及专门适用于将光能转换为电能的半导体器件,具体地说是薄膜晶硅钙钛矿异质结太阳电池及其制备方法。The technical solution of the invention relates to a semiconductor device specially suitable for converting light energy into electric energy, specifically a thin-film crystal silicon perovskite heterojunction solar cell and a preparation method thereof.
背景技术Background technique
相对于晶硅电池因晶硅材料制造成本难于进一步下降的情况,使用钙钛矿材料CH3NH3PbX3(X=Cl,Br,orI)为主要光吸收层的太阳电池(以下称为钙钛矿型太阳电池)光电转换效率超过20%,并且具有薄膜化、室温溶液制备、无稀有元素的低制造成本特性,极具应用前景。在各种结构的钙钛矿型太阳电池中,直接采用传统单晶硅及多晶硅太阳电池的P型体硅材料作为空穴传输层的钙钛矿型太阳电池,由于体硅材料没有减少硅材料的使用,无法实现钙钛矿型太阳电池的成本显著低于传统单晶硅及多晶硅太阳电池。而采用非晶硅薄膜作为空穴传输层的钙钛矿型太阳电池,则由于非晶硅薄膜内部存在大量悬挂键等缺陷,导致这种电池光电转化性能相对体硅电池较差。CN201410568822.X公开了全固态钙钛矿微晶硅复合太阳电池及其制备方法,其存在如下不足:第一,微晶硅的沉积速率比较慢,一般不超过5埃每秒,沉积速度影响了生产效率和成本。要大规模工业生产微晶硅薄膜,还需要微晶硅薄膜制备技术进一步提高速度;第二,微晶硅本质上是硅的微小晶体颗粒与非晶的混合相,其晶界和内表面上的悬挂键和缺陷都是光生载流子的复合中心。与晶体硅材料相比,微晶硅内部的光生载流子的复合使微晶硅材料制备成的太阳电池器件的开路电压等性能受到了限制。Compared with the situation that the manufacturing cost of crystalline silicon cells is difficult to further reduce, solar cells using perovskite materials CH 3 NH 3 PbX 3 (X=Cl, Br, orI) as the main light-absorbing layer (hereinafter referred to as Ca Titanium-type solar cells) have a photoelectric conversion efficiency of more than 20%, and have the characteristics of thin film, room temperature solution preparation, and low manufacturing cost without rare elements, and have great application prospects. In perovskite solar cells with various structures, the P-type bulk silicon material of traditional monocrystalline silicon and polycrystalline silicon solar cells is directly used as the perovskite solar cell of the hole transport layer, because the bulk silicon material does not reduce the silicon material. However, the cost of perovskite solar cells cannot be significantly lower than that of traditional monocrystalline silicon and polycrystalline silicon solar cells. However, the perovskite solar cells using amorphous silicon thin films as the hole transport layer have poor photoelectric conversion performance compared with bulk silicon cells due to the existence of a large number of dangling bonds and other defects in the amorphous silicon thin films. CN201410568822.X discloses an all-solid-state perovskite microcrystalline silicon composite solar cell and its preparation method, which has the following disadvantages: first, the deposition rate of microcrystalline silicon is relatively slow, generally no more than 5 angstroms per second, and the deposition rate affects the Production efficiency and cost. In order to produce microcrystalline silicon thin films on a large scale, it is necessary to further increase the speed of the preparation technology of microcrystalline silicon thin films; secondly, microcrystalline silicon is essentially a mixed phase of tiny crystal particles of silicon and amorphous. Both dangling bonds and defects are recombination centers for photogenerated carriers. Compared with crystalline silicon materials, the recombination of photogenerated carriers inside microcrystalline silicon limits the open circuit voltage and other properties of solar cell devices made of microcrystalline silicon materials.
因此,开发由薄膜晶硅材料构成其空穴传输材料的钙钛矿型太阳电池,可以实现硅材料使用量比体硅材料少、同时薄膜质量和器件性能比非晶硅及微晶硅薄膜优良,有助于太阳电池的性能进一步提高且生产成本降低。Therefore, the development of perovskite solar cells whose hole transport materials are composed of thin-film crystalline silicon materials can realize that the amount of silicon materials used is less than that of bulk silicon materials, and at the same time, the film quality and device performance are better than amorphous silicon and microcrystalline silicon films. , contribute to the further improvement of the performance of the solar cell and the reduction of the production cost.
发明内容Contents of the invention
本发明所要解决的技术问题是:提供薄膜晶硅钙钛矿异质结太阳电池及其制备方法,是一种采用薄膜晶硅与钙钛矿构成的异质结的太阳电池及制备方法,既克服了现有普通钙钛矿型太阳电池因使用有机空穴传输层材料而稳定性不足和制备成本高的缺陷,又克服了使用体块晶硅材料为空穴传输材料的钙钛矿型太阳电池硅材料使用量大的缺陷,同时还克服了使用非晶硅及微晶硅薄膜为空穴传输层的钙钛矿型太阳电池光电转化性能较差的缺陷。The technical problem to be solved by the present invention is to provide a thin-film crystalline silicon perovskite heterojunction solar cell and a preparation method thereof, which is a solar cell and a preparation method using a heterojunction composed of thin-film crystalline silicon and perovskite. It overcomes the shortcomings of the existing ordinary perovskite solar cells due to the lack of stability and high manufacturing cost due to the use of organic hole transport layer materials, and overcomes the perovskite solar cells that use bulk crystalline silicon materials as hole transport materials. The defect of using a large amount of silicon material for the battery also overcomes the defect of poor photoelectric conversion performance of perovskite solar cells using amorphous silicon and microcrystalline silicon thin films as hole transport layers.
本发明解决该技术问题所采用的技术方案是:薄膜晶硅钙钛矿异质结太阳电池,由透明导电基底、P型薄膜晶硅空穴传输层、钙钛矿光吸收层、由致密二氧化钛构成的电子传输层和背电极构成,其中,钙钛矿光吸收层与P型薄膜晶硅空穴传输层具备相匹配的能级;其组成顺序方式是:P型薄膜晶硅空穴传输层置于透明导电基底上面,钙钛矿光吸收层置于P型薄膜晶硅空穴传输层的上面,钙钛矿光吸收层与P型薄膜晶硅空穴传输层形成薄膜晶硅钙钛矿异质结,由致密二氧化钛构成的电子传输层置于钙钛矿光吸收层上面,背电极置于由致密二氧化钛构成的电子传输层上面,以上五个功能层依次叠加,构成此薄膜晶硅钙钛矿异质结太阳电池。The technical scheme adopted by the present invention to solve the technical problem is: a thin-film crystalline silicon perovskite heterojunction solar cell, which consists of a transparent conductive substrate, a P-type thin-film crystalline silicon hole transport layer, a perovskite light-absorbing layer, and a dense titanium dioxide Composed of an electron transport layer and a back electrode, in which the perovskite light absorbing layer and the P-type thin film crystalline silicon hole transport layer have matching energy levels; the composition sequence is: P-type thin film crystalline silicon hole transport layer Placed on a transparent conductive substrate, the perovskite light-absorbing layer is placed on the top of the P-type thin-film crystalline silicon hole transport layer, and the perovskite light-absorbing layer and the P-type thin-film crystalline silicon hole-transport layer form a thin-film crystalline silicon perovskite Heterojunction, the electron transport layer made of dense titanium dioxide is placed on the perovskite light absorbing layer, the back electrode is placed on the electron transport layer made of dense titanium dioxide, and the above five functional layers are stacked in sequence to form this thin film crystalline calcium silicon Titanium heterojunction solar cells.
上述薄膜晶硅钙钛矿异质结太阳电池,所述钙钛矿光吸收层所用的钙钛矿材料是CH3NH3PbX3,其中X=Cl或/和I,厚度为0.05~30um。For the above-mentioned thin film crystalline silicon perovskite heterojunction solar cell, the perovskite material used in the perovskite light absorbing layer is CH 3 NH 3 PbX 3 , where X=Cl or/and I, and the thickness is 0.05-30 um.
上述薄膜晶硅钙钛矿异质结太阳电池,所述透明导电基底为以玻璃为基底的AZO、ITO或FTO透明氧化物导电层。For the above-mentioned thin-film crystalline silicon perovskite heterojunction solar cell, the transparent conductive substrate is an AZO, ITO or FTO transparent oxide conductive layer based on glass.
上述薄膜晶硅钙钛矿异质结太阳电池,所述背电极为铝、银或铜构成的薄层或栅线。In the above-mentioned thin-film crystalline silicon perovskite heterojunction solar cell, the back electrode is a thin layer or grid line made of aluminum, silver or copper.
上述薄膜晶硅钙钛矿异质结太阳电池的制备方法,其步骤如下:The preparation method of the above-mentioned thin film crystalline silicon perovskite heterojunction solar cell, its steps are as follows:
第一步,制备在透明导电基底上的P型薄膜晶硅空穴传输层:The first step is to prepare a P-type thin film crystalline silicon hole transport layer on a transparent conductive substrate:
以背面镀有一层耐腐蚀金属的P型单晶硅片作为阳极,以铂作为阴极,在体积比氢氟酸∶无水乙醇=1∶1的氢氟酸乙醇溶液中,通以大小为1A~7.5A的电流进行阳极氧化,通过电化学法腐蚀P型单晶硅片,在单晶硅片表面形成多孔硅结构,然后将该形成多孔硅结构的单晶硅片在H2气氛下200℃至550℃退火,退火过程中该单晶硅片表层小孔隙率层的孔洞会逐渐闭合形成准单晶层作为外延器件的模板,利用低压力化学气相沉积法在该准单晶层上外延成为P型薄膜晶硅薄膜,将所形成的P型晶硅薄膜从单晶硅片上转移到透明导电基底上,由此制备成在透明导电基底上的P型薄膜晶硅空穴传输层;Use a P-type single crystal silicon wafer coated with a layer of corrosion-resistant metal on the back as the anode, and use platinum as the cathode. The current of ~7.5A is used for anodic oxidation, and the P-type single crystal silicon wafer is corroded by electrochemical method to form a porous silicon structure on the surface of the single crystal silicon wafer. ℃ to 550℃ for annealing. During the annealing process, the pores of the small porosity layer on the surface of the single crystal silicon wafer will gradually close to form a quasi-single crystal layer as a template for epitaxial devices. Epitaxy on this quasi-single crystal layer Become a P-type thin film crystalline silicon film, transfer the formed P-type crystalline silicon film from a single crystal silicon wafer to a transparent conductive substrate, thereby preparing a P-type thin film crystalline silicon hole transport layer on a transparent conductive substrate;
第二步,在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层:The second step is to spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer:
在上述第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,采用以下两种方法中的任意一种:Spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate prepared in the first step above, and adopt any one of the following two methods:
A.单一旋涂法:A. Single spin coating method:
A-1.CH3NH3X的制备,其中X=Cl或I(下同):A-1. Preparation of CH 3 NH 3 X, wherein X=Cl or I (the same below):
制备CH3NH3X的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的卤化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的卤化氢溶液=2~3∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌1.5~2h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3X,所述卤化氢溶液为氯化氢溶液或碘化氢溶液;The raw material for preparing CH 3 NH 3 X is that the mass percentage concentration is 33% methylamine ethanol solution and the mass percentage concentration is 57% hydrogen halide solution, and the mass percentage concentration is 33% methylamine ethanol solution by volume ratio: mass percentage Hydrogen halide solution with a concentration of 57% = 2-3:1, mix the two solutions and put them into a 250mL round-bottomed flask. After completion, use a rotary evaporator to remove the solvent by rotary evaporation at 50°C, and wash the obtained white solid with ether three times. Precipitate was precipitated with diethyl ether, and this process was repeated twice. Finally, the obtained white solid was put into a vacuum drying oven, and dried at 60°C and a vacuum degree of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 X , the hydrogen halide solution is a hydrogen chloride solution or a hydrogen iodide solution;
A-2.成分为CH3NH3PbX3的钙钛矿前驱溶液的制备:A-2. Preparation of perovskite precursor solution whose composition is CH 3 NH 3 PbX 3 :
将摩尔比为质量百分比为99.999%的PbX2∶上述A-1步制得的CH3NH3X=1:3混合,并溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中得到溶液A-2,其中PbX2的浓度为0.5~1M,CH3NH3X的浓度为1~2.5M,在室温下,将上述溶液A-2用磁力搅拌器搅拌12h,制得成分为CH3NH3PbX3的钙钛矿前驱溶液,待用,上述PbX2中的X=Cl或I,并且与CH3NH3X中的X相一致;Mix the molar ratio of PbX 2 with a mass percentage of 99.999%: CH 3 NH 3 X obtained in the above step A-1 = 1:3, and dissolve it in N,N-dimethylformaldehyde with a mass percentage of 99.9% purity A solution A-2 was obtained in amide, wherein the concentration of PbX 2 was 0.5-1M, and the concentration of CH 3 NH 3 X was 1-2.5M. At room temperature, the above solution A-2 was stirred with a magnetic stirrer for 12h to obtain A perovskite precursor solution whose composition is CH 3 NH 3 PbX 3 is ready for use, X in the above PbX 2 = Cl or I, and is consistent with X in CH 3 NH 3 X;
A-3.在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层的湿膜:A-3. Wet film of spin-coated perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate:
将第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层整体放到旋涂仪上,其中P型薄膜晶硅空穴传输层在上,取所需量的由上述A-2步制得的成分为CH3NH3PbX3的钙钛矿前驱溶液旋涂到P型薄膜晶硅空穴传输层上,将旋涂仪转速加速到6000rpm并保持这样的转速旋涂10~30s,在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂上钙钛矿光吸收层的湿膜;Put the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate prepared in the first step as a whole on a spin coater, wherein the P-type thin-film crystalline silicon hole-transport layer is on top, and take the required amount of the above-mentioned The perovskite precursor solution whose composition is CH 3 NH 3 PbX 3 prepared in step A-2 is spin-coated on the P-type thin-film crystalline silicon hole transport layer, and the speed of the spin coater is accelerated to 6000rpm and maintained at this speed for spin coating 10-30s, spin-coat the wet film of the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate;
A-4.热处理:A-4. Heat treatment:
将上述A-3步制得的在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂上钙钛矿光吸收层的湿膜的整体放入到烘箱中进行热处理,先在90℃下热处理0.5~1h,再加热至100℃并保温25min,由此在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,该钙钛矿光吸收层的厚度为0.05~30um,并且在透明导电基底上的P型薄膜晶硅空穴传输层与钙钛矿光吸收层形成薄膜晶硅钙钛矿异质结;Put the whole wet film of the perovskite light-absorbing layer spin-coated on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate prepared in the above A-3 step into an oven for heat treatment, first at 90 Heat treatment at ℃ for 0.5~1h, then heat to 100℃ and hold for 25min, thus spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer, the thickness of the perovskite light-absorbing layer is 0.05~ 30um, and the P-type thin-film crystalline silicon hole transport layer and the perovskite light-absorbing layer on the transparent conductive substrate form a thin-film crystalline silicon perovskite heterojunction;
B.旋涂+浸渍法B. Spin coating + dipping method
B-1.CH3NH3Cl和CH3NH3I的制备:B-1. Preparation of CH 3 NH 3 Cl and CH 3 NH 3 I:
制备CH3NH3Cl的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的氯化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的氯化氢溶液=2~3∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌1.5~2h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3Cl;制备CH3NH3I的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的碘化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的碘化氢溶液=2~3∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌1.5~2h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3I;The raw material for preparing CH 3 NH 3 Cl is that the mass percentage concentration is 33% methylamine ethanol solution and the mass percentage concentration is 57% hydrogen chloride solution, and the mass percentage concentration is 33% methylamine ethanol solution by volume ratio: mass percentage concentration 57% hydrogen chloride solution=2~3:1, put the two solutions into a 250mL round-bottomed flask after mixing, and stir continuously with a constant temperature magnetic stirrer for 1.5~2h at 0°C. Use a rotary evaporator to remove the solvent by rotary evaporation at 50°C, and wash the obtained white solid with ether three times. The specific cleaning steps are: first re-dissolve the white solid obtained above in ethanol, and then continuously add dry ether to precipitate Precipitation, this process was repeated twice, and finally the obtained white solid was put into a vacuum drying oven, and dried at 60°C and a vacuum degree of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 Cl; The raw material of CH 3 NH 3 I is the methylamine ethanol solution that mass percent concentration is 33% and the hydrogen iodide solution that mass percent concentration is 57%, is the methylamine ethanol solution that mass percent concentration is 33% by volume ratio: mass percent The hydrogen iodide solution with a concentration of 57% = 2~3:1, put the two solutions into a 250mL round-bottomed flask after mixing, and stir continuously with a constant temperature magnetic stirrer for 1.5~2h at 0°C. After stirring, use a rotary evaporator to remove the solvent by rotary evaporation at 50°C, and wash the obtained white solid with ether three times. Dry diethyl ether to precipitate a precipitate. Repeat this process twice. Finally, put the obtained white solid into a vacuum drying oven and dry it at 60°C and a vacuum of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 I;
B-2.在第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂PbI2薄膜:B-2. on the P-type thin-film crystalline silicon hole-transport layer on the transparent conductive substrate that the first step makes spin - coating PbI thin film:
将质量百分比纯度为99.999%PbI2溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中,使得该PbI2溶液的浓度为0.5~1M,并在70℃下搅拌以至形成澄清明亮的黄色PbI2溶液,在旋涂之前,将第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层和上述黄色PbI2溶液的温度加热至60~65℃,然后将第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层整体放在旋涂仪上,其中P型薄膜晶硅空穴传输层在上,取所需量的上述得到的黄色PbI2溶液旋涂到P型薄膜晶硅空穴传输层上,将旋涂仪转速加速到3000rpm并保持这样的转速旋涂10~20s,再经干燥处理10分钟,在透明导电基底上的P型薄膜晶硅空穴传输层上得到旋涂PbI2薄膜,该薄膜厚度为10~800nm;Dissolve PbI with a mass percent purity of 99.999% in N,N - dimethylformamide with a mass percent purity of 99.9%, so that the concentration of the PbI solution is 0.5 to 1M, and stir at 70°C until a clear Bright yellow PbI2 solution, before spin-coating, heat the temperature of the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate prepared in the first step and the above-mentioned yellow PbI2 solution to 60-65°C, and then Put the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate prepared in the first step as a whole on a spin coater, wherein the P-type thin-film crystalline silicon hole-transport layer is on top, and take the required amount of the above to obtain The yellow PbI 2 solution is spin-coated on the P-type thin-film crystalline silicon hole transport layer, the speed of the spin coater is accelerated to 3000rpm and the speed is maintained at this speed for 10-20s, and then dried for 10 minutes, on the transparent conductive substrate On the P-type thin film crystalline silicon hole transport layer, a spin-coated PbI2 film is obtained, and the film thickness is 10-800nm;
B-3.将上述B-2步所得在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜变成由CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜:B-3. The PbI 2 film spin-coated on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate obtained in the above B-2 step becomes CH 3 NH 3 PbI 3 , CH 3 NH 3 PbCl 3 , Thin film formed by mixing CH 3 NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 :
将所需量的经上述B-1步制得的CH3NH3Cl和CH3NH3I分别溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中,分别得到的CH3NH3Cl溶液和CH3NH3I溶液,其浓度均为1~10mg/mL,按照体积比为CH3NH3I溶液︰CH3NH3Cl溶液=1︰0.1~10分别取CH3NH3I溶液和CH3NH3Cl溶液混合得CH3NH3I和CH3NH3Cl的混合溶液,先将该混合溶液和由B-2步制得的在P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜预热至60℃,再将该PbI2薄膜充分地浸入上述混合溶液中与之反应,静置5~30min后取出,上述B-2步所得在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜变成由CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜;Dissolve the required amount of CH 3 NH 3 Cl and CH 3 NH 3 I prepared by the above step B-1 in N,N-dimethylformamide with a mass percent purity of 99.9%, and the obtained CH The concentrations of 3 NH 3 Cl solution and CH 3 NH 3 I solution are both 1-10 mg/mL. According to the volume ratio, CH 3 NH 3 I solution: CH 3 NH 3 Cl solution = 1: 0.1-10 respectively take CH 3 NH 3 I solution and CH 3 NH 3 Cl solution are mixed to obtain a mixed solution of CH 3 NH 3 I and CH 3 NH 3 Cl. Preheat the PbI2 thin film spin-coated on the transmission layer to 60°C, then fully immerse the PbI2 thin film in the above mixed solution to react with it, and take it out after standing for 5-30min. The spin-coated PbI 2 film on the P-type thin film crystalline silicon hole transport layer becomes a mixture of CH 3 NH 3 PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 formed film;
B-4.热处理:B-4. Heat treatment:
将上述第二步的B-3步所制得的在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂有由CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜的整体放入到烘箱中进行热处理,先在90℃下保温1小时,再加热至100℃并保温25分钟,由此在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,该钙钛矿光吸收层的厚度为0.05~30um,并且在透明导电基底上的P型薄膜晶硅空穴传输层与钙钛矿光吸收层形成薄膜晶硅钙钛矿异质结;Spin-coat the P-type thin film crystalline silicon hole transport layer on the transparent conductive substrate obtained in step B-3 of the second step above with CH 3 NH 3 PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 The entire thin film formed by mixing NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 was placed in an oven for heat treatment. First, it was kept at 90°C for 1 hour, and then heated to 100°C and kept for 25 minutes. The perovskite light-absorbing layer is spin-coated on the thin-film crystalline silicon hole-transporting layer. The thickness of the perovskite light-absorbing layer is 0.05-30um, and the P-type thin-film crystalline The mineral light absorbing layer forms a thin-film crystalline silicon perovskite heterojunction;
第三步,在钙钛矿光吸收层上制作由致密二氧化钛构成的电子传输层:The third step is to fabricate an electron transport layer made of dense titanium dioxide on the perovskite light absorbing layer:
将上述第二步所制得制品的整体放置入磁控溅射设备中,通过磁控溅射法在钙钛矿光吸收层上制备由致密二氧化钛构成的电子传输层,具体操作方法是:靶材为纯度质量百分比99.99%的TiO2靶,靶直径为60mm,厚度为5mm,溅射前,用高纯氩气对磁控溅射设备腔体进行5min清洗,然后抽真空,本底真空为4.0×10-3Pa,随后依次通入氩气和氧气,通过调节流量控制氩气和氧气的体积比为9∶1,总压强保持为2.0Pa,溅射功率为80W,溅射时间为4h,生长结束后再经过70℃至150℃的退火处理,由此在钙钛矿光吸收层上制得由致密二氧化钛构成的电子传输层;Place the entire product obtained in the second step above into a magnetron sputtering device, and prepare an electron transport layer composed of dense titanium dioxide on the perovskite light-absorbing layer by magnetron sputtering. The specific operation method is: target The material is a TiO2 target with a purity mass percentage of 99.99%. The target diameter is 60 mm and the thickness is 5 mm. 4.0×10 -3 Pa, followed by argon and oxygen, the volume ratio of argon and oxygen is controlled to be 9:1 by adjusting the flow rate, the total pressure is kept at 2.0Pa, the sputtering power is 80W, and the sputtering time is 4h After the growth is completed, annealing at 70°C to 150°C is performed to prepare an electron transport layer composed of dense titanium dioxide on the perovskite light absorbing layer;
第四步,在由致密二氧化钛构成的电子传输层上制备背电极:The fourth step is to prepare the back electrode on the electron transport layer composed of dense titanium dioxide:
在上述第三步制备成的由致密二氧化钛构成的电子传输层上制备背电极,具体操作方法是采用如下两种方法中的任意一种:Prepare the back electrode on the electron transport layer made of dense titanium dioxide prepared in the third step above, and the specific operation method is to adopt any one of the following two methods:
A.磁控溅射方法:A. Magnetron sputtering method:
将上述第三步所制得制品的整体放置入超真空直流磁控溅射设备中,对第三步制备成的由致密二氧化钛构成的电子传输层进行镀膜,溅射靶采用质量百分比纯度>99.99%的铝、铜或银,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔内,在真空度为4.0×10-4Pa、氩气流量为20cm3/S、靶基距为10cm和工作电流为1A的条件下,溅射60~90min后,即在第三步制备成电子传输层上制备背电极上制备得铝、铜或银构成的薄层背电极或者栅线背电极;Place the whole of the product obtained in the third step above into an ultra-vacuum DC magnetron sputtering device, and coat the electron transport layer made of dense titanium dioxide prepared in the third step. The sputtering target adopts a mass percent purity >99.99 % aluminum, copper or silver, and Ar with a mass percent purity of 99.999% is passed into the sputtering chamber as a sputtering gas. The vacuum degree is 4.0×10 -4 Pa, the flow rate of argon gas is 20cm 3 /S, and the target substrate Under the conditions of distance of 10cm and working current of 1A, after sputtering for 60-90min, the third step is to prepare a thin-layer back electrode or grid line made of aluminum, copper or silver on the back electrode on the electron transport layer. back electrode;
B.热蒸镀方法:B. Thermal evaporation method:
将上述第三步所制得制品的整体放置入真空镀膜机中,对第三步制备成的由致密二氧化钛构成的电子传输层进行镀膜,在150~175V的电压下使用电阻丝加热真空镀膜机,在真空度为1×10-4Pa~8.0×10-4Pa和温度为室温至150℃条件下,用蒸发镀铝、铜或银的方法,蒸镀2~60秒,即在第三步制备成的由致密二氧化钛构成的电子传输层上制备得铝、铜或银构成的薄层背电极;Put the whole product prepared in the third step above into a vacuum coating machine, coat the electron transport layer made of dense titanium dioxide prepared in the third step, and use a resistance wire to heat the vacuum coating machine at a voltage of 150-175V , at a vacuum of 1×10 -4 Pa to 8.0×10 -4 Pa and a temperature of room temperature to 150°C, use the method of evaporating aluminum, copper or silver for 2 to 60 seconds, that is, in the third A thin-layer back electrode made of aluminum, copper or silver is prepared on the electron transport layer made of dense titanium dioxide prepared in one step;
至此,最终制得由透明导电基底、P型薄膜晶硅空穴传输层、钙钛矿光吸收层、由致密二氧化钛构成的电子传输层和背电极构成的薄膜晶硅钙钛矿异质结太阳电池。So far, a thin-film crystalline silicon perovskite heterojunction solar cell consisting of a transparent conductive substrate, a P-type thin-film crystalline silicon hole transport layer, a perovskite light absorbing layer, an electron transport layer made of dense titanium dioxide, and a back electrode has finally been obtained. Battery.
上述薄膜晶硅钙钛矿异质结太阳电池的制备方法,所述透明导电基底为以玻璃为基底的AZO、ITO或FTO透明氧化物导电层。In the preparation method of the above-mentioned thin-film crystalline silicon perovskite heterojunction solar cell, the transparent conductive substrate is an AZO, ITO or FTO transparent oxide conductive layer based on glass.
上述薄膜晶硅钙钛矿异质结太阳电池的制备方法,其中所涉及的原材料、设备和工艺操作方法均是公知的。The preparation method of the above-mentioned thin-film crystalline silicon perovskite heterojunction solar cell, the raw materials, equipment and process operation methods involved are all known.
本发明的有益效果是:与现有技术相比,本发明的突出的实质性特点在于如下:The beneficial effects of the present invention are: compared with prior art, the outstanding substantive features of the present invention are as follows:
(1)本发明的薄膜晶硅钙钛矿异质结太阳电池及其制备方法与CN201410568822.X公开的全固态钙钛矿微晶硅复合太阳电池及其制备方法相比,实质性的区别技术特征是:,CN201410568822.X采用微晶硅薄膜层为空穴传输层,而本发明采用晶硅薄膜为空穴传输层。微晶硅本质上是微小硅晶体颗粒与非晶态硅的混合相,微小硅晶体颗粒表面、晶粒之间的晶界及非晶态硅中存在着大量的缺陷、悬挂键。而晶硅是硅原子规则排列,具有基本完整的点阵结构的晶体,其内部基本没有缺陷、晶界。由于微晶硅薄膜内部存在远多于晶硅薄膜的大量晶界、悬挂键等缺陷,微晶硅空穴传输层内部的载流子复合显著高于晶硅材料,所以导致CN201410568822.X电池性能弱于本发明的采用薄膜晶硅材料为空穴传输层的电池。采用薄膜晶硅空穴层替代微晶硅空穴层的难点在于设计与钙钛矿材料工艺匹配、性能匹配和成本匹配的薄膜晶硅工艺。首先,传统的晶体硅材料通过高纯多晶硅原料在1450摄氏度高温条件下才把液硅原子无序排列转换为有序规则排列,而1450摄氏度高温远高于钙钛矿材料200摄氏度左右的稳定温度,阻碍了将晶硅引入钙钛矿电池。第二,机械切割的单晶硅材料获得晶硅薄膜的方法受到硅材料自身脆性和金刚砂线强度的限制,无法经济地得到厚度小于150微米的晶硅片,而将厚度大于150微米的晶硅片应用于钙钛矿电池空穴传输层,既因为载流子在硅片中输运距离过长而大量复合从而器件性能急剧下降甚至无法实现光电转化,又因为所耗硅材料与传统晶体硅电池相当而使其不具备成本价值。本发明的发明人团队为了克服CN201410568822.X的技术所存在的缺陷做了艰辛的研究,精心的设计和大量实验,才成功的得到了与钙钛矿材料工艺匹配、晶硅厚度远小于150um而性能匹配、成本匹配的薄膜晶硅钙钛矿异质结太阳电池及其制备方法。上述区别技术特征证明本发明与现有技术CN201410568822.X相比,具有突出的实质性特点和显著进步。(1) Compared with the all-solid-state perovskite microcrystalline silicon composite solar cell and its preparation method disclosed in CN201410568822.X, the thin-film crystalline silicon perovskite heterojunction solar cell and its preparation method are substantially different technologies The feature is: CN201410568822.X adopts the microcrystalline silicon thin film layer as the hole transport layer, while the present invention adopts the crystal silicon thin film as the hole transport layer. Microcrystalline silicon is essentially a mixed phase of tiny silicon crystal particles and amorphous silicon. There are a large number of defects and dangling bonds on the surface of tiny silicon crystal particles, the grain boundaries between crystal grains, and amorphous silicon. Crystalline silicon is a crystal in which silicon atoms are regularly arranged and has a basically complete lattice structure, and there are basically no defects or grain boundaries inside. Because there are a large number of defects such as grain boundaries and dangling bonds in the microcrystalline silicon film that are much more than those in the crystalline silicon film, the carrier recombination in the microcrystalline silicon hole transport layer is significantly higher than that of the crystalline silicon material, so the performance of the CN201410568822.X battery It is weaker than the battery using thin-film crystalline silicon material as the hole transport layer of the present invention. The difficulty of using a thin-film crystalline silicon hole layer to replace a microcrystalline silicon hole layer is to design a thin-film crystalline silicon process that matches the process, performance, and cost of perovskite materials. First of all, the traditional crystalline silicon material converts the disordered arrangement of liquid silicon atoms into an ordered and regular arrangement through high-purity polysilicon raw materials at a high temperature of 1450 degrees Celsius, and the high temperature of 1450 degrees Celsius is much higher than the stable temperature of perovskite materials at about 200 degrees Celsius , hindering the introduction of crystalline silicon into perovskite cells. Second, the method of obtaining crystalline silicon thin films from mechanically cut monocrystalline silicon materials is limited by the brittleness of the silicon material itself and the strength of the corundum wire, and it is impossible to economically obtain crystalline silicon wafers with a thickness of less than 150 microns. Chips are used in the hole transport layer of perovskite cells, because the carrier transport distance in the silicon chip is too long and recombined in large quantities, so the performance of the device drops sharply and even the photoelectric conversion cannot be realized, and because the silicon material consumed is different from that of traditional crystalline silicon Batteries are so comparable that it doesn't have cost value. In order to overcome the defects of the technology of CN201410568822.X, the team of inventors of the present invention has done arduous research, careful design and a large number of experiments, and successfully obtained the technology matching with perovskite material, and the thickness of crystalline silicon is far less than 150um. Thin film crystalline silicon perovskite heterojunction solar cell with matching performance and cost and preparation method thereof. The above distinguishing technical features prove that the present invention has outstanding substantive features and significant progress compared with the prior art CN201410568822.X.
(2)本发明与现有的平面钙钛矿型太阳电池和薄膜晶硅太阳电池结构不同。现有的平面钙钛矿型太阳电池的结构为:①透明导电基底,②由致密二氧化钛构成的电子传输层,③钙钛矿层,④有机空穴传输层,⑤背电极。这五部分叠加在一起,就构成了钙钛矿型太阳电池;现有的晶硅薄膜太阳电池的结构:①P型晶硅薄膜层,②I型(本征层)非晶硅薄膜层,③N型非晶硅薄膜层,这三层叠加在一起,并在薄膜两侧分别镀上导电的银栅线和铜或铝等薄膜构成的导电基底后,就构成晶硅薄膜太阳电池;现有的钙钛矿微晶硅太阳电池的结构为:①透明导电基底,②由致密二氧化钛构成的电子传输层,③钙钛矿层,④微晶硅空穴传输层,⑤背电极。这五部分叠加在一起,就构成了钙钛矿微晶硅太阳电池;而本发明的薄膜晶硅钙钛矿型太阳电池的结构为:①透明导电基底,②P型薄膜晶硅空穴传输层,③钙钛矿光吸收层,④由致密二氧化钛构成的电子传输层,⑤背电极。这五部分相互匹配复合在一起,特别是钙钛矿光吸收层和P型薄膜晶硅空穴传输层结合成为薄膜晶硅钙钛矿异质结薄膜,由此构成了本发明的薄膜晶硅钙钛矿异质结太阳电池。(2) The present invention is different from the existing planar perovskite solar cells and thin-film crystalline silicon solar cells in structure. The structure of the existing planar perovskite solar cells is: ① transparent conductive substrate, ② electron transport layer composed of dense titanium dioxide, ③ perovskite layer, ④ organic hole transport layer, ⑤ back electrode. These five parts are stacked together to form a perovskite solar cell; the structure of the existing crystalline silicon thin film solar cell: ①P-type crystalline silicon thin film layer, ②I-type (intrinsic layer) amorphous silicon thin film layer, ③N-type Amorphous silicon thin film layer, these three layers are stacked together, and after the conductive silver grid wire and the conductive substrate composed of thin films such as copper or aluminum are plated on both sides of the film, a crystalline silicon thin film solar cell is formed; the existing calcium The structure of titanium ore microcrystalline silicon solar cells is: ① transparent conductive substrate, ② electron transport layer composed of dense titanium dioxide, ③ perovskite layer, ④ microcrystalline silicon hole transport layer, ⑤ back electrode. These five parts are stacked together to form a perovskite microcrystalline silicon solar cell; and the structure of the thin-film crystalline silicon perovskite solar cell of the present invention is: ① transparent conductive substrate, ② P-type thin-film crystalline silicon hole transport layer , ③ perovskite light absorbing layer, ④ electron transport layer composed of dense titanium dioxide, ⑤ back electrode. These five parts are matched and compounded together, especially the perovskite light absorbing layer and the P-type thin film crystalline silicon hole transport layer are combined to form a thin film crystalline silicon perovskite heterojunction film, thus forming the thin film crystalline silicon of the present invention Perovskite heterojunction solar cells.
(3)寻找和开发适宜的空穴传输层材料是钙钛矿型太阳电池发展的重要一步,然而适用于钙钛矿型太阳电池空穴传输层的材料需要具有与钙钛矿光吸收层材料的最高分子占据轨道(简称HOMO)和最低分子未占据空轨道(简称LUMO)相匹配的导价带能级位置,以实现载流子输运,还需要具有在室外运行的长期稳定性以及低廉的成本,目前要制备符合这种要求的材料很困难。本发明将钙钛矿光吸收层材料和P型薄膜晶硅空穴传输层材料结合制得薄膜晶硅钙钛矿异质结薄膜,具备了能级匹配的性能,而且既利用了钙钛矿光吸收层的低廉成本和优异的光吸收、光电转换性能,获得低成本光吸收层,又吸取了P型薄膜晶硅成熟稳定的特性,具有开拓低价高效新型太阳电池实用化的突出的实质性特点。(3) Finding and developing a suitable material for the hole transport layer is an important step in the development of perovskite solar cells. The highest molecular occupied orbital (abbreviated as HOMO) and the lowest molecular unoccupied unoccupied orbital (abbreviated as LUMO) match the conduction band energy level position to realize carrier transport, and it also needs to have long-term stability in outdoor operation and low cost. At present, it is very difficult to prepare materials that meet this requirement. The present invention combines the perovskite light absorbing layer material and the P-type thin film crystalline silicon hole transport layer material to prepare a thin film crystalline silicon perovskite heterojunction film, which has the performance of energy level matching, and not only utilizes perovskite The low cost and excellent light absorption and photoelectric conversion performance of the light absorption layer, the low-cost light absorption layer is obtained, and the mature and stable characteristics of P-type thin film silicon are absorbed, which has the outstanding essence of developing low-cost and high-efficiency new solar cells for practical use sexual characteristics.
(4)现有技术中,晶硅薄膜太阳电池采用晶硅薄膜为光吸收层,存在着晶硅薄膜厚度与电池性能的矛盾。由于晶硅材料光吸收系数低,晶硅薄膜的厚度较薄时,光吸收不足;而晶硅薄膜的厚度较厚时,则无法实现晶硅薄膜太阳电池的成本显著低于传统单晶硅及多晶硅太阳电池。此外,晶硅薄膜太阳电池采用非晶硅薄膜作为电池的发射极,则进一步加大了整体制备成本,而且由于非晶硅薄膜内部存在大量悬挂键等缺陷,导致这种电池光电转化性能相对体硅电池较差。而本发明以钙钛矿材料为光吸收层,由光吸收能力数十倍于晶硅材料的钙钛矿材料实现光吸收的功能,而晶硅薄膜仅承担隔绝电子传输空穴的作用,所以本发明中的晶硅材料的用量远低于晶硅薄膜太阳电池。(4) In the prior art, the crystalline silicon thin film solar cell uses the crystalline silicon thin film as the light absorbing layer, and there is a contradiction between the thickness of the crystalline silicon thin film and the performance of the battery. Due to the low light absorption coefficient of crystalline silicon materials, when the thickness of crystalline silicon film is thin, the light absorption is insufficient; and when the thickness of crystalline silicon film is thick, the cost of crystalline silicon thin film solar cells is significantly lower than that of traditional single crystal silicon and solar cells. Polycrystalline silicon solar cells. In addition, crystalline silicon thin film solar cells use amorphous silicon thin film as the emitter of the cell, which further increases the overall manufacturing cost, and because there are a large number of dangling bonds and other defects in the amorphous silicon thin film, the photoelectric conversion performance of this cell is relatively low. Silicon cells are inferior. In the present invention, the perovskite material is used as the light-absorbing layer, and the light-absorbing function is realized by the perovskite material whose light-absorbing ability is tens of times that of the crystalline silicon material, and the crystalline silicon film only undertakes the function of isolating electrons and transporting holes, so The amount of crystalline silicon material used in the present invention is much lower than that of crystalline silicon thin film solar cells.
与现有技术相比,本发明的显著进步在于:将钙钛矿光吸收层材料和P型薄膜晶硅材料相互匹配复合,所制得的薄膜晶硅钙钛矿型太阳电池克服了现有钙钛矿型太阳电池因使用有机空穴传输材料而存在的稳定性差和价格昂贵的缺点,又克服了薄膜晶硅太阳电池以晶硅材料为光吸收层存在光吸收系数低的缺点;同时,相对于钙钛矿微晶硅太阳电池,本发明的太阳电池及其制备技术采用薄膜晶硅为电池中的空穴传输材料,其载流子复合显著优于微晶硅材料,而且因其为薄膜化的晶硅,所以具有低成本优点,具体体现如下:Compared with the prior art, the remarkable progress of the present invention lies in: the perovskite light absorbing layer material and the P-type thin film crystalline silicon material are matched and compounded, and the obtained thin film crystalline silicon perovskite solar cell overcomes the existing Perovskite-type solar cells have the disadvantages of poor stability and high price due to the use of organic hole transport materials, and overcome the disadvantages of low light absorption coefficient of thin-film crystalline silicon solar cells with crystalline silicon materials as the light-absorbing layer; at the same time, Compared with the perovskite microcrystalline silicon solar cell, the solar cell and its preparation technology of the present invention use thin-film crystalline silicon as the hole transport material in the cell, and its carrier recombination is significantly better than that of the microcrystalline silicon material, and because it is Thin-filmed crystalline silicon has the advantage of low cost, which is embodied as follows:
(1)本发明薄膜晶硅钙钛矿异质结太阳电池稳定性好:(1) The thin film crystalline silicon perovskite heterojunction solar cell of the present invention has good stability:
目前报道的最高效率的钙钛矿型太阳电池都基于有机空穴传输材料。本发明的采用的成熟稳定的薄膜晶硅层来替代目前报道的各种有机空穴传输材料,其优点是:薄膜晶硅材料成熟稳定,已成功应用于薄膜晶硅太阳电池等,因此避免了有机物氧化、还原和分解对钙钛矿型太阳电池的稳定工作寿命的影响。因此本发明的薄膜晶硅钙钛矿微晶硅复合薄膜太阳电池及其制备方法的优点之一在于:延长了钙钛矿型太阳电池工作寿命,降低了电池的效率衰减。The highest efficiency perovskite solar cells reported so far are all based on organic hole transport materials. The mature and stable thin film crystalline silicon layer of the present invention is used to replace various organic hole transport materials currently reported, and its advantages are: the thin film crystalline silicon material is mature and stable, and has been successfully applied to thin film crystalline silicon solar cells, etc. Effects of organic oxidation, reduction and decomposition on the stable working life of perovskite solar cells. Therefore, one of the advantages of the thin film crystalline silicon perovskite microcrystalline silicon composite thin film solar cell and the preparation method thereof of the present invention is that the working life of the perovskite solar cell is prolonged and the efficiency attenuation of the cell is reduced.
(2)本发明薄膜晶硅钙钛矿异质结太阳电池的制备速率高,制备成本低:(2) The preparation rate of the thin film crystalline silicon perovskite heterojunction solar cell of the present invention is high, and the preparation cost is low:
如上背景技术部分所述,目前制约薄膜晶硅太阳电池的最重要因素是由于作为光吸收层的晶硅材料光吸收系数低,为保证光吸收,薄膜晶硅太阳电池的厚度仍需要在数十微米以上。而本发明薄膜晶硅钙钛矿异质结太阳电池以钙钛矿层为光吸收层,所需薄膜晶硅空穴传输层的厚度大为减少,显著地降低了使用硅材料用量;又相对于晶硅光吸收层材料,钙钛矿光吸收层为溶液低温制备,制备速度快和制备成本低。本发明所使用的薄膜晶硅材料与传统钙钛矿型太阳电池中使用的价格比金、铂还昂贵的2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(简称SpiroOMeTAD)、聚合3-己基噻吩(简称P3HT)和富勒烯衍生物(简称PCBM)几种有机空穴传输材料相比,具有很大的成本优势。因此,本发明薄膜晶硅钙钛矿异质结太阳电池及其制备方法的又一个优点是:制备速率高,制备成本低。As mentioned in the background technology section above, the most important factor restricting thin-film crystalline silicon solar cells is the low light absorption coefficient of the crystalline silicon material used as the light-absorbing layer. In order to ensure light absorption, the thickness of thin-film crystalline silicon solar cells still needs to be within tens of Micron or more. However, the thin film crystalline silicon perovskite heterojunction solar cell of the present invention uses the perovskite layer as the light absorbing layer, and the thickness of the required thin film crystalline silicon hole transport layer is greatly reduced, which significantly reduces the amount of silicon material used; The crystalline silicon light absorbing layer material and the perovskite light absorbing layer are prepared by solution at low temperature, and the preparation speed is fast and the preparation cost is low. The thin-film crystalline silicon material used in the present invention is different from the 2,2',7,7'-tetrakis[N,N-bis(4-methoxy], which is more expensive than gold and platinum used in traditional perovskite solar cells. phenyl)amino]-9,9'-spirobifluorene (SpiroOMeTAD for short), polymerized 3-hexylthiophene (P3HT for short) and fullerene derivatives (PCBM for short) compared with several organic hole transport materials, which have Great cost advantage. Therefore, another advantage of the thin-film crystalline silicon perovskite heterojunction solar cell and the preparation method thereof of the present invention is that the preparation rate is high and the preparation cost is low.
(3)本发明薄膜晶硅钙钛矿异质结太阳电池的光电转化性能好:(3) The photoelectric conversion performance of the thin film crystalline silicon perovskite heterojunction solar cell of the present invention is good:
本发明薄膜晶硅钙钛矿异质结太阳电池中的P型薄膜晶硅具有与钙钛矿光吸收层材料的最高分子占据轨道的能级位置(-5.43电子伏特)和最低分子未占据空轨道的能级(-3.93电子伏特)相匹配的导价带能级位置(分别为-5.328电子伏特和-4.17电子伏特),实现载流子输运和最终光电转化,而且相对于使用微晶硅层材料,晶硅材料的载流子复合更少。因此,本发明的薄膜晶硅钙钛矿型太阳电池及其制备方法的再一个优点是:光电转化性能好。The P-type thin film crystalline silicon in the thin film crystalline silicon perovskite heterojunction solar cell of the present invention has the energy level position (-5.43 electron volts) of the highest molecule occupied orbital and the lowest molecular unoccupied space of the perovskite light absorbing layer material. The energy level of the orbital (-3.93 eV) matches the position of the conduction band energy level (respectively -5.328 eV and -4.17 eV), to achieve carrier transport and final photoelectric conversion, and compared to the use of microcrystalline Silicon layer materials, crystalline silicon materials have less carrier recombination. Therefore, another advantage of the thin film crystalline silicon perovskite solar cell and its preparation method of the present invention is that it has good photoelectric conversion performance.
附图说明Description of drawings
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1是本发明薄膜晶硅钙钛矿型太阳电池的结构示意图。Fig. 1 is a schematic structural view of a thin film crystalline silicon perovskite solar cell of the present invention.
图中,1.透明导电基底,2.P型薄膜晶硅空穴传输层,3.钙钛矿光吸收层,4.由致密二氧化钛构成的电子传输层,5.背电极。In the figure, 1. Transparent conductive substrate, 2. P-type thin film crystalline silicon hole transport layer, 3. Perovskite light absorption layer, 4. Electron transport layer made of dense titanium dioxide, 5. Back electrode.
具体实施方式detailed description
图1所示实施例表明,薄膜晶硅钙钛矿异质结太阳电池,由透明导电基底1、P型薄膜晶硅空穴传输层2、钙钛矿光吸收层3、由致密二氧化钛构成的电子传输层4和背电极5构成。入射光依次射入透明导电基底1、P型薄膜晶硅空穴传输层2、钙钛矿光吸收层3和由致密二氧化钛构成的电子传输层4,形成光电流,由此产生的电流可以从背电极5和透明导电基底1输出。The embodiment shown in Figure 1 shows that the thin-film crystalline silicon perovskite heterojunction solar cell consists of a transparent conductive substrate 1, a P-type thin-film crystalline silicon hole transport layer 2, a perovskite light absorption layer 3, and a solar cell made of dense titanium dioxide. The electron transport layer 4 and the back electrode 5 constitute. The incident light enters the transparent conductive substrate 1, the P-type thin-film crystalline silicon hole transport layer 2, the perovskite light absorption layer 3 and the electron transport layer 4 composed of dense titanium dioxide in sequence to form a photocurrent, and the resulting current can be obtained from The back electrode 5 and the transparent conductive substrate 1 output.
实施例1Example 1
第一步,制备在透明导电基底上的P型薄膜晶硅空穴传输层:The first step is to prepare a P-type thin film crystalline silicon hole transport layer on a transparent conductive substrate:
以背面镀有一层耐腐蚀金属的P型单晶硅片作为阳极,以铂作为阴极,在体积比氢氟酸∶无水乙醇=1∶1的氢氟酸乙醇溶液中,通以大小为1A的电流进行阳极氧化,通过电化学法腐蚀P型单晶硅片,在单晶硅片表面形成多孔硅结构,然后将该形成多孔硅结构的单晶硅片在H2气氛下200℃至550℃退火,退火过程中该单晶硅片表层小孔隙率层的孔洞会逐渐闭合形成准单晶层作为外延器件的模板,利用低压力化学气相沉积法在该准单晶层上外延成为P型薄膜晶硅薄膜,将所形成的P型晶硅薄膜从单晶硅片上转移到以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上,由此制备成在透明导电基底上的P型薄膜晶硅空穴传输层;Use a P-type single crystal silicon wafer coated with a layer of corrosion-resistant metal on the back as the anode, and use platinum as the cathode. Anodic oxidation is carried out by an electric current, and the P - type single crystal silicon wafer is corroded by an electrochemical method to form a porous silicon structure on the surface of the single crystal silicon wafer. ℃ annealing, during the annealing process, the pores of the small porosity layer on the surface of the single crystal silicon wafer will gradually close to form a quasi-single crystal layer as a template for epitaxial devices, and the quasi-single crystal layer is epitaxially formed on the quasi-single crystal layer to become P-type by low-pressure chemical vapor deposition. Thin-film crystalline silicon film, the formed P-type crystalline silicon film is transferred from a single crystal silicon wafer to a transparent conductive substrate composed of a glass-based AZO transparent oxide conductive layer, and thus prepared on a transparent conductive substrate P-type thin film crystalline silicon hole transport layer;
第二步,在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层:The second step is to spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer:
在上述第一步制得的在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,采用以下步骤:Spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of glass-based AZO transparent oxide conductive layer formed in the first step above, and adopt the following steps:
A.单一旋涂法:A. Single spin coating method:
A-1.CH3NH3Cl的制备:A-1. Preparation of CH 3 NH 3 Cl:
制备CH3NH3Cl的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的氯化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的氯化氢溶液=2∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌1.5h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3Cl;The raw material for preparing CH 3 NH 3 Cl is that the mass percentage concentration is 33% methylamine ethanol solution and the mass percentage concentration is 57% hydrogen chloride solution, and the mass percentage concentration is 33% methylamine ethanol solution by volume ratio: mass percentage concentration 57% hydrogen chloride solution = 2:1, put the two solutions into a 250mL round-bottomed flask after mixing, and stir continuously with a constant temperature magnetic stirrer for 1.5h at 0°C. After the stirring is completed, use a rotary evaporation The solvent was removed by rotary evaporation at 50°C, and the obtained white solid was washed three times with ether. The specific cleaning steps were as follows: first re-dissolve all the white solid obtained above in ethanol, and then continuously add dry ether to precipitate the precipitate. This process was repeated twice, and finally the obtained white solid was put into a vacuum drying oven, and dried at 60°C and a vacuum degree of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 Cl;
A-2.成分为CH3NH3PbCl3的钙钛矿前驱溶液的制备:A-2. Preparation of perovskite precursor solution whose composition is CH 3 NH 3 PbCl 3 :
将摩尔比为质量百分比为99.999%的PbCl2∶上述A-1步制得的CH3NH3Cl=1:3混合,并溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中得到溶液A-2,其中PbCl2的浓度为0.5M,CH3NH3Cl的浓度为1M,在室温下,将上述溶液A-2用磁力搅拌器搅拌12h,制得成分为CH3NH3PbCl3的钙钛矿前驱溶液,待用;Mix the molar ratio of PbCl 2 with a mass percentage of 99.999%: CH 3 NH 3 Cl obtained in the above step A-1 = 1:3, and dissolve it in N,N-dimethylformaldehyde with a mass percentage of 99.9% purity A solution A-2 was obtained in the amide, wherein the concentration of PbCl 2 was 0.5M, and the concentration of CH 3 NH 3 Cl was 1M. At room temperature, the above solution A-2 was stirred with a magnetic stirrer for 12h, and the obtained component was CH 3 The perovskite precursor solution of NH 3 PbCl 3 , stand-by;
A-3.在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层的湿膜:A-3. Wet film of spin-coated perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate:
将第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层整体放到旋涂仪上,其中P型薄膜晶硅空穴传输层在上,取所需量的由上述A-2步制得的成分为CH3NH3PbCl3的钙钛矿前驱溶液旋涂到P型薄膜晶硅空穴传输层上,将旋涂仪转速加速到6000rpm并保持这样的转速旋涂10s,在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂上钙钛矿光吸收层的湿膜;Put the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate prepared in the first step as a whole on a spin coater, wherein the P-type thin-film crystalline silicon hole-transport layer is on top, and take the required amount of the above-mentioned The perovskite precursor solution whose composition is CH 3 NH 3 PbCl 3 prepared in step A-2 is spin-coated on the P-type thin-film crystalline silicon hole transport layer, and the speed of the spin coater is accelerated to 6000rpm and maintained at this speed for spin coating 10s, spin-coat the wet film of the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of AZO transparent oxide conductive layer based on glass;
A-4.热处理:A-4. Heat treatment:
将上述A-3步制得的在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂上钙钛矿光吸收层的湿膜的整体放入到烘箱中进行热处理,先在90℃下热处理0.5h,再加热至100℃并保温25min,由此在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,该钙钛矿光吸收层的厚度为10nm,并且在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层与钙钛矿光吸收层形成薄膜晶硅钙钛矿异质结;Spin-coat the wet film of the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of the AZO transparent oxide conductive layer based on glass, which is obtained in the above A-3 step Put the whole into an oven for heat treatment, first heat treatment at 90°C for 0.5h, then heat to 100°C and keep it warm for 25min, so that the perovskite light absorbing layer is spin-coated on the P-type thin film crystalline silicon hole transport layer, The thickness of the perovskite light-absorbing layer is 10nm, and the P-type thin-film crystalline silicon hole transport layer and the perovskite light-absorbing layer on the transparent conductive substrate made of glass-based AZO transparent oxide conductive layer form a thin film Crystalline silicon perovskite heterojunction;
第三步,在钙钛矿光吸收层上制作由致密二氧化钛构成的电子传输层:The third step is to fabricate an electron transport layer made of dense titanium dioxide on the perovskite light absorbing layer:
将上述第二步所制得制品的整体放置入磁控溅射设备中,通过磁控溅射法在钙钛矿光吸收层上制备由致密二氧化钛构成的电子传输层,具体操作方法是:靶材为纯度质量百分比99.99%的TiO2靶,靶直径为60mm,厚度为5mm,溅射前,用高纯氩气对磁控溅射设备腔体进行5min清洗,然后抽真空,本底真空为4.0×10-3Pa,随后依次通入氩气和氧气,通过调节流量控制氩气和氧气的体积比为9∶1,总压强保持为2.0Pa,溅射功率为80W,溅射时间为4h,生长结束后再经过70℃的退火处理,由此在钙钛矿光吸收层上制得由致密二氧化钛构成的电子传输层;Place the entire product obtained in the second step above into a magnetron sputtering device, and prepare an electron transport layer composed of dense titanium dioxide on the perovskite light-absorbing layer by magnetron sputtering. The specific operation method is: target The material is a TiO2 target with a purity mass percentage of 99.99%. The target diameter is 60 mm and the thickness is 5 mm. 4.0×10 -3 Pa, followed by argon and oxygen, the volume ratio of argon and oxygen is controlled to be 9:1 by adjusting the flow rate, the total pressure is kept at 2.0Pa, the sputtering power is 80W, and the sputtering time is 4h After the growth is completed, annealing at 70°C is performed to prepare an electron transport layer composed of dense titanium dioxide on the perovskite light absorbing layer;
第四步,在由致密二氧化钛构成的电子传输层上制备背电极:The fourth step is to prepare the back electrode on the electron transport layer composed of dense titanium dioxide:
在上述第三步制备成的由致密二氧化钛构成的电子传输层上制备背电极,具体操作方法是采用如下方法:Prepare the back electrode on the electron transport layer made of dense titanium dioxide prepared in the third step above, and the specific operation method is as follows:
A.磁控溅射方法:A. Magnetron sputtering method:
将上述第三步所制得制品的整体放置入超真空直流磁控溅射设备中,不使用掩模版,对第三步制备成的由致密二氧化钛构成的电子传输层进行镀膜,溅射靶采用质量百分比纯度>99.99%的铝,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔内,在真空度为4.0×10-4Pa、氩气流量为20cm3/S、靶基距为10cm和工作电流为1A的条件下,溅射60min后,即在第三步制备成电子传输层上制备背电极上制备得铝构成的薄层背电极;Place the whole of the product obtained in the third step above into an ultra-vacuum DC magnetron sputtering device, without using a mask, and coat the electron transport layer made of dense titanium dioxide prepared in the third step. The sputtering target adopts Aluminum with a mass percentage purity >99.99%, and Ar with a mass percentage purity of 99.999 % are passed into the sputtering chamber as a sputtering gas. Under the conditions of a base distance of 10 cm and an operating current of 1 A, after sputtering for 60 minutes, a thin-layer back electrode made of aluminum is prepared on the electron transport layer and on the back electrode in the third step;
至此,最终制得由以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底、P型薄膜晶硅空穴传输层、钙钛矿光吸收层、由致密二氧化钛构成的电子传输层和铝构成的薄层背电极构成的薄膜晶硅钙钛矿异质结太阳电池。So far, a transparent conductive substrate composed of a glass-based AZO transparent oxide conductive layer, a P-type thin-film crystalline silicon hole transport layer, a perovskite light absorption layer, an electron transport layer composed of dense titanium dioxide and aluminum A thin-film crystalline silicon perovskite heterojunction solar cell composed of a thin-layer back electrode.
实施例2Example 2
第一步,制备在透明导电基底上的P型薄膜晶硅空穴传输层:The first step is to prepare a P-type thin film crystalline silicon hole transport layer on a transparent conductive substrate:
以背面镀有一层耐腐蚀金属的P型单晶硅片作为阳极,以铂作为阴极,在体积比氢氟酸∶无水乙醇=1∶1的氢氟酸乙醇溶液中,通以大小为4.5A的电流进行阳极氧化,通过电化学法腐蚀P型单晶硅片,在单晶硅片表面形成多孔硅结构,然后将该形成多孔硅结构的单晶硅片在H2气氛下200℃至550℃退火,退火过程中该单晶硅片表层小孔隙率层的孔洞会逐渐闭合形成准单晶层作为外延器件的模板,利用低压力化学气相沉积法在该准单晶层上外延成为P型薄膜晶硅薄膜,将所形成的P型晶硅薄膜从单晶硅片上转移到以玻璃为基底的ITO透明氧化物导电层构成的透明导电基底上,由此制备成在透明导电基底上的P型薄膜晶硅空穴传输层;With a P-type single crystal silicon wafer coated with a layer of corrosion-resistant metal on the back as the anode and platinum as the cathode, in a hydrofluoric acid ethanol solution with a volume ratio of hydrofluoric acid: absolute ethanol = 1:1, the size is 4.5 The current of A is used for anodic oxidation, and the P - type single crystal silicon wafer is corroded by an electrochemical method to form a porous silicon structure on the surface of the single crystal silicon wafer. Annealing at 550°C. During the annealing process, the holes in the small porosity layer on the surface of the single crystal silicon wafer will gradually close to form a quasi-single crystal layer as a template for epitaxial devices. The quasi-single crystal layer is epitaxially formed on the quasi-single crystal layer to form P Type thin-film crystalline silicon film, the formed P-type crystalline silicon film is transferred from a single crystal silicon wafer to a transparent conductive substrate composed of a glass-based ITO transparent oxide conductive layer, thus being prepared on a transparent conductive substrate P-type thin film crystalline silicon hole transport layer;
第二步,在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层:The second step is to spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer:
在上述第一步制得的在以玻璃为基底的ITO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,采用以下步骤:Spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of the glass-based ITO transparent oxide conductive layer formed in the first step above, and adopt the following steps:
A.单一旋涂法:A. Single spin coating method:
A-1.CH3NH3I的制备:A-1. Preparation of CH 3 NH 3 I:
制备CH3NH3I的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的碘化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的碘化氢溶液=2.5∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌1.8h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3I;The raw material for preparing CH 3 NH 3 I is that the mass percentage concentration is 33% methylamine ethanol solution and the mass percentage concentration is 57% hydrogen iodide solution, and the mass percentage concentration is 33% methylamine ethanol solution by volume ratio: mass The hydrogen iodide solution with a percentage concentration of 57% = 2.5: 1, put the two solutions into a 250mL round-bottomed flask after mixing, and stir continuously with a constant temperature magnetic stirrer for 1.8h at 0°C, and the stirring is completed Finally, use a rotary evaporator to remove the solvent by rotary evaporation at 50°C, and wash the obtained white solid with ether three times. The specific cleaning steps are: first re-dissolve all the white solid obtained above in ethanol, and then continuously add dry ether. Precipitate was precipitated, and this process was repeated twice. Finally, the obtained white solid was put into a vacuum drying oven, and dried at 60°C and a vacuum degree of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 I;
A-2.成分为CH3NH3PbI3的钙钛矿前驱溶液的制备:A-2. Preparation of perovskite precursor solution whose composition is CH 3 NH 3 PbI 3 :
将摩尔比为质量百分比为99.999%的PbI2∶上述A-1步制得的CH3NH3I=1:3混合,并溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中得到溶液A-2,其中PbI2的浓度为0.8M,CH3NH3I的浓度为1.8M,在室温下,将上述溶液A-2用磁力搅拌器搅拌12h,制得成分为CH3NH3PbI3的钙钛矿前驱溶液,待用;Mix the molar ratio of PbI 2 with a mass percentage of 99.999%: CH 3 NH 3 I obtained in the above step A-1 = 1:3, and dissolve it in N,N-dimethylformaldehyde with a mass percentage of 99.9% purity The solution A-2 was obtained in the amide, wherein the concentration of PbI 2 was 0.8M, and the concentration of CH 3 NH 3 I was 1.8M. At room temperature, the above solution A-2 was stirred with a magnetic stirrer for 12h, and the obtained component was CH The perovskite precursor solution of 3 NH 3 PbI 3 , stand-by;
A-3.在以玻璃为基底的ITO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层的湿膜:A-3. Spin-coat the wet film of the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of glass-based ITO transparent oxide conductive layer:
将第一步制得的在以玻璃为基底的ITO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层整体放到旋涂仪上,其中P型薄膜晶硅空穴传输层在上,取所需量的由上述A-2步制得的成分为CH3NH3PbI3的钙钛矿前驱溶液旋涂到P型薄膜晶硅空穴传输层上,将旋涂仪转速加速到6000rpm并保持这样的转速旋涂15s,在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂上钙钛矿光吸收层的湿膜;Put the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of glass-based ITO transparent oxide conductive layer as a whole on the spin coater, wherein the P-type thin-film crystalline silicon holes On the hole transport layer, take the required amount of the perovskite precursor solution with the composition of CH 3 NH 3 PbI 3 prepared in the above step A-2 and spin-coat it on the P-type thin film crystalline silicon hole transport layer. Accelerate the rotation speed of the coating instrument to 6000rpm and maintain this rotation speed for 15s, and spin-coat the wet film of the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate;
A-4.热处理:A-4. Heat treatment:
将上述A-3步制得的在以玻璃为基底的ITO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂上钙钛矿光吸收层的湿膜的整体放入到烘箱中进行热处理,先在90℃下热处理0.8h,再加热至100℃并保温25min,由此在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,该钙钛矿光吸收层的厚度为500nm,并且在以玻璃为基底的ITO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层与钙钛矿光吸收层形成薄膜晶硅钙钛矿异质结;Spin-coat the wet film of the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of the ITO transparent oxide conductive layer based on the glass as the substrate in the above A-3 step Put the whole into an oven for heat treatment, first heat treatment at 90°C for 0.8h, then heat to 100°C and keep it warm for 25min, so that the perovskite light absorbing layer is spin-coated on the P-type thin film crystalline silicon hole transport layer, The thickness of the perovskite light-absorbing layer is 500nm, and the P-type thin-film crystalline silicon hole transport layer and the perovskite light-absorbing layer on the transparent conductive substrate made of glass-based ITO transparent oxide conductive layer form a thin film Crystalline silicon perovskite heterojunction;
第三步,在钙钛矿光吸收层上制作由致密二氧化钛构成的电子传输层:The third step is to fabricate an electron transport layer made of dense titanium dioxide on the perovskite light absorbing layer:
同实施例1;With embodiment 1;
第四步,在由致密二氧化钛构成的电子传输层上制备背电极:The fourth step is to prepare the back electrode on the electron transport layer composed of dense titanium dioxide:
在上述第三步制备成的由致密二氧化钛构成的电子传输层上制备背电极,具体操作方法是采用如下方法:Prepare the back electrode on the electron transport layer made of dense titanium dioxide prepared in the third step above, and the specific operation method is as follows:
A.磁控溅射方法:A. Magnetron sputtering method:
将上述第三步所制得制品的整体放置入超真空直流磁控溅射设备中,不使用掩模版,对第三步制备成的由致密二氧化钛构成的电子传输层进行镀膜,溅射靶采用质量百分比纯度>99.99%的铜,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔内,在真空度为4.0×10-4Pa、氩气流量为20cm3/S、靶基距为10cm和工作电流为1A的条件下,溅射75min后,即在第三步制备成电子传输层上制备背电极上制备得铜构成的薄层背电极;Place the whole of the product obtained in the third step above into an ultra-vacuum DC magnetron sputtering device, without using a mask, and coat the electron transport layer made of dense titanium dioxide prepared in the third step. The sputtering target adopts Copper with a mass percentage purity >99.99%, and Ar with a mass percentage purity of 99.999 % are passed into the sputtering chamber as the sputtering gas. The target Under the condition that the base distance is 10cm and the working current is 1A, after sputtering for 75min, the thin-layer back electrode made of copper is prepared on the back electrode on the electron transport layer in the third step;
至此,最终制得由以玻璃为基底的ITO透明氧化物导电层构成的透明导电基底、P型薄膜晶硅空穴传输层、钙钛矿光吸收层、由致密二氧化钛构成的电子传输层和铜构成的薄层背电极构成的薄膜晶硅钙钛矿异质结太阳电池。So far, a transparent conductive substrate composed of a glass-based ITO transparent oxide conductive layer, a P-type thin-film crystalline silicon hole transport layer, a perovskite light absorption layer, an electron transport layer composed of dense titanium dioxide and copper A thin-film crystalline silicon perovskite heterojunction solar cell composed of a thin-layer back electrode.
实施例3Example 3
第一步,制备在透明导电基底上的P型薄膜晶硅空穴传输层:The first step is to prepare a P-type thin film crystalline silicon hole transport layer on a transparent conductive substrate:
以背面镀有一层耐腐蚀金属的P型单晶硅片作为阳极,以铂作为阴极,在体积比氢氟酸∶无水乙醇=1∶1的氢氟酸乙醇溶液中,通以大小为7.5A的电流进行阳极氧化,通过电化学法腐蚀P型单晶硅片,在单晶硅片表面形成多孔硅结构,然后将该形成多孔硅结构的单晶硅片在H2气氛下200℃至550℃退火,退火过程中该单晶硅片表层小孔隙率层的孔洞会逐渐闭合形成准单晶层作为外延器件的模板,利用低压力化学气相沉积法在该准单晶层上外延成为P型薄膜晶硅薄膜,将所形成的P型晶硅薄膜从单晶硅片上转移到以玻璃为基底的FTO透明氧化物导电层构成的透明导电基底上,由此制备成在透明导电基底上的P型薄膜晶硅空穴传输层;With a P-type single crystal silicon wafer coated with a layer of corrosion-resistant metal on the back as the anode, and platinum as the cathode, in a hydrofluoric acid ethanol solution with a volume ratio of hydrofluoric acid: absolute ethanol = 1:1, a size of 7.5 The current of A is used for anodic oxidation, and the P - type single crystal silicon wafer is corroded by an electrochemical method to form a porous silicon structure on the surface of the single crystal silicon wafer. Annealing at 550°C. During the annealing process, the holes in the small porosity layer on the surface of the single crystal silicon wafer will gradually close to form a quasi-single crystal layer as a template for epitaxial devices. The quasi-single crystal layer is epitaxially formed on the quasi-single crystal layer to form P Type thin-film crystalline silicon film, the formed P-type crystalline silicon film is transferred from a single crystal silicon wafer to a transparent conductive substrate composed of a glass-based FTO transparent oxide conductive layer, thereby being prepared on a transparent conductive substrate P-type thin film crystalline silicon hole transport layer;
第二步,在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层:The second step is to spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer:
在上述第一步制得的在以玻璃为基底的FTO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,采用以下步骤:Spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of glass-based FTO transparent oxide conductive layer formed in the first step above, and adopt the following steps:
A.单一旋涂法:A. Single spin coating method:
A-1.CH3NH3Cl的制备:A-1. Preparation of CH 3 NH 3 Cl:
制备CH3NH3Cl的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的氯化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的氯化氢溶液=3∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌2h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3Cl;The raw material for preparing CH 3 NH 3 Cl is that the mass percentage concentration is 33% methylamine ethanol solution and the mass percentage concentration is 57% hydrogen chloride solution, and the mass percentage concentration is 33% methylamine ethanol solution by volume ratio: mass percentage concentration 57% hydrogen chloride solution = 3:1, put the two solutions into a 250mL round-bottomed flask after mixing, and stir continuously for 2 hours with a constant temperature magnetic stirrer at 0°C, and use a rotary evaporator after stirring The solvent was removed by rotary evaporation at 50°C, and the obtained white solid was washed three times with diethyl ether. The specific cleaning steps were: first redissolve all the white solid obtained above in ethanol, and then continuously add dry diethyl ether to precipitate the precipitate. The process was repeated twice, and finally the obtained white solid was put into a vacuum drying oven, and dried at 60°C and a vacuum degree of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 Cl;
A-2.成分为CH3NH3PbCl3的钙钛矿前驱溶液的制备:A-2. Preparation of perovskite precursor solution whose composition is CH 3 NH 3 PbCl 3 :
将摩尔比为质量百分比为99.999%的PbCl2∶上述A-1步制得的CH3NH3Cl=1:3混合,并溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中得到溶液A-2,其中PbCl2的浓度为1M,CH3NH3Cl的浓度为2.5M,在室温下,将上述溶液A-2用磁力搅拌器搅拌12h,制得成分为CH3NH3PbCl3的钙钛矿前驱溶液,待用;Mix the molar ratio of PbCl 2 with a mass percentage of 99.999%: CH 3 NH 3 Cl obtained in the above step A-1 = 1:3, and dissolve it in N,N-dimethylformaldehyde with a mass percentage of 99.9% purity A solution A-2 was obtained in the amide, wherein the concentration of PbCl 2 was 1M, and the concentration of CH 3 NH 3 Cl was 2.5M. At room temperature, the above solution A-2 was stirred with a magnetic stirrer for 12h, and the obtained component was CH 3 The perovskite precursor solution of NH 3 PbCl 3 , stand-by;
A-3.在以玻璃为基底的FTO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层的湿膜:A-3. Spin-coat the wet film of the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate composed of the glass-based FTO transparent oxide conductive layer:
将第一步制得的在以玻璃为基底的FTO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层整体放到旋涂仪上,其中P型薄膜晶硅空穴传输层在上,取所需量的由上述A-2步制得的成分为CH3NH3PbCl3的钙钛矿前驱溶液旋涂到P型薄膜晶硅空穴传输层上,将旋涂仪转速加速到6000rpm并保持这样的转速旋涂30s,在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂上钙钛矿光吸收层的湿膜;Put the P-type thin-film crystalline silicon hole-transport layer on the transparent conductive substrate made of glass-based FTO transparent oxide conductive layer as a whole on the spin coater, wherein the P-type thin-film crystalline silicon holes On the hole transport layer, get the required amount of the perovskite precursor solution with the composition of CH 3 NH 3 PbCl 3 prepared in the above step A-2 and spin-coat it on the P-type thin film crystalline silicon hole transport layer. Accelerate the rotation speed of the coating instrument to 6000rpm and maintain this rotation speed for 30s, and spin-coat the wet film of the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate;
A-4.热处理:A-4. Heat treatment:
将上述A-3步制得的在以玻璃为基底的FTO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂上钙钛矿光吸收层的湿膜的整体放入到烘箱中进行热处理,先在90℃下热处理1h,再加热至100℃并保温25min,由此在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,该钙钛矿光吸收层的厚度为1000nm,并且在以玻璃为基底的FTO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层与钙钛矿光吸收层形成薄膜晶硅钙钛矿异质结;Spin-coat the wet film of the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of the glass-based FTO transparent oxide conductive layer made in the above-mentioned A-3 step The whole is put into an oven for heat treatment, first heat treatment at 90 ° C for 1 h, then heat to 100 ° C and keep it warm for 25 min, so that the perovskite light absorption layer is spin-coated on the P-type thin film crystalline silicon hole transport layer, the The thickness of the perovskite light-absorbing layer is 1000nm, and the P-type thin-film crystalline silicon hole transport layer and the perovskite light-absorbing layer form a thin-film crystal on a transparent conductive substrate composed of a glass-based FTO transparent oxide conductive layer. Silicon perovskite heterojunction;
第三步,在钙钛矿光吸收层上制作由致密二氧化钛构成的电子传输层:The third step is to fabricate an electron transport layer made of dense titanium dioxide on the perovskite light absorbing layer:
同实施例1;With embodiment 1;
第四步,在由致密二氧化钛构成的电子传输层上制备背电极:The fourth step is to prepare the back electrode on the electron transport layer composed of dense titanium dioxide:
在上述第三步制备成的由致密二氧化钛构成的电子传输层上制备背电极,具体操作方法是采用如下方法:Prepare the back electrode on the electron transport layer made of dense titanium dioxide prepared in the third step above, and the specific operation method is as follows:
A.磁控溅射方法:A. Magnetron sputtering method:
将上述第三步所制得制品的整体放置入超真空直流磁控溅射设备中,使用掩模版,对第三步制备成的由致密二氧化钛构成的电子传输层进行镀膜,溅射靶采用质量百分比纯度>99.99%的银,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔内,在真空度为4.0×10-4Pa、氩气流量为20cm3/S、靶基距为10cm和工作电流为1A的条件下,溅射90min后,即在第三步制备成电子传输层上制备背电极上制备得银构成的栅线背电极;Put the whole product prepared in the third step above into the ultra-vacuum DC magnetron sputtering equipment, use a mask plate to coat the electron transport layer made of dense titanium dioxide prepared in the third step, and the sputtering target adopts quality Silver with a percentage purity >99.99% is fed into the sputtering chamber with Ar with a mass percentage purity of 99.999 % as the sputtering gas. Under the condition that the distance is 10cm and the working current is 1A, after sputtering for 90min, the grid line back electrode made of silver is prepared on the back electrode prepared on the electron transport layer in the third step;
至此,最终制得由以玻璃为基底的FTO透明氧化物导电层构成的透明导电基底、P型薄膜晶硅空穴传输层、钙钛矿光吸收层、由致密二氧化钛构成的电子传输层和银构成的栅线背电极构成的薄膜晶硅钙钛矿异质结太阳电池。So far, a transparent conductive substrate composed of a glass-based FTO transparent oxide conductive layer, a P-type thin-film crystalline silicon hole transport layer, a perovskite light absorption layer, an electron transport layer composed of dense titanium dioxide, and silver A thin film crystalline silicon perovskite heterojunction solar cell composed of a gate line back electrode.
实施例4Example 4
第一步,制备在透明导电基底上的P型薄膜晶硅空穴传输层:The first step is to prepare a P-type thin film crystalline silicon hole transport layer on a transparent conductive substrate:
同实施例1;With embodiment 1;
第二步,在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层:The second step is to spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer:
在上述第一步制得的在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,采用以下步骤:Spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of glass-based AZO transparent oxide conductive layer formed in the first step above, and adopt the following steps:
B.旋涂+浸渍法B. Spin coating + dipping method
B-1.CH3NH3Cl和CH3NH3I的制备:B-1. Preparation of CH 3 NH 3 Cl and CH 3 NH 3 I:
制备CH3NH3Cl的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的氯化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的氯化氢溶液=2∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌1.5h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3Cl;制备CH3NH3I的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的碘化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的碘化氢溶液=2∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌1.5h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3I;The raw material for preparing CH 3 NH 3 Cl is that the mass percentage concentration is 33% methylamine ethanol solution and the mass percentage concentration is 57% hydrogen chloride solution, and the mass percentage concentration is 33% methylamine ethanol solution by volume ratio: mass percentage concentration 57% hydrogen chloride solution = 2:1, put the two solutions into a 250mL round-bottomed flask after mixing, and stir continuously with a constant temperature magnetic stirrer for 1.5h at 0°C. After the stirring is completed, use a rotary evaporation The solvent was removed by rotary evaporation at 50°C, and the obtained white solid was washed three times with ether. The specific cleaning steps were as follows: first re-dissolve all the white solid obtained above in ethanol, and then continuously add dry ether to precipitate the precipitate. This process was repeated twice, and finally the obtained white solid was put into a vacuum drying oven, and dried at 60°C and a vacuum degree of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 Cl; to prepare CH 3 NH 3. The raw material of 1 is that the mass percent concentration is 33% methylamine ethanol solution and the mass percent concentration is the hydrogen iodide solution of 57%, and the mass percent concentration is 33% methylamine ethanol solution by volume ratio: the mass percent concentration is 57% % hydrogen iodide solution = 2: 1, put the two solutions into a 250mL round bottom flask after mixing, and stir for 1.5h with a constant temperature magnetic stirrer at 0°C, and use rotary evaporation after the stirring is completed The solvent was removed by rotary evaporation at 50°C, and the obtained white solid was washed three times with ether. The specific cleaning steps were as follows: first re-dissolve all the white solid obtained above in ethanol, and then continuously add dry ether to precipitate the precipitate. This process was repeated twice, and finally the obtained white solid was put into a vacuum drying oven, and dried at 60°C and a vacuum degree of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 I;
B-2.在第一步制得的在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂PbI2薄膜:B-2. spin-coat PbI on the P-type thin film crystalline silicon hole transport layer on the transparent conductive substrate that the AZO transparent oxide conductive layer that is based on glass constitutes in the first step 2 thin films:
将质量百分比纯度为99.999%PbI2溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中,使得该PbI2溶液的浓度为0.5M,并在70℃下搅拌以至形成澄清明亮的黄色PbI2溶液,在旋涂之前,将第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层和上述黄色PbI2溶液的温度加热至60℃,然后将第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层整体放在旋涂仪上,其中P型薄膜晶硅空穴传输层在上,取所需量的上述得到的黄色PbI2溶液旋涂到P型薄膜晶硅空穴传输层上,将旋涂仪转速加速到3000rpm并保持这样的转速旋涂10s,再经干燥处理10分钟,在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上得到旋涂PbI2薄膜,该薄膜厚度为10nm;Dissolve PbI with a mass percent purity of 99.999% in N,N - dimethylformamide with a mass percent purity of 99.9% so that the concentration of the PbI solution is 0.5M, and stir at 70°C until a clear and bright The yellow PbI 2 solution, before spin-coating, the temperature of the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate prepared in the first step and the above yellow PbI 2 solution was heated to 60 ° C, and then the first The P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate prepared in the first step is placed on a spin coater as a whole, wherein the P-type thin-film crystalline silicon hole-transport layer is on the top, and the required amount of the yellow PbI obtained above is taken. 2 The solution is spin-coated on the P-type thin-film crystalline silicon hole transport layer, and the speed of the spin coater is accelerated to 3000rpm and maintained at this speed for 10s, and then dried for 10 minutes, and the glass-based AZO transparent oxide On the P-type thin film crystalline silicon hole transport layer on the transparent conductive substrate that the conductive layer constitutes, obtain spin-coated PbI 2 thin film, this thin film thickness is 10nm;
B-3.将上述B-2步所得在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜变成由CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜:B-3. with above-mentioned B- 2 step gained in the PbI thin film that is spin-coated on the P-type thin film crystalline silicon hole transport layer on the transparent conductive substrate that the AZO transparent oxide conductive layer that is based on the glass is formed becomes by CH Thin film formed by mixing 3 NH 3 PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 :
将所需量的经上述B-1步制得的CH3NH3Cl和CH3NH3I分别溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中,分别得到的CH3NH3Cl溶液和CH3NH3I溶液,其浓度均为1mg/mL,按照体积比为CH3NH3I溶液︰CH3NH3Cl溶液=1︰0.1分别取CH3NH3I溶液和CH3NH3Cl溶液混合得CH3NH3I和CH3NH3Cl的混合溶液,先将该混合溶液和由B-2步制得的在P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜预热至60℃,再将该PbI2薄膜充分地浸入上述混合溶液中与之反应,静置5min后取出,上述B-2步所得在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜变成由CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜;Dissolve the required amount of CH 3 NH 3 Cl and CH 3 NH 3 I prepared by the above step B-1 in N,N-dimethylformamide with a mass percent purity of 99.9%, and the obtained CH 3 NH 3 Cl solution and CH 3 NH 3 I solution, the concentration of which is 1mg/mL, according to the volume ratio of CH 3 NH 3 I solution: CH 3 NH 3 Cl solution = 1: 0.1 respectively take CH 3 NH 3 I solution Mix with CH 3 NH 3 Cl solution to obtain a mixed solution of CH 3 NH 3 I and CH 3 NH 3 Cl, first spin the mixed solution and the P-type thin film crystalline silicon hole transport layer prepared by B-2 step Preheat the coated PbI2 film to 60°C, and then fully immerse the PbI2 film in the above mixed solution to react with it, and take it out after standing for 5 minutes. The spin-coated PbI 2 thin film on the silicon hole transport layer becomes a thin film composed of CH 3 NH 3 PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 ;
B-4.热处理:B-4. Heat treatment:
将上述第二步的B-3步所制得的在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂有CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜的整体放入到烘箱中进行热处理,先在90℃下保温1小时,再加热至100℃并保温25分钟,由此在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,该钙钛矿光吸收层的厚度为10nm,并且在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层与钙钛矿光吸收层形成薄膜晶硅钙钛矿异质结;Spin-coat CH 3 NH 3 on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of glass-based AZO transparent oxide conductive layer prepared in step B-3 of the second step above. The whole film composed of PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 is placed in an oven for heat treatment, firstly at 90°C for 1 hour, and then heated to 100°C and heat preservation for 25 minutes, thus spin-coating the perovskite light-absorbing layer on the P-type thin-film crystal silicon hole transport layer. The thickness of the perovskite light-absorbing layer is 10nm, and it is transparent The P-type thin-film crystalline silicon hole transport layer and the perovskite light-absorbing layer on the transparent conductive substrate composed of an oxide conductive layer form a thin-film crystalline silicon perovskite heterojunction;
第三步,在钙钛矿光吸收层上制作由致密二氧化钛构成的电子传输层:The third step is to fabricate an electron transport layer made of dense titanium dioxide on the perovskite light absorbing layer:
同实施例1;With embodiment 1;
第四步,在由致密二氧化钛构成的电子传输层上制备背电极:The fourth step is to prepare the back electrode on the electron transport layer composed of dense titanium dioxide:
B.热蒸镀方法:B. Thermal evaporation method:
将上述第三步所制得制品的整体放置入真空镀膜机中,对第三步制备成的由致密二氧化钛构成的电子传输层进行镀膜,在150V的电压下使用电阻丝加热真空镀膜机,在真空度为1×10-4Pa和温度为室温至150℃条件下,用蒸发镀铝的方法,蒸镀2秒,即在第三步制备成的由致密二氧化钛构成的电子传输层上制备得铝构成的薄层背电极;Place the whole product obtained in the third step above into a vacuum coating machine, coat the electron transport layer made of dense titanium dioxide prepared in the third step, and use a resistance wire to heat the vacuum coating machine at a voltage of 150V. Under the conditions of a vacuum of 1×10 -4 Pa and a temperature of room temperature to 150°C, use the method of evaporative aluminum deposition for 2 seconds, that is, it is prepared on the electron transport layer composed of dense titanium dioxide prepared in the third step A thin layer back electrode made of aluminum;
至此,最终制得由以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底、P型薄膜晶硅空穴传输层、钙钛矿光吸收层、由致密二氧化钛构成的电子传输层和铝构成的薄层背电极构成的薄膜晶硅钙钛矿异质结太阳电池。So far, a transparent conductive substrate composed of a glass-based AZO transparent oxide conductive layer, a P-type thin-film crystalline silicon hole transport layer, a perovskite light absorption layer, an electron transport layer composed of dense titanium dioxide and aluminum A thin-film crystalline silicon perovskite heterojunction solar cell composed of a thin-layer back electrode.
实施例5Example 5
第一步,制备在透明导电基底上的P型薄膜晶硅空穴传输层:The first step is to prepare a P-type thin film crystalline silicon hole transport layer on a transparent conductive substrate:
同实施例1;With embodiment 1;
第二步,在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层:The second step is to spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer:
在上述第一步制得的在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,采用以下步骤:Spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of glass-based AZO transparent oxide conductive layer formed in the first step above, and adopt the following steps:
B.旋涂+浸渍法B. Spin coating + dipping method
B-1.CH3NH3Cl和CH3NH3I的制备:B-1. Preparation of CH 3 NH 3 Cl and CH 3 NH 3 I:
制备CH3NH3Cl的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的氯化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的氯化氢溶液=2.5∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌1.8h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3Cl;制备CH3NH3I的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的碘化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的碘化氢溶液=2.5∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌1.8h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3I;The raw material for preparing CH 3 NH 3 Cl is that the mass percentage concentration is 33% methylamine ethanol solution and the mass percentage concentration is 57% hydrogen chloride solution, and the mass percentage concentration is 33% methylamine ethanol solution by volume ratio: mass percentage concentration 57% hydrogen chloride solution = 2.5:1, put the two solutions into a 250mL round-bottomed flask after mixing, and stir continuously with a constant temperature magnetic stirrer for 1.8h at 0°C. After the stirring is completed, use a rotary evaporation The solvent was removed by rotary evaporation at 50°C, and the obtained white solid was washed three times with ether. The specific cleaning steps were as follows: first re-dissolve all the white solid obtained above in ethanol, and then continuously add dry ether to precipitate the precipitate. This process was repeated twice, and finally the obtained white solid was put into a vacuum drying oven, and dried at 60°C and a vacuum degree of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 Cl; to prepare CH 3 NH 3. The raw material of 1 is that the mass percent concentration is 33% methylamine ethanol solution and the mass percent concentration is the hydrogen iodide solution of 57%, and the mass percent concentration is 33% methylamine ethanol solution by volume ratio: the mass percent concentration is 57% % hydrogen iodide solution = 2.5:1, put the two solutions into a 250mL round-bottomed flask after mixing them, and stir them with a constant temperature magnetic stirrer for 1.8h at 0°C. After the stirring is completed, use a rotary evaporation The solvent was removed by rotary evaporation at 50°C, and the obtained white solid was washed three times with ether. The specific cleaning steps were as follows: first re-dissolve all the white solid obtained above in ethanol, and then continuously add dry ether to precipitate the precipitate. This process was repeated twice, and finally the obtained white solid was put into a vacuum drying oven, and dried at 60°C and a vacuum degree of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 I;
B-2.在第一步制得的在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂PbI2薄膜:B-2. spin-coat PbI on the P-type thin film crystalline silicon hole transport layer on the transparent conductive substrate that the AZO transparent oxide conductive layer that is based on glass constitutes in the first step 2 thin films:
将质量百分比纯度为99.999%PbI2溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中,使得该PbI2溶液的浓度为0.8M,并在70℃下搅拌以至形成澄清明亮的黄色PbI2溶液,在旋涂之前,将第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层和上述黄色PbI2溶液的温度加热至62℃,然后将第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层整体放在旋涂仪上,其中P型薄膜晶硅空穴传输层在上,取所需量的上述得到的黄色PbI2溶液旋涂到P型薄膜晶硅空穴传输层上,将旋涂仪转速加速到3000rpm并保持这样的转速旋涂15s,再经干燥处理10分钟,在透明导电基底上的P型薄膜晶硅空穴传输层上得到旋涂PbI2薄膜,该薄膜厚度为400nm;Dissolve PbI with a mass percent purity of 99.999% in N,N - dimethylformamide with a mass percent purity of 99.9% so that the concentration of the PbI solution is 0.8M, and stir at 70°C until a clear and bright The yellow PbI 2 solution, before spin-coating, the temperature of the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate prepared in the first step and the above yellow PbI 2 solution was heated to 62 ° C, and then the first The P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate prepared in the first step is placed on a spin coater as a whole, wherein the P-type thin-film crystalline silicon hole-transport layer is on the top, and the required amount of the yellow PbI obtained above is taken. 2 The solution is spin-coated on the P-type thin-film crystalline silicon hole transport layer, and the rotation speed of the spin-coater is accelerated to 3000rpm and maintained at this speed for 15 seconds, and then dried for 10 minutes, and the P-type thin-film crystal silicon on the transparent conductive substrate Obtain spin-coated PbI on the silicon hole transport layer Thin film, this thin film thickness is 400nm;
B-3.将上述B-2步所得在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜变成由CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜:B-3. with above-mentioned B- 2 step gained in the PbI thin film that is spin-coated on the P-type thin film crystalline silicon hole transport layer on the transparent conductive substrate that the AZO transparent oxide conductive layer that is based on the glass is formed becomes by CH Thin film formed by mixing 3 NH 3 PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 :
将所需量的经上述B-1步制得的CH3NH3Cl和CH3NH3I分别溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中,分别得到的CH3NH3Cl溶液和CH3NH3I溶液,其浓度均为5mg/mL,按照体积比为CH3NH3I溶液︰CH3NH3Cl溶液=1︰5分别取CH3NH3I溶液和CH3NH3Cl溶液混合得CH3NH3I和CH3NH3Cl的混合溶液,先将该混合溶液和由B-2步制得的在P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜预热至60℃,再将该PbI2薄膜充分地浸入上述混合溶液中与之反应,静置16min后取出,上述B-2步所得在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜变成由CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜;Dissolve the required amount of CH 3 NH 3 Cl and CH 3 NH 3 I prepared by the above step B-1 in N,N-dimethylformamide with a mass percent purity of 99.9%, and the obtained CH 3 NH 3 Cl solution and CH 3 NH 3 I solution, both of which have a concentration of 5 mg/mL, according to the volume ratio of CH 3 NH 3 I solution: CH 3 NH 3 Cl solution = 1: 5, respectively take CH 3 NH 3 I solution Mix with CH 3 NH 3 Cl solution to obtain a mixed solution of CH 3 NH 3 I and CH 3 NH 3 Cl, first spin the mixed solution and the P-type thin film crystalline silicon hole transport layer prepared by B-2 step Preheat the coated PbI2 film to 60°C, and then fully immerse the PbI2 film in the above mixed solution to react with it, and take it out after standing for 16 minutes. The spin-coated PbI 2 thin film on the silicon hole transport layer becomes a thin film composed of CH 3 NH 3 PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 ;
B-4.热处理:B-4. Heat treatment:
将上述第二步的B-3步所制得的在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂有CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜的整体放入到烘箱中进行热处理,先在90℃下保温1小时,再加热至100℃并保温25分钟,由此在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,该钙钛矿光吸收层的厚度为500nm,并且在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层与钙钛矿光吸收层形成薄膜晶硅钙钛矿异质结;Spin-coat CH 3 NH 3 on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of glass-based AZO transparent oxide conductive layer prepared in step B-3 of the second step above. The whole film composed of PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 is placed in an oven for heat treatment, firstly at 90°C for 1 hour, and then heated to 100°C and heat preservation for 25 minutes, thus spin-coating the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer. The thickness of the perovskite light-absorbing layer is 500nm, and the AZO transparent The P-type thin-film crystalline silicon hole transport layer and the perovskite light-absorbing layer on the transparent conductive substrate composed of an oxide conductive layer form a thin-film crystalline silicon perovskite heterojunction;
第三步,在钙钛矿光吸收层上制作由致密二氧化钛构成的电子传输层:The third step is to fabricate an electron transport layer made of dense titanium dioxide on the perovskite light absorbing layer:
同实施例1;With embodiment 1;
第四步,在由致密二氧化钛构成的电子传输层上制备背电极:The fourth step is to prepare the back electrode on the electron transport layer composed of dense titanium dioxide:
B.热蒸镀方法:B. Thermal evaporation method:
将上述第三步所制得制品的整体放置入真空镀膜机中,对第三步制备成的由致密二氧化钛构成的电子传输层进行镀膜,在165V的电压下使用电阻丝加热真空镀膜机,在真空度为4.0×10-4Pa和温度为室温至150℃条件下,用蒸发镀铜的方法,蒸镀31秒,即在第三步制备成的由致密二氧化钛构成的电子传输层上制备得铜构成的薄层背电极;Put the whole product obtained in the third step above into a vacuum coating machine, coat the electron transport layer made of dense titanium dioxide prepared in the third step, and use a resistance wire to heat the vacuum coating machine at a voltage of 165V. Under the conditions of a vacuum of 4.0×10 -4 Pa and a temperature of room temperature to 150°C, use the method of evaporative copper plating for 31 seconds, that is, it is prepared on the electron transport layer composed of dense titanium dioxide prepared in the third step. Thin layer back electrode made of copper;
至此,最终制得由以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底、P型薄膜晶硅空穴传输层、钙钛矿光吸收层、由致密二氧化钛构成的电子传输层和铜构成的背电极构成的薄膜晶硅钙钛矿异质结太阳电池。So far, a transparent conductive substrate composed of a glass-based AZO transparent oxide conductive layer, a P-type thin-film crystalline silicon hole transport layer, a perovskite light absorption layer, an electron transport layer composed of dense titanium dioxide, and copper A thin-film crystalline silicon perovskite heterojunction solar cell composed of a back electrode.
实施例6Example 6
第一步,制备在透明导电基底上的P型薄膜晶硅空穴传输层:The first step is to prepare a P-type thin film crystalline silicon hole transport layer on a transparent conductive substrate:
同实施例1;With embodiment 1;
第二步,在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层:The second step is to spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer:
在上述第一步制得的在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,采用以下步骤:Spin-coat the perovskite light-absorbing layer on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of glass-based AZO transparent oxide conductive layer formed in the first step above, and adopt the following steps:
B.旋涂+浸渍法B. Spin coating + dipping method
B-1.CH3NH3Cl和CH3NH3I的制备:B-1. Preparation of CH 3 NH 3 Cl and CH 3 NH 3 I:
制备CH3NH3Cl的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的氯化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的氯化氢溶液=3∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌2h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3Cl;制备CH3NH3I的原料是质量百分比浓度为33%的甲胺乙醇溶液和质量百分比浓度为57%的碘化氢溶液,按体积比为质量百分比浓度为33%的甲胺乙醇溶液:质量百分比浓度为57%的碘化氢溶液=3∶1,将这两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,用恒温磁力搅拌器不停搅拌2h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3I;The raw material for preparing CH 3 NH 3 Cl is that the mass percentage concentration is 33% methylamine ethanol solution and the mass percentage concentration is 57% hydrogen chloride solution, and the mass percentage concentration is 33% methylamine ethanol solution by volume ratio: mass percentage concentration 57% hydrogen chloride solution = 3:1, put the two solutions into a 250mL round-bottomed flask after mixing, and stir continuously for 2 hours with a constant temperature magnetic stirrer at 0°C, and use a rotary evaporator after stirring The solvent was removed by rotary evaporation at 50°C, and the obtained white solid was washed three times with diethyl ether. The specific cleaning steps were: first redissolve all the white solid obtained above in ethanol, and then continuously add dry diethyl ether to precipitate the precipitate. The process was repeated twice, and finally the obtained white solid was put into a vacuum drying oven, and dried at 60°C and a vacuum degree of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 Cl; to prepare CH 3 NH 3 The raw material of I is that the mass percent concentration is the methylamine ethanol solution of 33% and the mass percent concentration is the hydrogen iodide solution of 57%, is the mass percent concentration by volume ratio and is the methylamine ethanol solution of 33%: the mass percent concentration is 57% Hydrogen iodide solution=3:1, put these two solutions into a 250mL round bottom flask after mixing, and stir continuously for 2h with a constant temperature magnetic stirrer at 0°C, and use a rotary evaporator after stirring The solvent was removed by rotary evaporation at 50°C, and the obtained white solid was washed three times with diethyl ether. The specific cleaning steps were: first re-dissolve all the white solid obtained above in ethanol, and then continuously add dry diethyl ether to precipitate the precipitate. This process Repeat twice, and finally put the obtained white solid into a vacuum drying oven, and dry it at 60°C and a vacuum of 5×10 4 Pa for 24 hours to obtain CH 3 NH 3 I;
B-2.在第一步制得的在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂PbI2薄膜:B-2. spin-coat PbI on the P-type thin film crystalline silicon hole transport layer on the transparent conductive substrate that the AZO transparent oxide conductive layer that is based on glass constitutes in the first step 2 thin films:
将质量百分比纯度为99.999%PbI2溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中,使得该PbI2溶液的浓度为1M,并在70℃下搅拌以至形成澄清明亮的黄色PbI2溶液,在旋涂之前,将第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层和上述黄色PbI2溶液的温度加热至65℃,然后将第一步制得的在透明导电基底上的P型薄膜晶硅空穴传输层整体放在旋涂仪上,其中P型薄膜晶硅空穴传输层在上,取所需量的上述得到的黄色PbI2溶液旋涂到P型薄膜晶硅空穴传输层上,将旋涂仪转速加速到3000rpm并保持这样的转速旋涂20s,再经干燥处理10分钟,在透明导电基底上的P型薄膜晶硅空穴传输层上得到旋涂PbI2薄膜,该薄膜厚度为800nm;Dissolve PbI with a mass percent purity of 99.999% in N,N - dimethylformamide with a mass percent purity of 99.9%, so that the PbI solution has a concentration of 1M, and stir at 70°C until a clear and bright Yellow PbI2 solution, before spin-coating, heat the temperature of the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate prepared in the first step and the above yellow PbI2 solution to 65 ° C, and then the first step The P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate is placed on a spin coater as a whole, wherein the P-type thin-film crystalline silicon hole-transport layer is on top, and the yellow PbI obtained above is taken in a required amount. The solution is spin-coated on the P-type thin film crystalline silicon hole transport layer, and the rotation speed of the spin coater is accelerated to 3000rpm and maintained at this speed for 20 seconds, and then dried for 10 minutes, and the P-type thin film crystalline silicon on the transparent conductive substrate Obtain spin-coated PbI on the hole transport layer Thin film, this thin film thickness is 800nm;
B-3.将上述B-2步所得在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜变成由CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜:B-3. with above-mentioned B- 2 step gained in the PbI thin film that is spin-coated on the P-type thin film crystalline silicon hole transport layer on the transparent conductive substrate that the AZO transparent oxide conductive layer that is based on the glass is formed becomes by CH Thin film formed by mixing 3 NH 3 PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 :
将所需量的经上述B-1步制得的CH3NH3Cl和CH3NH3I分别溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中,分别得到的CH3NH3Cl溶液和CH3NH3I溶液,其浓度均为10mg/mL,按照体积比为CH3NH3I溶液︰CH3NH3Cl溶液=1︰10分别取CH3NH3I溶液和CH3NH3Cl溶液混合得CH3NH3I和CH3NH3Cl的混合溶液,先将该混合溶液和由B-2步制得的在P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜预热至60℃,再将该PbI2薄膜充分地浸入上述混合溶液中与之反应,静置30min后取出,上述B-2步所得在透明导电基底上的P型薄膜晶硅空穴传输层上旋涂的PbI2薄膜变成由CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜;Dissolve the required amount of CH 3 NH 3 Cl and CH 3 NH 3 I prepared by the above step B-1 in N,N-dimethylformamide with a mass percent purity of 99.9%, and the obtained CH 3 NH 3 Cl solution and CH 3 NH 3 I solution, both of which have a concentration of 10 mg/mL, according to the volume ratio of CH 3 NH 3 I solution: CH 3 NH 3 Cl solution = 1: 10 respectively take CH 3 NH 3 I solution Mix with CH 3 NH 3 Cl solution to obtain a mixed solution of CH 3 NH 3 I and CH 3 NH 3 Cl, first spin the mixed solution and the P-type thin film crystalline silicon hole transport layer prepared by B-2 step Preheat the coated PbI2 film to 60°C, then fully immerse the PbI2 film in the above mixed solution to react with it, and take it out after standing for 30 minutes. The spin-coated PbI 2 thin film on the silicon hole transport layer becomes a thin film composed of CH 3 NH 3 PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 ;
B-4.热处理:B-4. Heat treatment:
将上述第二步的B-3步所制得的在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层上旋涂有CH3NH3PbI3、CH3NH3PbCl3、CH3NH3PbI2Cl和CH3NH3PbICl2混合构成的薄膜的整体放入到烘箱中进行热处理,先在90℃下保温1小时,再加热至100℃并保温25分钟,由此在P型薄膜晶硅空穴传输层上旋涂钙钛矿光吸收层,该钙钛矿光吸收层的厚度为1000nm,并且在以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底上的P型薄膜晶硅空穴传输层与钙钛矿光吸收层形成薄膜晶硅钙钛矿异质结;Spin-coat CH 3 NH 3 on the P-type thin-film crystalline silicon hole transport layer on the transparent conductive substrate made of glass-based AZO transparent oxide conductive layer prepared in step B-3 of the second step above. The whole film composed of PbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbI 2 Cl and CH 3 NH 3 PbICl 2 is placed in an oven for heat treatment, firstly at 90°C for 1 hour, and then heated to 100°C and keep it warm for 25 minutes, thus spin-coat the perovskite light absorbing layer on the P-type thin film crystalline silicon hole transport layer, the thickness of the perovskite light absorbing layer is 1000nm, and it is transparent The P-type thin-film crystalline silicon hole transport layer and the perovskite light-absorbing layer on the transparent conductive substrate composed of an oxide conductive layer form a thin-film crystalline silicon perovskite heterojunction;
第三步,在钙钛矿光吸收层上制作由致密二氧化钛构成的电子传输层:The third step is to fabricate an electron transport layer made of dense titanium dioxide on the perovskite light absorbing layer:
同实施例1;With embodiment 1;
第四步,在由致密二氧化钛构成的电子传输层上制备背电极:The fourth step is to prepare the back electrode on the electron transport layer composed of dense titanium dioxide:
B.热蒸镀方法:B. Thermal evaporation method:
将上述第三步所制得制品的整体放置入真空镀膜机中,对第三步制备成的由致密二氧化钛构成的电子传输层进行镀膜,在175V的电压下使用电阻丝加热真空镀膜机,在真空度为8.0×10-4Pa和温度为室温至150℃条件下,用蒸发镀银的方法,蒸镀60秒,即在第三步制备成的由致密二氧化钛构成的电子传输层上制备得银构成的薄层背电极;Place the whole product obtained in the third step above into a vacuum coating machine, coat the electron transport layer made of dense titanium dioxide prepared in the third step, and use a resistance wire to heat the vacuum coating machine at a voltage of 175V. Under the conditions of a vacuum of 8.0×10 -4 Pa and a temperature of room temperature to 150°C, by evaporating silver plating for 60 seconds, it is prepared on the electron transport layer composed of dense titanium dioxide prepared in the third step A thin-layer back electrode composed of silver;
至此,最终制得由以玻璃为基底的AZO透明氧化物导电层构成的透明导电基底、P型薄膜晶硅空穴传输层、钙钛矿光吸收层、由致密二氧化钛构成的电子传输层和银构成的背电极构成的薄膜晶硅钙钛矿异质结太阳电池。So far, a transparent conductive substrate composed of AZO transparent oxide conductive layer based on glass, a P-type thin film crystalline silicon hole transport layer, a perovskite light absorption layer, an electron transport layer composed of dense titanium dioxide and silver A thin-film crystalline silicon perovskite heterojunction solar cell composed of a back electrode.
上述实施例中所涉及的原材料、设备和工艺操作方法均是公知的。The raw materials, equipment and process operation methods involved in the above embodiments are all known.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510785094.2A CN105226187B (en) | 2015-11-15 | 2015-11-15 | Film crystal silicon perovskite heterojunction solar battery and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510785094.2A CN105226187B (en) | 2015-11-15 | 2015-11-15 | Film crystal silicon perovskite heterojunction solar battery and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105226187A true CN105226187A (en) | 2016-01-06 |
CN105226187B CN105226187B (en) | 2018-01-30 |
Family
ID=54995017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510785094.2A Active CN105226187B (en) | 2015-11-15 | 2015-11-15 | Film crystal silicon perovskite heterojunction solar battery and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105226187B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106784316A (en) * | 2016-07-22 | 2017-05-31 | 河北工业大学 | Thin film solar cell that a kind of perovskite monocrystal material is combined with crystallite silicon composite and preparation method thereof |
CN106972100A (en) * | 2016-07-22 | 2017-07-21 | 河北工业大学 | Thin film solar cell that a kind of perovskite monocrystal material is combined with p type single crystal silicon and preparation method thereof |
CN107634143A (en) * | 2017-09-25 | 2018-01-26 | 中国工程物理研究院材料研究所 | The composite absorbed layer and its preparation method of a kind of perovskite battery |
CN107807157A (en) * | 2016-09-09 | 2018-03-16 | 河北工业大学 | It is a kind of while there is air-sensitive and photosensitive chemical sensor |
CN109256471A (en) * | 2018-12-10 | 2019-01-22 | 合肥工业大学 | A kind of unleaded full-inorganic perovskite caesium bismuth iodine film/n-type silicon heterojunction photoelectric detector and preparation method thereof |
CN110444671A (en) * | 2019-07-26 | 2019-11-12 | 杭州众能光电科技有限公司 | A kind of perovskite solar battery based on ultra thin p-type polysilicon film |
CN111668373A (en) * | 2020-06-05 | 2020-09-15 | 中国科学院物理研究所 | Perovskite solar cell and preparation method thereof |
WO2020258468A1 (en) * | 2019-06-27 | 2020-12-30 | 深圳市华星光电半导体显示技术有限公司 | Perovskite-type electroluminescence device and preparation method therefor |
EP3657554A4 (en) * | 2017-07-21 | 2021-03-17 | LG Electronics Inc. | PEROWSKIT SOLAR BATTERY AND TANDEM SOLAR BATTERY WITH IT |
CN112542548A (en) * | 2020-12-08 | 2021-03-23 | 云南师范大学 | Thin film crystalline silicon perovskite heterojunction solar cell and preparation method thereof |
CN112675922A (en) * | 2020-12-10 | 2021-04-20 | 复旦大学 | Titanium dioxide photocatalytic film with three-layer structure and preparation method thereof |
CN112885913A (en) * | 2021-01-22 | 2021-06-01 | 苏州大学 | Preparation method of perovskite quantum dot surface passivation layer suitable for HIT battery |
CN113314672A (en) * | 2021-06-25 | 2021-08-27 | 江苏科技大学 | Perovskite solar cell and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5854123A (en) * | 1995-10-06 | 1998-12-29 | Canon Kabushiki Kaisha | Method for producing semiconductor substrate |
CN1249531A (en) * | 1998-09-04 | 2000-04-05 | 佳能株式会社 | Process for mfg. semiconductor substrate |
CN102299206A (en) * | 2011-08-30 | 2011-12-28 | 南京航空航天大学 | Heterojunction solar cell and manufacturing method thereof |
WO2014045021A1 (en) * | 2012-09-18 | 2014-03-27 | Isis Innovation Limited | Optoelectronic device |
CN103700768A (en) * | 2013-12-03 | 2014-04-02 | 常州大学 | Perovskite structural solar battery and preparation method thereof |
CN104157789A (en) * | 2014-08-28 | 2014-11-19 | 云南师范大学 | Novel two-sided thin film solar cell and industrial manufacturing method thereof |
CN104269452A (en) * | 2014-10-11 | 2015-01-07 | 中国科学院半导体研究所 | Perovskite solar battery made of silicon-based thin-film materials and manufacturing method thereof |
WO2015017885A1 (en) * | 2013-08-06 | 2015-02-12 | Newsouth Innovations Pty Limited | A high efficiency stacked solar cell |
CN104362253A (en) * | 2014-10-23 | 2015-02-18 | 河北工业大学 | All solid state perovskite microcrystalline silicon composite solar battery and preparation method thereof |
-
2015
- 2015-11-15 CN CN201510785094.2A patent/CN105226187B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5854123A (en) * | 1995-10-06 | 1998-12-29 | Canon Kabushiki Kaisha | Method for producing semiconductor substrate |
CN1249531A (en) * | 1998-09-04 | 2000-04-05 | 佳能株式会社 | Process for mfg. semiconductor substrate |
CN102299206A (en) * | 2011-08-30 | 2011-12-28 | 南京航空航天大学 | Heterojunction solar cell and manufacturing method thereof |
WO2014045021A1 (en) * | 2012-09-18 | 2014-03-27 | Isis Innovation Limited | Optoelectronic device |
WO2015017885A1 (en) * | 2013-08-06 | 2015-02-12 | Newsouth Innovations Pty Limited | A high efficiency stacked solar cell |
CN103700768A (en) * | 2013-12-03 | 2014-04-02 | 常州大学 | Perovskite structural solar battery and preparation method thereof |
CN104157789A (en) * | 2014-08-28 | 2014-11-19 | 云南师范大学 | Novel two-sided thin film solar cell and industrial manufacturing method thereof |
CN104269452A (en) * | 2014-10-11 | 2015-01-07 | 中国科学院半导体研究所 | Perovskite solar battery made of silicon-based thin-film materials and manufacturing method thereof |
CN104362253A (en) * | 2014-10-23 | 2015-02-18 | 河北工业大学 | All solid state perovskite microcrystalline silicon composite solar battery and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
JONATHAN P. MAILOA, ET AL.: "A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction", 《APPLIED PHYSICS LETTERS》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106972100A (en) * | 2016-07-22 | 2017-07-21 | 河北工业大学 | Thin film solar cell that a kind of perovskite monocrystal material is combined with p type single crystal silicon and preparation method thereof |
CN106784316A (en) * | 2016-07-22 | 2017-05-31 | 河北工业大学 | Thin film solar cell that a kind of perovskite monocrystal material is combined with crystallite silicon composite and preparation method thereof |
CN107807157A (en) * | 2016-09-09 | 2018-03-16 | 河北工业大学 | It is a kind of while there is air-sensitive and photosensitive chemical sensor |
EP3657554A4 (en) * | 2017-07-21 | 2021-03-17 | LG Electronics Inc. | PEROWSKIT SOLAR BATTERY AND TANDEM SOLAR BATTERY WITH IT |
CN107634143A (en) * | 2017-09-25 | 2018-01-26 | 中国工程物理研究院材料研究所 | The composite absorbed layer and its preparation method of a kind of perovskite battery |
CN109256471A (en) * | 2018-12-10 | 2019-01-22 | 合肥工业大学 | A kind of unleaded full-inorganic perovskite caesium bismuth iodine film/n-type silicon heterojunction photoelectric detector and preparation method thereof |
WO2020258468A1 (en) * | 2019-06-27 | 2020-12-30 | 深圳市华星光电半导体显示技术有限公司 | Perovskite-type electroluminescence device and preparation method therefor |
CN110444671A (en) * | 2019-07-26 | 2019-11-12 | 杭州众能光电科技有限公司 | A kind of perovskite solar battery based on ultra thin p-type polysilicon film |
CN111668373A (en) * | 2020-06-05 | 2020-09-15 | 中国科学院物理研究所 | Perovskite solar cell and preparation method thereof |
CN111668373B (en) * | 2020-06-05 | 2022-01-25 | 中国科学院物理研究所 | Perovskite solar cell and preparation method thereof |
CN112542548A (en) * | 2020-12-08 | 2021-03-23 | 云南师范大学 | Thin film crystalline silicon perovskite heterojunction solar cell and preparation method thereof |
CN112542548B (en) * | 2020-12-08 | 2023-10-20 | 云南师范大学 | Thin film crystalline silicon perovskite heterojunction solar cell and preparation method thereof |
CN112675922A (en) * | 2020-12-10 | 2021-04-20 | 复旦大学 | Titanium dioxide photocatalytic film with three-layer structure and preparation method thereof |
CN112675922B (en) * | 2020-12-10 | 2022-04-12 | 复旦大学 | A three-layer structure of titanium dioxide photocatalytic film and preparation method thereof |
CN112885913A (en) * | 2021-01-22 | 2021-06-01 | 苏州大学 | Preparation method of perovskite quantum dot surface passivation layer suitable for HIT battery |
CN113314672A (en) * | 2021-06-25 | 2021-08-27 | 江苏科技大学 | Perovskite solar cell and preparation method thereof |
CN113314672B (en) * | 2021-06-25 | 2025-01-24 | 江苏科技大学 | A perovskite solar cell and a method for preparing the same |
Also Published As
Publication number | Publication date |
---|---|
CN105226187B (en) | 2018-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105226187B (en) | Film crystal silicon perovskite heterojunction solar battery and preparation method thereof | |
CN104362253B (en) | All solid state perovskite microcrystalline silicon composite solar battery and preparation method thereof | |
Jung et al. | A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells | |
CN106025085B (en) | Based on Spiro OMeTAD/CuXPerovskite solar cell of S composite hole transporting layers and preparation method thereof | |
CN112802965B (en) | Interface modification-based perovskite solar cell preparation method | |
CN105070836A (en) | Mesoporous perovskite solar cell and preparation method thereof | |
CN103700768A (en) | Perovskite structural solar battery and preparation method thereof | |
CN107240643A (en) | Bromo element doping methylamine lead iodine perovskite solar cell and preparation method thereof | |
CN111668377B (en) | Perovskite solar cell with Mo-tin dioxide as electron transport layer and preparation method thereof | |
CN105428535A (en) | Manufacturing method for thin film crystal silicon perovskite heterojunction solar cell | |
CN104916785A (en) | A kind of preparation method of CH3NH3PbI3 thin film solar cell | |
CN110783464A (en) | Perovskite solar cell and preparation method thereof | |
CN113130762B (en) | Light absorption layer material of solar cell, ternary cation perovskite solar cell and preparation method thereof | |
CN114678472A (en) | A FAPbI3 perovskite thin film and method for efficient perovskite solar cells | |
CN103137868B (en) | Organic/ inorganic hybridization solar battery based on ternary nanometer array and preparation method thereof | |
CN105244442A (en) | Thin film crystal silicon perovskite heterojunction solar cell manufacturing method | |
CN114156412B (en) | Application of potassium salt containing large-size strong coordination organic anion in perovskite solar cell | |
CN101872685B (en) | Solid dye-sensitized nanocrystal/microcrystal silicon composite film solar cell and preparation method thereof | |
CN111668378B (en) | A kind of perovskite solar cell with V-tin dioxide as electron transport layer and preparation method thereof | |
CN106784316A (en) | Thin film solar cell that a kind of perovskite monocrystal material is combined with crystallite silicon composite and preparation method thereof | |
CN114583061A (en) | Lead-free tin-based perovskite thin film with three-dimensional structure and preparation method of solar cell thereof | |
CN105449103B (en) | A kind of film crystal silicon perovskite heterojunction solar battery and preparation method thereof | |
Liu et al. | Solvent-assisted preparation of low-temperature SnO 2 electron transport layers for efficient and stable perovskite solar cells made in ambient conditions | |
CN117202748A (en) | Perovskite film and preparation method and application thereof | |
CN102005304B (en) | Preparation method for SiO2-ZnO nano-bar array composite electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |