CN104576788B - Enhanced Graphene/cadmium-Te solar battery of a kind of cadmium selenide and preparation method thereof - Google Patents
Enhanced Graphene/cadmium-Te solar battery of a kind of cadmium selenide and preparation method thereof Download PDFInfo
- Publication number
- CN104576788B CN104576788B CN201410827635.9A CN201410827635A CN104576788B CN 104576788 B CN104576788 B CN 104576788B CN 201410827635 A CN201410827635 A CN 201410827635A CN 104576788 B CN104576788 B CN 104576788B
- Authority
- CN
- China
- Prior art keywords
- layer
- graphene
- cadmium
- electrode
- cadmium selenide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 82
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 238000002360 preparation method Methods 0.000 title abstract description 7
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 83
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 24
- 239000011247 coating layer Substances 0.000 claims description 16
- 239000002096 quantum dot Substances 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 239000011787 zinc oxide Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 238000007747 plating Methods 0.000 abstract 4
- 230000009466 transformation Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 5
- 229910001887 tin oxide Inorganic materials 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001548 drop coating Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/123—Active materials comprising only Group II-VI materials, e.g. CdS, ZnS or HgCdTe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/161—Photovoltaic cells having only PN heterojunction potential barriers comprising multiple PN heterojunctions, e.g. tandem cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/164—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种新型太阳能电池及其制造方法,尤其涉及硒化镉增强的石墨烯/碲化镉太阳电池及其制备方法,属于太阳能电池技术领域。The invention relates to a novel solar cell and a manufacturing method thereof, in particular to a cadmium selenide-enhanced graphene/cadmium telluride solar cell and a preparation method thereof, belonging to the technical field of solar cells.
背景技术Background technique
太阳能电池作为一种新型绿色能源,是人类的可持续发展最重要的可再生能源。目前,晶体硅太阳能电池占据市场~90%的份额。但与常规发电相比,太阳电池发电成本仍然较高,限制了其广泛应用。太阳电池发电成本较高的原因之一是电池制造成本较高及光电转化效率较低。As a new type of green energy, solar cells are the most important renewable energy for the sustainable development of human beings. Currently, crystalline silicon solar cells account for ~90% of the market. However, compared with conventional power generation, the cost of solar cell power generation is still high, which limits its wide application. One of the reasons for the high cost of solar cell power generation is the high cost of cell manufacturing and low photoelectric conversion efficiency.
自石墨烯材料发现以来,其在电学、光学、磁学以及力学方面表现出的优异性质如极高的载流子迁移率、高透光新、高的杨氏模量等引发了石墨烯在诸多领域应用的憧憬。其中石墨烯在太阳能电池领域的应用研究为石墨烯在能源领域的应用打开了大门。目前,已有研究者利用石墨烯以及硅材料形成的异质结做成太阳能电池,最高转化效率达到14.5%,且在很大程度上简化了传统太阳能电池制造工艺,可以大大降低生产制造成本。对于太阳能电池应用来说,硅材料禁带宽度较窄,同时是间接禁带,不是最理想的基础材料。碲化镉具有较合适的禁带宽度,也是直接带隙材料,预期可以获得更高的转化效率。石墨烯/碲化镉异质结太阳能电池的研究到目前为止还未有报道,在此基础上,本发明提出了硒化镉增强的石墨烯/碲化镉太阳能电池,硒化镉量子点层或薄膜层的加入可以大大提升石墨烯/碲化镉异质结太阳能电池的转化效率。Since the discovery of graphene materials, its excellent properties in electricity, optics, magnetism and mechanics, such as extremely high carrier mobility, high light transmittance, high Young's modulus, etc. The vision of application in many fields. Among them, the application research of graphene in the field of solar cells has opened the door for the application of graphene in the field of energy. At present, researchers have used the heterojunction formed by graphene and silicon materials to make solar cells, with a maximum conversion efficiency of 14.5%, which greatly simplifies the traditional solar cell manufacturing process and can greatly reduce manufacturing costs. For solar cell applications, the silicon material has a narrow band gap and an indirect band gap, so it is not the ideal basic material. Cadmium telluride has a more suitable forbidden band width and is also a direct band gap material, and it is expected to obtain higher conversion efficiency. The research on graphene/cadmium telluride heterojunction solar cells has not been reported so far, on this basis, the present invention proposes graphene/cadmium telluride solar cells enhanced by cadmium selenide, cadmium selenide quantum dot layer Or the addition of a thin film layer can greatly improve the conversion efficiency of graphene/cadmium telluride heterojunction solar cells.
发明内容Contents of the invention
本发明的目的在于提供一种光转化效率高且制备工艺简单的硒化镉增强的石墨烯/碲化镉太阳电池及其制备方法。The object of the present invention is to provide a cadmium selenide-enhanced graphene/cadmium telluride solar cell with high light conversion efficiency and simple preparation process and a preparation method thereof.
本发明的硒化镉增强的石墨烯/碲化镉太阳电池,自下而上依次有衬底、导电镀膜层、碲化镉层、石墨烯层及硒化镉层,所述的太阳电池还设有第一电极和第二电极,第一电极设置在导电镀膜层上,第二电极设置在石墨烯层上。The cadmium selenide-enhanced graphene/cadmium telluride solar cell of the present invention has a substrate, a conductive coating layer, a cadmium telluride layer, a graphene layer and a cadmium selenide layer in sequence from bottom to top, and the solar cell also has A first electrode and a second electrode are provided, the first electrode is arranged on the conductive coating layer, and the second electrode is arranged on the graphene layer.
所述的导电镀膜层可以为金属、ITO、FTO、n型掺杂氧化锌或p型掺杂氧化锌。The conductive coating layer can be metal, ITO, FTO, n-type doped zinc oxide or p-type doped zinc oxide.
所述的石墨烯层中的石墨烯通常为1-10层。The graphene in the graphene layer is usually 1-10 layers.
所述的硒化镉层可以为硒化镉薄膜或硒化镉量子点层,所述的硒化镉量子点直径为1nm-1μm。The cadmium selenide layer can be a cadmium selenide thin film or a cadmium selenide quantum dot layer, and the diameter of the cadmium selenide quantum dots is 1 nm-1 μm.
所述的衬底可以为刚性衬底或柔性衬底。The substrate can be a rigid substrate or a flexible substrate.
所述的第一电极和第二电极均可为金、钯、银、钛、铬和镍中的一种或几种的复合电极。Both the first electrode and the second electrode can be one or more composite electrodes of gold, palladium, silver, titanium, chromium and nickel.
制备上述的硒化镉增强的石墨烯/碲化镉太阳电池的方法,包括如下步骤:The method for preparing the above-mentioned cadmium selenide-enhanced graphene/cadmium telluride solar cell comprises the following steps:
1)在洁净的衬底上生长导电镀膜层;1) Grow a conductive coating layer on a clean substrate;
2)在导电镀膜层上沉积碲化镉层,并在导电镀膜层表面预留生长第一电极的面积;2) Depositing a cadmium telluride layer on the conductive coating layer, and reserving an area for growing the first electrode on the surface of the conductive coating layer;
3)将石墨烯转移至碲化镉层上;3) transfer graphene onto the cadmium telluride layer;
4)在石墨烯层上制作硒化镉层,并在石墨烯层表面预留生长第二电极的面积;4) Make a cadmium selenide layer on the graphene layer, and reserve an area for growing the second electrode on the surface of the graphene layer;
5)在导电镀膜层上沉积第一电极,并在石墨烯层上沉积第二电极。5) Depositing the first electrode on the conductive coating layer, and depositing the second electrode on the graphene layer.
本发明与现有技术相比具有的有益效果是:本发明的硒化镉增强的石墨烯/碲化镉太阳电池,通过向石墨烯/碲化镉太阳电池中加入硒化镉量子点层或薄膜层,可起到光掺杂作用,使得该太阳电池的光电转化效率在原基础上提升50%左右,此外,与传统晶体硅太阳能电池制造工艺相比,本发明的太阳电池的制备工艺简单,成本较低,便于推广。The beneficial effect that the present invention has compared with prior art is: the graphene/cadmium telluride solar cell that cadmium selenide strengthens of the present invention, by adding cadmium selenide quantum dot layer or The thin film layer can play the role of light doping, so that the photoelectric conversion efficiency of the solar cell is increased by about 50% on the original basis. In addition, compared with the traditional crystalline silicon solar cell manufacturing process, the preparation process of the solar cell of the present invention is simple. The cost is low and it is easy to promote.
附图说明:Description of drawings:
图1为硒化镉增强的石墨烯/碲化镉太阳电池的结构示意图;Fig. 1 is the structural representation of the graphene/cadmium telluride solar cell enhanced by cadmium selenide;
图2为硒化镉增强的石墨烯/碲化镉太阳电池的能带示意图。Fig. 2 is a schematic diagram of energy bands of CdSe-enhanced graphene/CdTe solar cells.
具体实施方式detailed description
下面结合附图和具体实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
参照图1,本发明的硒化镉增强的石墨烯/碲化镉太阳电池自下而上依次有衬底1、导电镀膜层2、碲化镉层3、石墨烯层4及硒化镉层6,所述的太阳电池还设有第一电极5和第二电极7,第一电极5设置在导电镀膜层2上,第二电极7设置在石墨烯层4上。Referring to Fig. 1, the graphene/cadmium telluride solar cell enhanced by cadmium selenide of the present invention has substrate 1, conductive coating layer 2, cadmium telluride layer 3, graphene layer 4 and cadmium selenide layer successively from bottom to top 6. The solar cell is further provided with a first electrode 5 and a second electrode 7 , the first electrode 5 is disposed on the conductive coating layer 2 , and the second electrode 7 is disposed on the graphene layer 4 .
实施例1:Example 1:
1)将聚酰亚胺柔性衬底在去离子水中清洗干净并吹干;1) Clean the polyimide flexible substrate in deionized water and dry it;
2)在聚酰亚胺柔性衬底上利用磁控溅射沉积40纳米厚的掺铟氧化锡;2) Deposit 40 nm thick indium-doped tin oxide on polyimide flexible substrate by magnetron sputtering;
3)在掺铟氧化锡层上利用物理气相沉积技术沉积6微米厚的碲化镉层,并在ITO层上预留生长第一电极的面积;3) Deposit a cadmium telluride layer with a thickness of 6 microns on the indium-doped tin oxide layer by physical vapor deposition technology, and reserve an area for growing the first electrode on the ITO layer;
4)将单层石墨烯转移至碲化镉层上;4) Transfer single-layer graphene onto the cadmium telluride layer;
5)在石墨烯上旋涂硒化镉量子点溶液,并在石墨烯上预留生长第二电极的面积;所述硒化镉量子点直径为1nm-1μm;5) Spin-coat the cadmium selenide quantum dot solution on the graphene, and reserve an area for growing the second electrode on the graphene; the diameter of the cadmium selenide quantum dot is 1nm-1μm;
6)在石墨烯预留面积处以及ITO层上预留面积处涂覆银浆并烘干;得到硒化镉增强的石墨烯/碲化镉太阳能电池。6) Coating silver paste on the reserved area of the graphene and the reserved area on the ITO layer and drying; a graphene/cadmium telluride solar cell enhanced by cadmium selenide is obtained.
得到的硒化镉增强的石墨烯/碲化镉太阳电池的能带结构示意图如附图2所示,光照情况下在硒化镉量子点和碲化镉层中产生的电子均向石墨烯中注入,而碲化镉层收集空穴,从而产生电势差,由于硒化镉层的光掺杂作用可显著提高太阳电池的光电转化效率。The energy band structure diagram of the graphene/cadmium telluride solar cell strengthened by the cadmium selenide obtained is as shown in accompanying drawing 2, and the electron that produces in the cadmium selenide quantum dot and the cadmium telluride layer under the illumination situation is all to the graphene Injection, while the cadmium telluride layer collects holes, thereby generating a potential difference. Due to the light doping effect of the cadmium selenide layer, the photoelectric conversion efficiency of the solar cell can be significantly improved.
实施例2:Example 2:
1)将玻璃衬底在去离子水中清洗干净并吹干;1) Clean the glass substrate in deionized water and dry it;
2)在玻璃衬底上利用磁控溅射沉积200纳米厚的掺氟氧化锡;2) Deposit 200 nm thick fluorine-doped tin oxide on a glass substrate by magnetron sputtering;
3)在掺氟氧化锡层上利用物理气相沉积技术沉积8微米厚的碲化镉层,并在FTO层上预留生长第一电极的面积;3) Deposit an 8-micron-thick cadmium telluride layer on the fluorine-doped tin oxide layer using physical vapor deposition technology, and reserve an area for growing the first electrode on the FTO layer;
4)将三层石墨烯转移至碲化镉层上;4) Transfer three layers of graphene onto the cadmium telluride layer;
5)在石墨烯上喷涂硒化镉量子点溶液,并在石墨烯层上预留生长第二电极的面积;所述硒化镉量子点直径为1nm-1μm;5) Spraying the cadmium selenide quantum dot solution on the graphene, and reserve the area for growing the second electrode on the graphene layer; the diameter of the cadmium selenide quantum dot is 1nm-1μm;
6)在石墨烯层预留面积处以及掺氟氧化锡层上预留面积处热蒸发金电极;得到硒化镉增强的石墨烯/碲化镉太阳电池。6) Thermally evaporate gold electrodes on the reserved area of the graphene layer and the reserved area on the fluorine-doped tin oxide layer; obtain a graphene/cadmium telluride solar cell enhanced by cadmium selenide.
实施例3:Example 3:
1)将陶瓷衬底在去离子水中清洗干净并吹干;1) Clean the ceramic substrate in deionized water and dry it;
2)在陶瓷衬底上利用电子束蒸发沉积60纳米厚的镍金属;2) Deposit 60nm-thick nickel metal on a ceramic substrate by electron beam evaporation;
3)在镍金属层上利用化学水浴法沉积5微米厚的碲化镉层,并在镍金属层上预留生长第一电极的面积;3) Deposit a cadmium telluride layer with a thickness of 5 microns on the nickel metal layer by chemical water bath method, and reserve an area for growing the first electrode on the nickel metal layer;
4)将10层石墨烯转移至碲化镉层上;4) Transfer 10 layers of graphene onto the cadmium telluride layer;
5)在石墨烯上制备硒化镉薄膜,并在石墨烯层上预留生长第二电极的面积;5) Prepare a cadmium selenide film on graphene, and reserve an area for growing the second electrode on the graphene layer;
6)在石墨烯层预留面积处以及镍金属层上预留面积处丝网印刷银电极;得到硒化镉增强的石墨烯/碲化镉太阳电池。6) Silver electrodes are screen-printed on the reserved area of the graphene layer and the reserved area on the nickel metal layer; a cadmium selenide-enhanced graphene/cadmium telluride solar cell is obtained.
实施例4:Example 4:
1)将陶瓷衬底在去离子水中清洗干净并烘干;1) Clean the ceramic substrate in deionized water and dry it;
2)在陶瓷衬底上利用电子束蒸发沉积60纳米厚的镍金属;2) Deposit 60nm-thick nickel metal on a ceramic substrate by electron beam evaporation;
3)在镍金属层上利用化学水浴法沉积5微米厚的碲化镉层,并在镍金属层上预留生长第一电极的面积;3) Deposit a cadmium telluride layer with a thickness of 5 microns on the nickel metal layer by chemical water bath method, and reserve an area for growing the first electrode on the nickel metal layer;
4)将10层石墨烯转移至碲化镉层上;4) Transfer 10 layers of graphene onto the cadmium telluride layer;
5)在石墨烯上滴涂硒化镉量子点溶液,并在石墨烯层上预留生长第二电极的面积;所述硒化镉量子点直径为1nm-1μm;5) Drop-coating the cadmium selenide quantum dot solution on the graphene, and reserve the area for growing the second electrode on the graphene layer; the diameter of the cadmium selenide quantum dot is 1nm-1μm;
6)在石墨烯上预留面积处以及镍金属层上预留面积处丝网印刷银电极;得到硒化镉增强的石墨烯/碲化镉太阳电池。6) Screen-print silver electrodes on the reserved area on the graphene and the reserved area on the nickel metal layer; obtain a graphene/cadmium telluride solar cell enhanced by cadmium selenide.
实施例5:Example 5:
1)将聚对苯二甲酸乙二醇酯衬底在去离子水中清洗干净并吹干;1) Clean the polyethylene terephthalate substrate in deionized water and dry it;
2)在聚对苯二甲酸乙二醇酯衬底上利用脉冲激光沉积100纳米厚的掺铝氧化锌;2) Deposit 100nm-thick Al-doped ZnO on a polyethylene terephthalate substrate by pulsed laser;
3)在掺铝氧化锌层上利用蒸汽压沉积技术沉积10微米厚的碲化镉层,并在掺铝氧化锌上预留生长第一电极的面积;3) Deposit a cadmium telluride layer with a thickness of 10 microns on the aluminum-doped zinc oxide layer by vapor pressure deposition technology, and reserve an area for growing the first electrode on the aluminum-doped zinc oxide layer;
4)将8层石墨烯转移至碲化镉层上;4) Transfer 8 layers of graphene onto the cadmium telluride layer;
5)在石墨烯上旋涂硒化镉量子点溶液,并在石墨烯层上预留生长第二电极的面积;所述硒化镉量子点直径为1nm-1μm;5) Spin-coat the cadmium selenide quantum dot solution on the graphene, and reserve an area for growing the second electrode on the graphene layer; the diameter of the cadmium selenide quantum dot is 1nm-1μm;
6)在石墨烯层预留面积处以及掺铝氧化锌层预留面积处热蒸发钯、银、钛复合电极;得到硒化镉增强的石墨烯/碲化镉太阳电池。6) Thermally evaporate palladium, silver, and titanium composite electrodes at the reserved area of the graphene layer and the reserved area of the aluminum-doped zinc oxide layer; obtain a graphene/cadmium telluride solar cell enhanced by cadmium selenide.
实施例6:Embodiment 6:
1)将碳化硅衬底在去离子水中清洗干净并吹干;1) Clean the silicon carbide substrate in deionized water and dry it;
2)在碳化硅衬底上利用金属有机化学气相沉积150纳米厚的掺铝氧化锌;2) Metal-organic chemical vapor deposition of aluminum-doped zinc oxide with a thickness of 150 nm on a silicon carbide substrate;
3)在掺铝氧化锌层上利用蒸汽压沉积技术沉积3微米厚的碲化镉层,并在掺铝氧化锌层上预留生长第一电极的面积;3) Deposit a cadmium telluride layer with a thickness of 3 microns on the aluminum-doped zinc oxide layer by vapor pressure deposition technology, and reserve an area for growing the first electrode on the aluminum-doped zinc oxide layer;
4)将6层石墨烯转移至碲化镉层上;4) Transferring 6 layers of graphene onto the cadmium telluride layer;
5)在石墨烯上制备硒化镉薄膜,并在石墨烯层上预留生长第二电极的面积;5) Prepare a cadmium selenide film on graphene, and reserve an area for growing the second electrode on the graphene layer;
6)在石墨烯层预留面积处以及掺铝氧化锌层预留面积处热蒸发铬、镍复合电极;得到硒化镉增强的石墨烯/碲化镉太阳电池。6) Thermally evaporate chromium and nickel composite electrodes at the reserved area of the graphene layer and the reserved area of the aluminum-doped zinc oxide layer; obtain a cadmium selenide-enhanced graphene/cadmium telluride solar cell.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410827635.9A CN104576788B (en) | 2014-12-29 | 2014-12-29 | Enhanced Graphene/cadmium-Te solar battery of a kind of cadmium selenide and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410827635.9A CN104576788B (en) | 2014-12-29 | 2014-12-29 | Enhanced Graphene/cadmium-Te solar battery of a kind of cadmium selenide and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104576788A CN104576788A (en) | 2015-04-29 |
CN104576788B true CN104576788B (en) | 2017-03-29 |
Family
ID=53092422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410827635.9A Active CN104576788B (en) | 2014-12-29 | 2014-12-29 | Enhanced Graphene/cadmium-Te solar battery of a kind of cadmium selenide and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104576788B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105206701B (en) * | 2015-10-13 | 2017-01-25 | 山西国惠光电科技有限公司 | A photodetector directly deposited on a readout circuit and its preparation method |
CN106505115B (en) * | 2016-10-17 | 2018-11-13 | 浙江大学 | Quantum dot light doped graphene/boron nitride/gallium nitride ultraviolet detector and preparation method thereof |
CN106449859A (en) * | 2016-11-30 | 2017-02-22 | 庞倩桃 | A gallium arsenide quantum dot enhanced infrared detector and its preparation method |
CN106449858A (en) * | 2016-11-30 | 2017-02-22 | 庞倩桃 | A kind of zinc oxide quantum dot enhanced ultraviolet detector and its preparation method |
CN106770466A (en) * | 2016-11-30 | 2017-05-31 | 庞倩桃 | Enhanced gas sensor of a kind of iron oxide quantum dot and preparation method thereof |
CN106546633A (en) * | 2016-12-07 | 2017-03-29 | 成都聚智工业设计有限公司 | Enhanced gas sensor of a kind of nickel oxide nanoparticle and preparation method thereof |
CN109065647A (en) * | 2018-10-18 | 2018-12-21 | 君泰创新(北京)科技有限公司 | Solar battery and preparation method thereof |
CN109852390B (en) * | 2019-03-15 | 2022-03-01 | 苏州科技大学 | Electrochemiluminescence material based on cadmium telluride quantum dot/redox graphene compound and preparation method and application thereof |
CN114182891A (en) * | 2021-12-13 | 2022-03-15 | 浙江东南网架股份有限公司 | Novel daylighting top film photovoltaic roof panel and connecting device thereof |
CN116314424B (en) * | 2022-12-21 | 2024-11-29 | 深圳大学 | Multiband ultraviolet photoelectric detector and preparation method thereof |
CN116875958B (en) * | 2023-09-07 | 2023-12-19 | 北京理工大学 | Cr 5 Te 8 Electromagnetic wave-absorbing material of @ expanded graphite and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101299443A (en) * | 2008-06-17 | 2008-11-05 | 四川大学 | Flexible cadmium telluride thin-film solar cell structure |
CN102097218A (en) * | 2009-12-11 | 2011-06-15 | 中国科学院物理研究所 | Quantum-dot-sensitized solar cell |
CN102176382A (en) * | 2011-01-31 | 2011-09-07 | 中国科学院上海硅酸盐研究所 | Method for preparing grapheme-quantum dot composite film and solar battery structured by using same |
KR20140087383A (en) * | 2012-12-28 | 2014-07-09 | 포항공과대학교 산학협력단 | Manufacturing method of quantum dot solar cell |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120002583A (en) * | 2009-03-06 | 2012-01-06 | 유니버시티 오브 플로리다 리서치 파운데이션, 인크. | Organic-Inorganic Nanoparticle Hybrid Solar Cells Stable in Air |
KR101300790B1 (en) * | 2012-04-16 | 2013-08-29 | 고려대학교 산학협력단 | Cdte thin film solar cell having diffusion barriers and manufacturing method thereof |
-
2014
- 2014-12-29 CN CN201410827635.9A patent/CN104576788B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101299443A (en) * | 2008-06-17 | 2008-11-05 | 四川大学 | Flexible cadmium telluride thin-film solar cell structure |
CN102097218A (en) * | 2009-12-11 | 2011-06-15 | 中国科学院物理研究所 | Quantum-dot-sensitized solar cell |
CN102176382A (en) * | 2011-01-31 | 2011-09-07 | 中国科学院上海硅酸盐研究所 | Method for preparing grapheme-quantum dot composite film and solar battery structured by using same |
KR20140087383A (en) * | 2012-12-28 | 2014-07-09 | 포항공과대학교 산학협력단 | Manufacturing method of quantum dot solar cell |
Non-Patent Citations (1)
Title |
---|
A low-cost non-toxic post-growth activation step for CdTe solar cells;J.D.Major,R.E.Treharne,L.J.Phillips & K.Durose;《Nature》;20140625;第511卷;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN104576788A (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104576788B (en) | Enhanced Graphene/cadmium-Te solar battery of a kind of cadmium selenide and preparation method thereof | |
CN105679861B (en) | A kind of two-dimensional material/heterogeneous semiconductor joint solar cell of surface plasma enhancing and preparation method thereof | |
CN109888110B (en) | Preparation method of laminated perovskite solar cell | |
CN104201287B (en) | Perovskite based flexible film solar cell and preparation method thereof | |
Okuya et al. | Fabrication of dye-sensitized solar cells by spray pyrolysis deposition (SPD) technique | |
CN104241415A (en) | Graphene/gallium arsenide solar cell and manufacturing method thereof | |
CN107546289A (en) | A kind of antimony selenide thin-film solar cells and preparation method thereof | |
CN102569480B (en) | Cuprous oxide-based PIN-junction solar battery of nano structure and preparation method thereof | |
CN104851935B (en) | A kind of Graphene/indium phosphide solar cell of electric field regulation and control and preparation method thereof | |
CN103219159A (en) | A preparation method of CuxS (x=1–2) counter electrode for quantum dot-sensitized solar cells | |
CN104332522A (en) | Graphene double-junction solar battery and preparation method thereof | |
CN209963073U (en) | Novel high-efficiency double-sided incident light CdTe perovskite laminated photovoltaic cell | |
CN106098820A (en) | A kind of novel antimony selenide thin-film solar cells and preparation method thereof | |
CN110416413B (en) | A kind of perovskite solar cell with high-performance gradient electron transport layer and its preparation method | |
CN106449858A (en) | A kind of zinc oxide quantum dot enhanced ultraviolet detector and its preparation method | |
JP5641981B2 (en) | Photoelectric conversion element that can be manufactured by a method suitable for mass production | |
Miglani et al. | Architectural innovations in perovskite solar cells | |
CN204230261U (en) | A kind of Graphene/gallium arsenide solar cell | |
CN106684179A (en) | Antimony selenide double-junction thin-film solar cell and preparation method thereof | |
CN106449849A (en) | Graphene/copper zinc tin sulfur (CZTS) thin-film solar battery and production method thereof | |
CN105845829B (en) | A perovskite solar cell | |
CN104576787B (en) | Electric field controlled graphene/gallium arsenide solar cell and preparation method thereof | |
CN106449859A (en) | A gallium arsenide quantum dot enhanced infrared detector and its preparation method | |
CN105720199A (en) | Large-area organic thin-film solar battery and preparation method thereof | |
CN104600147A (en) | Grapheme/cadmium telluride solar battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |