CN104241415A - Graphene/gallium arsenide solar cell and manufacturing method thereof - Google Patents
Graphene/gallium arsenide solar cell and manufacturing method thereof Download PDFInfo
- Publication number
- CN104241415A CN104241415A CN201410456736.XA CN201410456736A CN104241415A CN 104241415 A CN104241415 A CN 104241415A CN 201410456736 A CN201410456736 A CN 201410456736A CN 104241415 A CN104241415 A CN 104241415A
- Authority
- CN
- China
- Prior art keywords
- graphene
- gallium arsenide
- solar cell
- arsenide solar
- type doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 67
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910001218 Gallium arsenide Inorganic materials 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000004140 cleaning Methods 0.000 claims abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 239000000243 solution Substances 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 238000002834 transmittance Methods 0.000 abstract description 3
- 238000001035 drying Methods 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 12
- 238000001755 magnetron sputter deposition Methods 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000002207 thermal evaporation Methods 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/161—Photovoltaic cells having only PN heterojunction potential barriers comprising multiple PN heterojunctions, e.g. tandem cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明涉及一种石墨烯/砷化镓太阳电池及其制造方法,该石墨烯/砷化镓太阳电池自下而上依次有背面电极、n型掺杂或p型掺杂的砷化镓层、石墨烯层和正面电极,其中石墨烯为1~10层。其制造包括:在砷化镓片一面制作背面电极;然后进行表面化学清洗并干燥;将石墨烯转移至砷化镓片的另一个面上;再在石墨烯上制作正面电极。本发明的石墨烯/砷化镓太阳电池利用石墨烯材料的高载流子迁移率、高透光性及高导电性,结合砷化镓优异的半导体性质,有利于在低成本及简单工艺的基础上制造高转化效率的太阳电池。
The invention relates to a graphene/gallium arsenide solar cell and a manufacturing method thereof. The graphene/gallium arsenide solar cell has a back electrode, an n-type doped or p-type doped gallium arsenide layer in sequence from bottom to top , a graphene layer and a front electrode, wherein the graphene is 1 to 10 layers. Its fabrication includes: making the back electrode on one side of the gallium arsenide sheet; then chemically cleaning and drying the surface; transferring the graphene to the other side of the gallium arsenide sheet; and then making the front electrode on the graphene. The graphene/gallium arsenide solar cell of the present invention utilizes the high carrier mobility, high light transmittance and high conductivity of the graphene material, combined with the excellent semiconductor properties of gallium arsenide, which is beneficial to low-cost and simple process Based on the manufacture of solar cells with high conversion efficiency.
Description
技术领域 technical field
本发明涉及一种太阳电池及其制造方法,尤其涉及一种石墨烯/砷化镓太阳电池及其制造方法,属于太阳能技术领域。 The invention relates to a solar cell and a manufacturing method thereof, in particular to a graphene/gallium arsenide solar cell and a manufacturing method thereof, belonging to the technical field of solar energy.
背景技术 Background technique
近年来,太阳电池作为一种新型绿色能源正在人类的可持续发展中起到越来越重要的作用。其中,硅基太阳电池,特别是晶体硅太阳电池占据市场~90%的份额。但与常规发电相比,太阳电池发电成本仍然较高,限制了大面积应用。太阳电池发电成本较高的原因之一是电池制造成本较高,另外一个主要原因是其光电转化效率较低。 In recent years, solar cells, as a new type of green energy, are playing an increasingly important role in the sustainable development of human beings. Among them, silicon-based solar cells, especially crystalline silicon solar cells, account for ~90% of the market. However, compared with conventional power generation, the cost of solar cell power generation is still high, which limits the large-area application. One of the reasons for the high cost of solar cell power generation is the high cost of cell manufacturing, and another major reason is its low photoelectric conversion efficiency.
自从石墨烯材料在2004年首次被稳定制备出来以后,越来越多的研究发现石墨烯材料具有优异的电学、光学性质,如极高的载流子迁移率、高透光新、高的杨氏模量等。这些独特的性质使石墨烯有可能广泛的应用于光伏发电领域。目前,已有研究者利用石墨烯以及硅材料形成的异质结做成太阳电池,测得最高转化效率14.5%。这个效率与目前晶体硅太阳电池单晶硅主流成产效率18.5%~20.0%相比还比较低。对应太阳电池应用来说,硅材料禁带宽度较窄,同时是间接禁带,不是最理想的基础材料。砷化镓具有较合适的禁带宽度,也是直接带隙材料,同时还具有比硅更高的载流子迁移率,因此,空间高效率太阳电池一般采用砷化镓材料制造。但传统的砷化镓太阳电池制备工艺复杂,成本高昂,难以获得大范围推广。 Since graphene materials were first stably prepared in 2004, more and more studies have found that graphene materials have excellent electrical and optical properties, such as extremely high carrier mobility, high light transmittance, high Yang modulus etc. These unique properties make it possible for graphene to be widely used in the field of photovoltaic power generation. At present, researchers have used the heterojunction formed by graphene and silicon materials to make solar cells, and the highest conversion efficiency has been measured to be 14.5%. This efficiency is still relatively low compared with the current mainstream production efficiency of monocrystalline silicon for crystalline silicon solar cells, which is 18.5%~20.0%. Corresponding to the application of solar cells, the silicon material has a narrow band gap and an indirect band gap, so it is not the most ideal basic material. Gallium arsenide has a relatively suitable band gap and is also a direct band gap material. It also has higher carrier mobility than silicon. Therefore, space high-efficiency solar cells are generally made of gallium arsenide materials. However, the traditional gallium arsenide solar cell preparation process is complicated, the cost is high, and it is difficult to obtain large-scale promotion.
发明内容 Contents of the invention
本发明的目的在于提供一种光电转化效率高、工艺简单且成本较低的石墨烯/砷化镓太阳电池及其制造方法。 The object of the present invention is to provide a graphene/gallium arsenide solar cell with high photoelectric conversion efficiency, simple process and low cost and its manufacturing method.
本发明的石墨烯/砷化镓太阳电池自下而上依次有背面电极、n型掺杂或p型掺杂的砷化镓层、石墨烯层和正面电极,其中石墨烯层的石墨烯为1~10层。 The graphene/gallium arsenide solar cell of the present invention has back electrode, n-type doped or p-type doped gallium arsenide layer, graphene layer and front electrode successively from bottom to top, wherein the graphene of graphene layer is 1 to 10 floors.
本发明的石墨烯/砷化镓太阳电池的制备方法,包括如下步骤: The preparation method of graphene/gallium arsenide solar cell of the present invention, comprises the steps:
1)在n型掺杂或p型掺杂的砷化镓片的一面制作背面电极;然后放入化学清洗液中浸泡1~30分钟进行表面清洗,取出后吹干; 1) Make the back electrode on one side of the n-type doped or p-doped gallium arsenide wafer; then put it into the chemical cleaning solution for 1-30 minutes to clean the surface, take it out and blow it dry;
2)将石墨烯转移至上述砷化镓片的另一个面上; 2) transfer the graphene to the other side of the gallium arsenide sheet;
3)在石墨烯上制作正面电极。 3) Fabricate the front electrode on graphene.
上述技术方案中所述的石墨烯可以为1~10层。 The graphene described in the above technical solution may have 1-10 layers.
步骤1)中所述的化学清洗液可以为HCl、HNO3、H2SO4、KOH或NaOH的水溶液。 The chemical cleaning solution in step 1) can be an aqueous solution of HCl, HNO 3 , H 2 SO 4 , KOH or NaOH.
所述的背面电极可以是金、钯、银、钛、铜、铂、铬、镍、ITO(氧化铟锡)和AZO(铝掺杂氧化锌)中的一种或几种的复合电极。 The back electrode may be one or a composite electrode of gold, palladium, silver, titanium, copper, platinum, chromium, nickel, ITO (indium tin oxide) and AZO (aluminum-doped zinc oxide).
所述正面电极也可以是金、钯、银、钛、铜、铂、铬、镍、ITO(氧化铟锡)和AZO(铝掺杂氧化锌)中的一种或几种的复合电极。 The front electrode may also be one or more composite electrodes of gold, palladium, silver, titanium, copper, platinum, chromium, nickel, ITO (indium tin oxide) and AZO (aluminum-doped zinc oxide).
本发明与背景技术相比具有的有益效果是: The beneficial effect that the present invention has compared with background technology is:
相较于石墨烯/硅太阳电池而言,本发明的石墨烯/砷化镓太阳电池利用石墨烯材料的高载流子迁移率、高透光性及高导电性,以及由于石墨烯/砷化镓能带结构的影响有利于获得更高的开路电压及转化效率;且本发明的石墨烯/砷化镓太阳电池的制备工艺简单,成本较低,有利于产业化应用。 Compared with graphene/silicon solar cells, the graphene/gallium arsenide solar cell of the present invention utilizes the high carrier mobility, high light transmittance and high conductivity of graphene materials, and due to the graphene/arsenic The influence of the energy band structure of gallium is beneficial to obtain higher open circuit voltage and conversion efficiency; and the preparation process of the graphene/gallium arsenide solar cell of the present invention is simple, the cost is low, and it is beneficial to industrial application.
附图说明 Description of drawings
图1为石墨烯/砷化镓太阳电池的示意图; Fig. 1 is the schematic diagram of graphene/gallium arsenide solar cell;
图2为石墨烯/砷化镓(n型掺杂)太阳电池的能带示意图。 Figure 2 is a schematic diagram of the energy band of a graphene/gallium arsenide (n-type doped) solar cell.
具体实施方式 Detailed ways
以下结合附图进一步说明本发明。 Further illustrate the present invention below in conjunction with accompanying drawing.
参照图1,本发明的石墨烯/砷化镓太阳电池自下而上依次有背面电极1、n型掺杂或p型掺杂的砷化镓层2、石墨烯层3和正面电极4,其中石墨烯层的石墨烯为1~10层。 Referring to Fig. 1, the graphene/gallium arsenide solar cell of the present invention has back electrode 1, n-type doped or p-type doped gallium arsenide layer 2, graphene layer 3 and front electrode 4 successively from bottom to top, Wherein the graphene of the graphene layer is 1-10 layers.
实施例1: Example 1:
1)在n型掺杂的砷化镓片的一面利用电子束蒸发法沉积金电极;然后浸入质量浓度10%的NaOH水溶液中1分钟进行表面清洗,之后取出吹干; 1) Deposit a gold electrode on one side of the n-type doped gallium arsenide sheet by electron beam evaporation; then immerse it in 10% NaOH aqueous solution for 1 minute to clean the surface, then take it out and dry it;
2)将单层石墨烯转移至表面清洁的砷化镓片的另一个面上; 2) transfer single-layer graphene to the other side of the surface-cleaned gallium arsenide wafer;
3)在石墨烯上利用热蒸发工艺沉积银电极,得到石墨烯/砷化镓太阳电池。 3) Deposit silver electrodes on graphene by thermal evaporation process to obtain graphene/gallium arsenide solar cells.
最终得到的石墨烯/砷化镓太阳能电池的基本原理基于石墨烯和砷化镓形成的肖特基结,由图2所示的石墨烯/ n型掺杂砷化镓太阳电池的能带示意图可见,砷化镓具有合适的禁带宽度将太阳能转化为电能,石墨烯的功函数大于n型掺杂的砷化镓的功函数,在两个材料相接触时就会形成肖特基结,结势垒由两个材料的功函数的差值决定。 The basic principle of the finally obtained graphene/gallium arsenide solar cell is based on the Schottky junction formed by graphene and gallium arsenide, as shown in Fig. It can be seen that gallium arsenide has a suitable band gap to convert solar energy into electrical energy. The work function of graphene is greater than that of n-type doped gallium arsenide. When the two materials are in contact, a Schottky junction will be formed. The junction barrier is determined by the difference in the work functions of the two materials.
实施例2: Example 2:
1)在p型掺杂的砷化镓片的一面利用磁控溅射沉积钯电极;然后浸入质量浓度20%的HCl水溶液中15分钟进行表面清洗,之后取出吹干; 1) Deposit a palladium electrode on one side of the p-type doped gallium arsenide sheet by magnetron sputtering; then immerse in 20% HCl aqueous solution for 15 minutes to clean the surface, and then take it out and dry it;
2)将10层石墨烯转移至表面清洁的砷化镓片的另一个面上; 2) Transfer 10 layers of graphene to the other side of the surface-cleaned GaAs wafer;
4)在石墨烯上利用热蒸发工艺沉积镍电极,得到石墨烯/砷化镓太阳电池。 4) Deposit nickel electrodes on graphene by thermal evaporation process to obtain graphene/gallium arsenide solar cells.
实施例3: Example 3:
1)在n型掺杂的砷化镓片的一面利用脉冲激光沉积铬/钛电极;然后浸入质量浓度10%的HNO3水溶液中30分钟进行表面清洗,之后取出吹干; 1) Deposit chromium/titanium electrodes on one side of the n-type doped gallium arsenide wafer by pulsed laser; then immerse in 10% HNO 3 aqueous solution for 30 minutes to clean the surface, then take it out and dry it;
2)将2层石墨烯转移至表面清洁的砷化镓片的另一个面上; 2) Transfer 2 layers of graphene to the other side of the surface-cleaned GaAs wafer;
3)在石墨烯上丝网印刷银电极,得到石墨烯/砷化镓太阳电池。 3) Screen-print silver electrodes on graphene to obtain graphene/gallium arsenide solar cells.
实施例4 Example 4
1)在n型掺杂的砷化镓片的一面利用热蒸发工艺沉积铬/金电极;然后浸入质量浓度10%的H2SO4水溶液中20分钟进行表面清洗,之后取出吹干; 1) Deposit chromium/gold electrodes on one side of the n-type doped gallium arsenide wafer by thermal evaporation process; then immerse in 10% H 2 SO 4 aqueous solution for 20 minutes to clean the surface, and then take it out and dry it;
2)将6层石墨烯转移至表面清洁的砷化镓片的另一个面上; 2) Transfer 6 layers of graphene to the other side of the surface-cleaned GaAs wafer;
3)在石墨烯上磁控溅射钛/镍电极,得到石墨烯/砷化镓太阳电池。 3) Magnetron sputtering titanium/nickel electrodes on graphene to obtain graphene/gallium arsenide solar cells. the
实施例5 Example 5
1)在n型掺杂的砷化镓片的一面利用磁控溅射沉积铜/ITO电极;然后浸入质量浓度10%的KOH水溶液中20分钟进行表面清洗,之后取出吹干; 1) Deposit copper/ITO electrodes on one side of the n-type doped gallium arsenide wafer by magnetron sputtering; then immerse in 10% KOH aqueous solution for 20 minutes to clean the surface, then take it out and dry it;
2)将8层石墨烯转移至表面清洁的砷化镓片的另一个面上; 2) Transfer 8 layers of graphene to the other side of the surface-cleaned gallium arsenide wafer;
3)在石墨烯上磁控溅射AZO/铂电极,得到石墨烯/砷化镓太阳电池。 3) Magnetron sputtering AZO/platinum electrodes on graphene to obtain graphene/gallium arsenide solar cells.
实施例6 Example 6
1)在n型掺杂的砷化镓片的一面利用磁控溅射沉积AZO/铂电极;然后浸入质量浓度30%的HCl水溶液中10分钟进行表面清洗,之后取出吹干; 1) Deposit AZO/platinum electrodes on one side of the n-type doped gallium arsenide wafer by magnetron sputtering; then immerse in 30% HCl aqueous solution for 10 minutes to clean the surface, then take it out and dry it;
2)将单层石墨烯转移至表面清洁的砷化镓片的另一个面上; 2) transfer single-layer graphene to the other side of the surface-cleaned gallium arsenide wafer;
3)在石墨烯上磁控溅射铜/ITO电极,得到石墨烯/砷化镓太阳电池。 3) Magnetron sputtering copper/ITO electrodes on graphene to obtain graphene/gallium arsenide solar cells.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410456736.XA CN104241415A (en) | 2014-09-10 | 2014-09-10 | Graphene/gallium arsenide solar cell and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410456736.XA CN104241415A (en) | 2014-09-10 | 2014-09-10 | Graphene/gallium arsenide solar cell and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104241415A true CN104241415A (en) | 2014-12-24 |
Family
ID=52229161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410456736.XA Pending CN104241415A (en) | 2014-09-10 | 2014-09-10 | Graphene/gallium arsenide solar cell and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104241415A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104576787A (en) * | 2014-12-29 | 2015-04-29 | 浙江大学 | Electric field controlled graphene/gallium arsenide solar cell and preparation method thereof |
CN104576804A (en) * | 2014-12-29 | 2015-04-29 | 浙江大学 | Graphene/indium phosphide solar cell and preparation method thereof |
CN104779315A (en) * | 2015-04-08 | 2015-07-15 | 浙江大学 | Graphene/indium phosphide photoelectric detector and preparation method thereof |
CN106409988A (en) * | 2016-12-09 | 2017-02-15 | 中国科学院微电子研究所 | Preparation method of graphene/gallium arsenide solar cell |
CN106449790A (en) * | 2016-12-09 | 2017-02-22 | 中国科学院微电子研究所 | Graphene/gallium arsenide solar cell |
CN107437568A (en) * | 2016-05-26 | 2017-12-05 | 中国科学院物理研究所 | A kind of photovoltaic devices and a kind of method for producing photovoltaic effect |
WO2019227825A1 (en) * | 2018-05-30 | 2019-12-05 | 华南理工大学 | High-performance quantum dot intermediate band graphene-schottky junction solar cell and preparation thereof |
CN110783423A (en) * | 2019-09-09 | 2020-02-11 | 浙江大学 | Graphene/aluminum oxide/gallium arsenide terahertz detector and manufacturing method thereof |
CN113690341A (en) * | 2021-07-26 | 2021-11-23 | 华南理工大学 | Graphene/GaAs solar cell with arrayed micro-nano lens structure and preparation method thereof |
CN114373865A (en) * | 2021-12-14 | 2022-04-19 | 华南理工大学 | perovskite/GaAs unijunction hybrid solar cell and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102376787A (en) * | 2011-11-04 | 2012-03-14 | 电子科技大学 | Graphene solar cell and preparation method thereof |
CN103311323A (en) * | 2013-06-21 | 2013-09-18 | 杭州格蓝丰纳米科技有限公司 | Graphene/silicon solar cell and manufacturing method thereof |
CN204230261U (en) * | 2014-09-10 | 2015-03-25 | 浙江大学 | A kind of Graphene/gallium arsenide solar cell |
-
2014
- 2014-09-10 CN CN201410456736.XA patent/CN104241415A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102376787A (en) * | 2011-11-04 | 2012-03-14 | 电子科技大学 | Graphene solar cell and preparation method thereof |
CN103311323A (en) * | 2013-06-21 | 2013-09-18 | 杭州格蓝丰纳米科技有限公司 | Graphene/silicon solar cell and manufacturing method thereof |
CN204230261U (en) * | 2014-09-10 | 2015-03-25 | 浙江大学 | A kind of Graphene/gallium arsenide solar cell |
Non-Patent Citations (1)
Title |
---|
WENJING JIE, FENGANG ZHENG, JIANHUA HAO: "Graphene/gallium arsenide-based Schottky junction solar cells", 《APPLIED PHYSICS LETTERS》, vol. 103, no. 23, 5 December 2013 (2013-12-05), XP012179076, DOI: doi:10.1063/1.4839515 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104576804A (en) * | 2014-12-29 | 2015-04-29 | 浙江大学 | Graphene/indium phosphide solar cell and preparation method thereof |
CN104576787A (en) * | 2014-12-29 | 2015-04-29 | 浙江大学 | Electric field controlled graphene/gallium arsenide solar cell and preparation method thereof |
CN104576787B (en) * | 2014-12-29 | 2017-03-22 | 浙江大学 | Electric field controlled graphene/gallium arsenide solar cell and preparation method thereof |
CN104779315A (en) * | 2015-04-08 | 2015-07-15 | 浙江大学 | Graphene/indium phosphide photoelectric detector and preparation method thereof |
CN107437568A (en) * | 2016-05-26 | 2017-12-05 | 中国科学院物理研究所 | A kind of photovoltaic devices and a kind of method for producing photovoltaic effect |
CN107437568B (en) * | 2016-05-26 | 2019-04-05 | 中国科学院物理研究所 | A kind of photovoltaic devices and a kind of method for generating photovoltaic effect |
CN106409988A (en) * | 2016-12-09 | 2017-02-15 | 中国科学院微电子研究所 | Preparation method of graphene/gallium arsenide solar cell |
CN106409988B (en) * | 2016-12-09 | 2018-02-02 | 中国科学院微电子研究所 | Preparation method of graphene/gallium arsenide solar cell |
CN106449790A (en) * | 2016-12-09 | 2017-02-22 | 中国科学院微电子研究所 | Graphene/gallium arsenide solar cell |
WO2019227825A1 (en) * | 2018-05-30 | 2019-12-05 | 华南理工大学 | High-performance quantum dot intermediate band graphene-schottky junction solar cell and preparation thereof |
CN110783423A (en) * | 2019-09-09 | 2020-02-11 | 浙江大学 | Graphene/aluminum oxide/gallium arsenide terahertz detector and manufacturing method thereof |
CN113690341A (en) * | 2021-07-26 | 2021-11-23 | 华南理工大学 | Graphene/GaAs solar cell with arrayed micro-nano lens structure and preparation method thereof |
CN114373865A (en) * | 2021-12-14 | 2022-04-19 | 华南理工大学 | perovskite/GaAs unijunction hybrid solar cell and preparation method thereof |
CN114373865B (en) * | 2021-12-14 | 2023-08-22 | 华南理工大学 | perovskite/GaAs single junction hybrid solar cell and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104241415A (en) | Graphene/gallium arsenide solar cell and manufacturing method thereof | |
CN104993006B (en) | A kind of silicon heterogenous solar cell of transition metal oxide and preparation method thereof | |
CN104576788B (en) | Enhanced Graphene/cadmium-Te solar battery of a kind of cadmium selenide and preparation method thereof | |
CN104269452A (en) | Perovskite solar battery made of silicon-based thin-film materials and manufacturing method thereof | |
CN113206123A (en) | Perovskite/crystalline silicon laminated cell and preparation method thereof | |
CN110970562A (en) | Perovskite/crystalline silicon laminated solar cell and preparation method thereof | |
JP2012186415A (en) | Manufacturing method of photoelectric conversion element, photoelectric conversion element, and tandem-type photoelectric conversion element | |
CN204230261U (en) | A kind of Graphene/gallium arsenide solar cell | |
CN102368503B (en) | CNT (carbon nano tube)-silicon heterojunction solar cell and manufacturing method thereof | |
CN104332522B (en) | Graphene double-junction solar battery and preparation method thereof | |
CN106409988B (en) | Preparation method of graphene/gallium arsenide solar cell | |
CN105449018A (en) | Solar cell and preparation method thereof | |
CN104051580B (en) | Silicon solar cell and manufacturing method thereof | |
CN103311323B (en) | A kind of graphene/silicon solar cell and manufacture method thereof | |
CN104851935B (en) | A kind of Graphene/indium phosphide solar cell of electric field regulation and control and preparation method thereof | |
CN106784068A (en) | Graphene/gallium arsenide solar cell | |
CN103227228B (en) | P-type silicon substrate heterojunction cell | |
CN105449016A (en) | Graphene silicon solar cell and manufacturing method | |
CN104115283B (en) | Solar cell module and method of fabricating the same | |
CN107706248A (en) | A kind of silicon nanostructure heterojunction solar battery and preparation method thereof | |
CN108878594B (en) | A silicon heterojunction photovoltaic cell and its manufacturing method | |
CN207441751U (en) | A kind of homojunction perovskite thin film solar cell | |
CN104037324A (en) | Perovskite hybrid solar cell based on cadmium sulfide nanoarray | |
CN106449849A (en) | Graphene/copper zinc tin sulfur (CZTS) thin-film solar battery and production method thereof | |
CN104134706B (en) | Graphene silicon solar cell and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141224 |