CN102980159B - The manufacture method of heat abstractor, heat abstractor and there is the LED light source of this heat abstractor - Google Patents
The manufacture method of heat abstractor, heat abstractor and there is the LED light source of this heat abstractor Download PDFInfo
- Publication number
- CN102980159B CN102980159B CN201210457637.4A CN201210457637A CN102980159B CN 102980159 B CN102980159 B CN 102980159B CN 201210457637 A CN201210457637 A CN 201210457637A CN 102980159 B CN102980159 B CN 102980159B
- Authority
- CN
- China
- Prior art keywords
- heat
- conducting
- substrate
- porous structure
- structure layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title abstract description 8
- 238000004519 manufacturing process Methods 0.000 title abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 69
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 12
- 239000002861 polymer material Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 239000004568 cement Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000084 colloidal system Substances 0.000 claims description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 3
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 3
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 3
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052845 zircon Inorganic materials 0.000 claims description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 2
- 239000004411 aluminium Substances 0.000 claims 1
- 229960004643 cupric oxide Drugs 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 230000017525 heat dissipation Effects 0.000 abstract description 42
- 230000000694 effects Effects 0.000 abstract description 8
- 239000010408 film Substances 0.000 description 21
- 230000005855 radiation Effects 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Led Device Packages (AREA)
Abstract
本发明公开了一种散热装置、散热装置的制造方法及具有该散热装置的LED光源,散热装置用于对LED芯片进行散热,散热装置包括第一导热基板和多孔结构层,LED芯片与第一导热基板的一侧热接触,多孔结构层与第一导热基板的另一侧热接触。通过上述方式,本发明散热装置具有优异的散热效果。
The invention discloses a heat dissipation device, a manufacturing method of the heat dissipation device and an LED light source provided with the heat dissipation device. The heat dissipation device is used for dissipating heat from an LED chip. One side of the thermally conductive substrate is in thermal contact, and the porous structure layer is in thermal contact with the other side of the first thermally conductive substrate. Through the above method, the heat dissipation device of the present invention has an excellent heat dissipation effect.
Description
技术领域technical field
本发明涉及一种半导体器件,尤其涉及一种散热装置、散热装置的制造方法及具有该散热装置的LED光源。The invention relates to a semiconductor device, in particular to a heat dissipation device, a manufacturing method of the heat dissipation device and an LED light source with the heat dissipation device.
背景技术Background technique
由于发光二极管具有低耗电量、低发热量、寿命长等优点;因此,在电子显示及照明等领域,发光二极管正在逐渐取代能耗高、寿命短的传统照明灯具。Because light-emitting diodes have the advantages of low power consumption, low heat generation, and long life; therefore, in the fields of electronic display and lighting, light-emitting diodes are gradually replacing traditional lighting fixtures with high energy consumption and short life.
现有发光二极管光源包括发光芯片和导热基板,发光芯片设置于导热基板上。发光芯片在执行预定的工作时,通常会产生很大的热量;这些热量需要通过导热基板散发出去。倘若这些热量无法有效地被逸散,将会影响到发光二极管光源的正常运行。The existing light-emitting diode light source includes a light-emitting chip and a heat-conducting substrate, and the light-emitting chip is arranged on the heat-conducting substrate. When light-emitting chips perform predetermined work, they usually generate a lot of heat; this heat needs to be dissipated through a thermally conductive substrate. If the heat cannot be effectively dissipated, it will affect the normal operation of the LED light source.
发明内容Contents of the invention
本发明主要解决的技术问题是提供一种具有改进的散热效果的散热装置、散热装置的制造方法及具有该散热装置的LED光源。The technical problem mainly solved by the present invention is to provide a heat dissipation device with improved heat dissipation effect, a manufacturing method of the heat dissipation device and an LED light source with the heat dissipation device.
为解决上述技术问题,本发明采用的一个技术方案是:提供一种散热装置,用于对LED芯片进行散热,散热装置包括第一导热基板和多孔结构层,LED芯片与第一导热基板的一侧热接触,多孔结构层与第一导热基板的另一侧热接触;多孔结构层由多孔高分子材料、红外热辐射粉末以及稀释剂按照一定比例均匀混合后烘烤形成,或者包括发泡水泥材料和掺杂于发泡水泥材料中的红外热辐射粉末;多孔高分子材料包括多孔油墨、多孔胶体和多孔塑料中的至少一种,红外热辐射粉末包括石墨、氧化铝、白炭黑、锆英砂、二氧化硅、氧化钴、氧化镁、二氧化锰、氧化镍、氧化钛、氧化铜、氧化铬、氧化铁、氧化钼、碳化硅中的至少一种;散热装置进一步包括形成于第一导热基板上的导热薄膜层,导热薄膜层的导热率大于第一导热基板,导热薄膜层与LED芯片热接触,且导热薄膜层、多孔结构层和第一导热基板的侧面面积大于LED芯片的侧面面积。In order to solve the above-mentioned technical problems, a technical solution adopted by the present invention is to provide a heat dissipation device for dissipating heat from the LED chip, the heat dissipation device includes a first heat-conducting substrate and a porous structure layer, and a part of the LED chip and the first heat-conducting substrate Side thermal contact, the porous structure layer is in thermal contact with the other side of the first heat-conducting substrate; the porous structure layer is formed by uniformly mixing porous polymer material, infrared heat radiation powder and diluent according to a certain proportion and then baking, or including foamed cement Material and infrared heat radiation powder mixed in the foamed cement material; the porous polymer material includes at least one of porous ink, porous colloid and porous plastic, and the infrared heat radiation powder includes graphite, aluminum oxide, white carbon black, zirconium At least one of British sand, silicon dioxide, cobalt oxide, magnesium oxide, manganese dioxide, nickel oxide, titanium oxide, copper oxide, chromium oxide, iron oxide, molybdenum oxide, and silicon carbide; A heat-conducting film layer on a heat-conducting substrate, the thermal conductivity of the heat-conducting film layer is greater than that of the first heat-conducting substrate, the heat-conducting film layer is in thermal contact with the LED chip, and the side areas of the heat-conducting film layer, the porous structure layer, and the first heat-conducting substrate are greater than that of the LED chip side area.
其中,多孔结构层直接形成于第一导热基板的另一侧上。Wherein, the porous structure layer is directly formed on the other side of the first heat conducting substrate.
其中,散热装置进一步包括第二导热基板,多孔结构层形成于第二导热基板的一侧上,第二导热基板的另一侧与第一导热基板的另一侧热接触。Wherein, the heat dissipation device further includes a second heat conduction substrate, the porous structure layer is formed on one side of the second heat conduction substrate, and the other side of the second heat conduction substrate is in thermal contact with the other side of the first heat conduction substrate.
其中,第二导热基板和多孔结构层的侧面面积大于第一导热基板的侧面面积。Wherein, the side area of the second heat conduction substrate and the porous structure layer is larger than the side area of the first heat conduction substrate.
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种LED光源,LED光源包括LED芯片和如上所述的散热装置。In order to solve the above technical problems, another technical solution adopted by the present invention is to provide an LED light source, which includes an LED chip and the heat dissipation device as described above.
本发明的有益效果是:区别于现有技术的情况,本发明散热装置包括第一导热基板和与第一导热基板的一侧热接触的多孔结构层;该多孔结构层比以往散热基板多了一种散热途径——辐射散热,同时使得散热装置的表面积增加,增强散热装置的热传导效率;该多孔结构层具有的特殊的结构还能提高散热装置的热对流效率;加之,多孔结构层产生的虹吸效应能够将空气中的水分吸收进空隙,热流的热量将蒸发空隙中的水分,进而使水蒸汽散发到周围空气中,从而进一步增强散热装置的散热效果。The beneficial effects of the present invention are: different from the situation of the prior art, the heat dissipation device of the present invention includes a first heat conduction substrate and a porous structure layer in thermal contact with one side of the first heat conduction substrate; A heat dissipation method - radiation heat dissipation, which increases the surface area of the heat dissipation device and enhances the heat conduction efficiency of the heat dissipation device; the special structure of the porous structure layer can also improve the heat convection efficiency of the heat dissipation device; in addition, the porous structure layer produces The siphon effect can absorb the moisture in the air into the gap, and the heat of the heat flow will evaporate the moisture in the gap, and then make the water vapor dissipate into the surrounding air, thereby further enhancing the heat dissipation effect of the heat sink.
附图说明Description of drawings
图1是本发明LED光源第一实施例的示意图;Fig. 1 is the schematic diagram of the first embodiment of the LED light source of the present invention;
图2是本发明LED光源第二实施例的示意图。Fig. 2 is a schematic diagram of a second embodiment of the LED light source of the present invention.
图3是本发明散热装置的制造方法的流程图。Fig. 3 is a flow chart of the manufacturing method of the heat sink of the present invention.
具体实施方式detailed description
参阅图1,本发明第一实施例LED光源100包括散热装置1和LED(LightEmittingDiode)芯片2。散热装置1包括导热基板10、多孔结构层11和导热薄膜层12。Referring to FIG. 1 , an LED light source 100 according to the first embodiment of the present invention includes a heat sink 1 and an LED (Light Emitting Diode) chip 2 . The heat dissipation device 1 includes a heat conduction substrate 10 , a porous structure layer 11 and a heat conduction film layer 12 .
LED芯片2、导热薄膜层12、导热基板10和多孔结构层11沿第一方向X依次层叠设置。导热基板10大致呈平板状,包括第一侧面101与第一侧面101相对设置的第二侧面102。第一侧面101、第二侧面102沿垂直于第一方向X的第二方向Y延伸。The LED chip 2 , the heat-conducting film layer 12 , the heat-conducting substrate 10 and the porous structure layer 11 are sequentially stacked along the first direction X. The heat-conducting substrate 10 is roughly flat and includes a first side 101 and a second side 102 opposite to the first side 101 . The first side 101 and the second side 102 extend along a second direction Y perpendicular to the first direction X.
导热基板10是陶瓷、金属或高导热塑料中的一种或多种材料形成的复合层。陶瓷,例如氧化铝、氮化铝等等,金属,例如铜、铝、银等等。即散热装置适用于传统的PCB(PrintedCircuitBoard,印刷电路板)、MCPCB(metalcorePCB,金属芯印制电路板)、DBC(DircetBondingCopper,覆铜陶瓷基板)、陶瓷封装基板、复合基板等。The thermally conductive substrate 10 is a composite layer formed of one or more materials among ceramics, metals or high thermally conductive plastics. Ceramics, such as alumina, aluminum nitride, etc., metals, such as copper, aluminum, silver, etc. That is, the heat dissipation device is suitable for traditional PCB (Printed Circuit Board, printed circuit board), MCPCB (metalcore PCB, metal core printed circuit board), DBC (Dircet Bonding Copper, copper-clad ceramic substrate), ceramic package substrate, composite substrate, etc.
导热薄膜层12形成于导热基板10的第一侧面101上,导热薄膜层12的导热率大于导热基板10。优选地,导热薄膜层12为类金刚石镀层,实际应用中,导热薄膜层12还可以是银、铝、铜等金属薄膜,金刚石薄膜或者氮化铝等陶瓷薄膜等等。The thermally conductive film layer 12 is formed on the first side 101 of the thermally conductive substrate 10 , and the thermal conductivity of the thermally conductive film layer 12 is greater than that of the thermally conductive substrate 10 . Preferably, the heat-conducting film layer 12 is a diamond-like coating. In practical applications, the heat-conducting film layer 12 can also be a metal film such as silver, aluminum, copper, etc., a diamond film or a ceramic film such as aluminum nitride.
LED芯片2设置于导热薄膜层12上,与导热薄膜层12热接触且通过导热薄膜层12与导热基板10的第一侧面101热接触。The LED chip 2 is disposed on the heat-conducting film layer 12 , is in thermal contact with the heat-conducting film layer 12 and is in thermal contact with the first side 101 of the heat-conducting substrate 10 through the heat-conducting film layer 12 .
多孔结构层11与导热基板10的第二侧面102热触。本实施例中,多孔结构层11直接形成于导热基板10的第二侧面102上。多孔结构层11包括多孔高分子材料和掺杂于多孔高分子材料中的红外热辐射粉末、发泡水泥材料和掺杂于发泡水泥材料中的红外辐射粉末。其中,多孔高分子材料包括多孔油墨、多孔胶体、多孔塑料中的至少一种;红外辐射粉末包括石墨、氧化铝、白炭黑、锆英砂、二氧化硅、氧化钴、氧化镁、二氧化锰、氧化镍、氧化钛、氧化铜、氧化铬、氧化铁、氧化钼、碳化硅中的一种或组合。The porous structure layer 11 is in thermal contact with the second side 102 of the thermally conductive substrate 10 . In this embodiment, the porous structure layer 11 is directly formed on the second side 102 of the thermally conductive substrate 10 . The porous structure layer 11 includes porous polymer material and infrared heat radiation powder doped in the porous polymer material, foamed cement material and infrared radiation powder mixed in the foamed cement material. Wherein, the porous polymer material includes at least one of porous ink, porous colloid, and porous plastic; the infrared radiation powder includes graphite, alumina, white carbon black, zircon sand, silicon dioxide, cobalt oxide, magnesium oxide, One or a combination of manganese, nickel oxide, titanium oxide, copper oxide, chromium oxide, iron oxide, molybdenum oxide, and silicon carbide.
由于LED芯片2、导热薄膜层12、导热基板10、多孔结构层11沿第一方向X层叠设置,且上述元件均大致呈片状或板状。为了叙述方便,特定义上述元件沿第二方向Y上的表面为侧面,此处所述侧面包括导热基板10的第一侧面101和第二侧面102。Since the LED chip 2 , the heat-conducting film layer 12 , the heat-conducting substrate 10 , and the porous structure layer 11 are stacked along the first direction X, and the above-mentioned components are generally in the shape of a sheet or a plate. For the convenience of description, the surface of the above-mentioned components along the second direction Y is specifically defined as a side, where the side includes the first side 101 and the second side 102 of the thermally conductive substrate 10 .
为了取得较佳的散热效果,导热薄膜层12、导热基板10和多孔结构层11的侧面面积均大于LED芯片2的侧面面积。本实施例中,因导热薄膜层12和多孔结构层11均直接分别形成在导热基板10的第一侧面101和第二侧面102上,因此,导热基板10的侧面面积大于或等于导热薄膜层12或多孔结构11的侧面面积。In order to achieve a better heat dissipation effect, the side areas of the heat-conducting film layer 12 , the heat-conducting substrate 10 and the porous structure layer 11 are all larger than the side areas of the LED chip 2 . In this embodiment, since the heat-conducting film layer 12 and the porous structure layer 11 are directly formed on the first side 101 and the second side 102 of the heat-conducting substrate 10 respectively, the side area of the heat-conducting substrate 10 is greater than or equal to that of the heat-conducting film layer 12. Or the lateral area of the porous structure 11.
请参照图2,本发明第二实施例LED光源100’包括散热装置1’和LED(LightEmittingDiode)芯片2。散热装置1’包括沿第一方向X依次层叠设置的导热薄膜层12’、第一导热基板10’、第二导热基板13和多孔结构层11’。第一导热基板10’包括沿第二方向Y延伸的第一侧面101’和第二侧面102’。第二导热基板13包括沿第二方向Y延伸的第一侧面131和第二侧面132。Please refer to FIG. 2 , an LED light source 100' according to the second embodiment of the present invention includes a heat sink 1' and an LED (Light Emitting Diode) chip 2. The heat dissipation device 1' includes a heat conduction thin film layer 12', a first heat conduction substrate 10', a second heat conduction substrate 13 and a porous structure layer 11' stacked in sequence along the first direction X. The first heat-conducting substrate 10' includes a first side 101' and a second side 102' extending along the second direction Y. The second heat-conducting substrate 13 includes a first side 131 and a second side 132 extending along the second direction Y.
与第一实施例LED光源100相比,本实施例LED光源100’的多孔结构层11’形成于第二导热基板13的第二侧面132上,导热薄膜层12’形成于第一导热基板10’的第一侧面101’上,第二导热基板13的第一侧面131与第一导热基板10’的第二侧面102’热接触。Compared with the LED light source 100 of the first embodiment, the porous structure layer 11 ′ of the LED light source 100 ′ of this embodiment is formed on the second side 132 of the second heat-conducting substrate 13 , and the heat-conducting film layer 12 ′ is formed on the first heat-conducting substrate 10 On the first side 101' of ', the first side 131 of the second heat-conducting substrate 13 is in thermal contact with the second side 102' of the first heat-conducting substrate 10'.
为了取得较佳的散热效果,第二导热基板13和多孔结构层11’的侧面面积大于第一导热基板10’的侧面面积设置。In order to achieve a better heat dissipation effect, the side area of the second heat conduction substrate 13 and the porous structure layer 11' is set larger than the side area of the first heat conduction substrate 10'.
与现有技术相比,本发明LED光源100、100’的散热装置1、1’包括第一导热基板10、10’和与第一导热基板的一侧热接触的多孔结构层11、11’;该多孔结构层11、11’具有的多孔结构比以往散热基板多了一种散热途径——辐射散热,同时使得散热装置的表面积增加,因此散热装置的热传导效率得到提高;该多孔结构层11、11’具有的多孔的结构还能提高散热装置的热对流效率;加之,多孔结构层11、11’产生的虹吸效应能够将空气中的水分吸收进空隙,热流的热量将蒸发空隙中的水分,进而使水蒸汽散发到周围空气中,从而进一步增强散热装置的散热效果。Compared with the prior art, the heat dissipation device 1, 1' of the LED light source 100, 100' of the present invention includes a first heat conduction substrate 10, 10' and a porous structure layer 11, 11' in thermal contact with one side of the first heat conduction substrate The porous structure of the porous structure layer 11, 11' has one more heat dissipation method than the previous heat dissipation substrate - radiation heat dissipation, and at the same time the surface area of the heat dissipation device is increased, so the heat conduction efficiency of the heat dissipation device is improved; the porous structure layer 11 The porous structure of , 11' can also improve the heat convection efficiency of the heat sink; in addition, the siphon effect produced by the porous structure layer 11, 11' can absorb the moisture in the air into the gap, and the heat of the heat flow will evaporate the moisture in the gap , and then make the water vapor dissipate into the surrounding air, thereby further enhancing the heat dissipation effect of the heat dissipation device.
本发明进一步提供一种如上所述的散热装置1或1’。散热装置的具体结构在LED光源中已经详细描述,不再赘述。The present invention further provides a heat dissipation device 1 or 1' as described above. The specific structure of the heat dissipation device has been described in detail in the LED light source, and will not be repeated here.
请一并参照图3,本发明还提供一种散热装置的制作方法,制造方法包括:Please refer to FIG. 3 together. The present invention also provides a method for manufacturing a heat sink. The method includes:
S1,提供导热基板。S1, providing a thermally conductive substrate.
导热基板10是陶瓷、金属或高导热塑料中的一种或多种材料形成的复合层。即散热装置适用于传统的PCB(PrintedCircuitBoard,印刷电路板)、MCPCB(metalcorePCB,金属芯印制电路板)、DBC(DircetBondingCopper,覆铜陶瓷基板)、陶瓷封装基板、复合基板等。The thermally conductive substrate 10 is a composite layer formed of one or more materials among ceramics, metals or high thermally conductive plastics. That is, the heat dissipation device is suitable for traditional PCB (Printed Circuit Board, printed circuit board), MCPCB (metalcore PCB, metal core printed circuit board), DBC (Dircet Bonding Copper, copper-clad ceramic substrate), ceramic package substrate, composite substrate, etc.
S2,将多孔高分子材料、红外热辐射粉末以及稀释剂按照一定比例均匀混合成糊状混合物。S2, uniformly mixing the porous polymer material, the infrared heat radiation powder and the diluent according to a certain proportion to form a paste mixture.
步骤S2中,多孔高分子材料包括多孔油墨、多孔胶体、多孔塑料中的至少一种;红外辐射粉末包括石墨粉、氧化铝粉中的一种或组合。稀释剂优选有机溶剂。In step S2, the porous polymer material includes at least one of porous ink, porous colloid, and porous plastic; the infrared radiation powder includes one or a combination of graphite powder and alumina powder. The diluent is preferably an organic solvent.
S3,将糊状混合物涂覆在导热基板上。S3, coating the paste mixture on the thermally conductive substrate.
通过喷涂、浸液或印刷等方式将糊状混合物均匀涂覆在导热基板的一侧侧面上,使导热基板的一侧侧面形成混合物层。The paste mixture is evenly coated on one side of the thermally conductive substrate by means of spraying, dipping or printing, so that one side of the thermally conductive substrate forms a mixture layer.
S4,烘烤涂覆在导热基板上的糊状混合物,以形成多孔结构层。S4, baking the paste mixture coated on the thermally conductive substrate to form a porous structure layer.
通过上述制作方法制得的散热装置可以直接使用,也可以在导热基板的另一侧侧面上形成或者热连接导热薄膜层后作为散热装置使用。本发明对此不做限制。The heat dissipation device manufactured by the above manufacturing method can be used directly, or can be used as a heat dissipation device after being formed on the other side of the heat conduction substrate or thermally connected with a heat conduction thin film layer. The present invention is not limited thereto.
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only the embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process transformation made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technologies fields, are all included in the scope of patent protection of the present invention in the same way.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210457637.4A CN102980159B (en) | 2012-11-14 | 2012-11-14 | The manufacture method of heat abstractor, heat abstractor and there is the LED light source of this heat abstractor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210457637.4A CN102980159B (en) | 2012-11-14 | 2012-11-14 | The manufacture method of heat abstractor, heat abstractor and there is the LED light source of this heat abstractor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102980159A CN102980159A (en) | 2013-03-20 |
CN102980159B true CN102980159B (en) | 2016-05-18 |
Family
ID=47854414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210457637.4A Active CN102980159B (en) | 2012-11-14 | 2012-11-14 | The manufacture method of heat abstractor, heat abstractor and there is the LED light source of this heat abstractor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102980159B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104990018A (en) * | 2015-06-02 | 2015-10-21 | 南通苏禾车灯配件有限公司 | Environmentally-friendly and energy-saving LED daytime running light and production technology thereof |
CN106482003A (en) * | 2015-09-01 | 2017-03-08 | Bgt材料有限公司 | The method of the LED bulb of manufacture tool Graphene filament |
CN106931331A (en) * | 2015-12-31 | 2017-07-07 | 深圳市光峰光电技术有限公司 | A kind of cooling base and preparation method thereof, related light emitting module and preparation method |
CN106151900A (en) * | 2016-06-20 | 2016-11-23 | 保定威控光电科技有限公司 | A kind of light-duty fluorescence is without dead angle luminescence bulb lamp |
CN106116699A (en) * | 2016-06-21 | 2016-11-16 | 宁波伏尔肯陶瓷科技有限公司 | A kind of silicon carbide ceramics fin and preparation method thereof |
CN107453104B (en) * | 2017-07-13 | 2020-07-24 | Oppo广东移动通信有限公司 | Connector, power supply module and terminal equipment |
CN107606557B (en) * | 2017-11-10 | 2020-04-28 | 江苏斯洛尔集团有限公司 | High-heat-dissipation LED street lamp |
CN109994923A (en) * | 2019-03-26 | 2019-07-09 | 中国科学院半导体研究所 | Temperature detection device and method of making the same |
WO2023159411A1 (en) * | 2022-02-24 | 2023-08-31 | 万德辉 | Radiation-based heat dissipation device for electronic component, and preparation method therefor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1428818A (en) * | 2001-12-28 | 2003-07-09 | 财团法人工业技术研究院 | Method for realizing planarization of ceramic substrate surface by using porous material |
CN201100973Y (en) * | 2007-10-18 | 2008-08-13 | 秦文隆 | Cooling module |
CN201487854U (en) * | 2009-07-08 | 2010-05-26 | 庄育丰 | High thermal conductivity LED lamp |
CN201844377U (en) * | 2010-09-02 | 2011-05-25 | 袁志贤 | Light-emitting diode (LED) light source heat sink |
CN102143649A (en) * | 2011-03-16 | 2011-08-03 | 深圳市华星光电技术有限公司 | PCB board with heat radiation structure and processing method thereof |
CN102353027A (en) * | 2011-09-19 | 2012-02-15 | 广东昭信灯具有限公司 | Heat radiation module of LED (light emitting diode) bulb and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7916484B2 (en) * | 2007-11-14 | 2011-03-29 | Wen-Long Chyn | Heat sink having enhanced heat dissipation capacity |
-
2012
- 2012-11-14 CN CN201210457637.4A patent/CN102980159B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1428818A (en) * | 2001-12-28 | 2003-07-09 | 财团法人工业技术研究院 | Method for realizing planarization of ceramic substrate surface by using porous material |
CN201100973Y (en) * | 2007-10-18 | 2008-08-13 | 秦文隆 | Cooling module |
CN201487854U (en) * | 2009-07-08 | 2010-05-26 | 庄育丰 | High thermal conductivity LED lamp |
CN201844377U (en) * | 2010-09-02 | 2011-05-25 | 袁志贤 | Light-emitting diode (LED) light source heat sink |
CN102143649A (en) * | 2011-03-16 | 2011-08-03 | 深圳市华星光电技术有限公司 | PCB board with heat radiation structure and processing method thereof |
CN102353027A (en) * | 2011-09-19 | 2012-02-15 | 广东昭信灯具有限公司 | Heat radiation module of LED (light emitting diode) bulb and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102980159A (en) | 2013-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102980159B (en) | The manufacture method of heat abstractor, heat abstractor and there is the LED light source of this heat abstractor | |
CN101645478A (en) | Light emitting diode (LED) radiating structure | |
US20110001418A1 (en) | High heat dissipation electric circuit board and manufacturing method thereof | |
CN101737750A (en) | Composite heat sink for electrical circuit | |
WO2013139058A1 (en) | Thermal dissipation substrate and manufacturing method therefor | |
CN201796950U (en) | light emitting diode light source structure | |
CN102194790A (en) | Thermoelectric separated metal chip-carrying plate | |
CN201487854U (en) | High thermal conductivity LED lamp | |
KR101619806B1 (en) | Method for manufacturing heatsink and the heatsink thereby | |
JP3211676U (en) | Radiator with circuit by screen printing or spray painting | |
CN102724805A (en) | Composite ceramic substrate with high heat dissipation and high heat conduction characteristics | |
JP2012235096A (en) | Heat dissipation substrate | |
TWI449226B (en) | Thermal structure for led device | |
CN103050607B (en) | LED heat radiation substrate | |
JP3152088U (en) | Electrical circuit composite radiator | |
CN202134575U (en) | LED cooling substrate | |
TWM268738U (en) | Heat dissipation structure for a heat generating device | |
TWI358515B (en) | Heat dissipation structure for light-emitting comp | |
TW201012372A (en) | Thermal conductive insulation material capable of manufacturing composite heat dissipater with electrical circuit | |
TW201010022A (en) | Light emitting diode heatsink | |
CN206430068U (en) | Heat sinks with screen printed or painted circuits | |
CN202167537U (en) | LED light source module | |
CN202691961U (en) | Heat conduction substrate structure of LED bulb | |
CN201820799U (en) | Heat dissipation structure of illuminant | |
CN111093317A (en) | LED aluminum substrate and printing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |