CN102902024A - Method for realizing optical coupling of multi-core fiber and photoelectron chip array - Google Patents
Method for realizing optical coupling of multi-core fiber and photoelectron chip array Download PDFInfo
- Publication number
- CN102902024A CN102902024A CN2012103802700A CN201210380270A CN102902024A CN 102902024 A CN102902024 A CN 102902024A CN 2012103802700 A CN2012103802700 A CN 2012103802700A CN 201210380270 A CN201210380270 A CN 201210380270A CN 102902024 A CN102902024 A CN 102902024A
- Authority
- CN
- China
- Prior art keywords
- waveguide
- core
- chip
- core fiber
- optoelectronic chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 239000000835 fiber Substances 0.000 title claims abstract description 30
- 230000003287 optical effect Effects 0.000 title abstract description 35
- 238000010168 coupling process Methods 0.000 title abstract description 30
- 230000008878 coupling Effects 0.000 title abstract description 29
- 238000005859 coupling reaction Methods 0.000 title abstract description 29
- 239000013307 optical fiber Substances 0.000 claims abstract description 45
- 239000010410 layer Substances 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 12
- 238000009792 diffusion process Methods 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 4
- 238000003776 cleavage reaction Methods 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 239000011241 protective layer Substances 0.000 claims description 3
- 230000007017 scission Effects 0.000 claims description 3
- 238000002513 implantation Methods 0.000 claims 4
- 238000001259 photo etching Methods 0.000 claims 4
- 230000008021 deposition Effects 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000012423 maintenance Methods 0.000 claims 1
- 230000005693 optoelectronics Effects 0.000 abstract description 54
- 125000006850 spacer group Chemical group 0.000 abstract description 13
- 229910000679 solder Inorganic materials 0.000 abstract description 8
- 238000004806 packaging method and process Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005468 ion implantation Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 238000005253 cladding Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000008358 core component Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000306 component Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
Images
Landscapes
- Optical Couplings Of Light Guides (AREA)
Abstract
本发明涉及一种实现多芯光纤和光电子芯片阵列光耦合的方法,包括:将垫块固定在管壳中,然后在垫块上的小凹槽中放入焊料;将光电子芯片放在对应的凹槽中,使焊料融化以固定光电子芯片,再通过打线方式完成光电子芯片的电气连接;将多层波导的端面与垫块的出光面对准后,固定多层波导;调整并固定透镜组的位置,然后对准多芯光纤并固定,实现多芯光纤和光电子芯片阵列光耦合。本发明使用一种多层波导,将多芯光纤呈中心对称排列的模斑转换成呈直线排列的模斑,具有体积小,适合在管壳中进行封装等优点,容易实现低成本、大规模应用。
The invention relates to a method for realizing the optical coupling between a multi-core optical fiber and an optoelectronic chip array, comprising: fixing the spacer in the shell, and then putting solder into the small groove on the spacer; placing the optoelectronic chip in the corresponding In the groove, melt the solder to fix the optoelectronic chip, and then complete the electrical connection of the optoelectronic chip by wire bonding; align the end face of the multilayer waveguide with the light emitting surface of the pad, and fix the multilayer waveguide; adjust and fix the lens group The position of the multi-core fiber is then aligned and fixed to realize optical coupling between the multi-core fiber and the optoelectronic chip array. The invention uses a multi-layer waveguide to convert the mode spots arranged symmetrically in the center of the multi-core optical fiber into the mode spots arranged in a straight line, which has the advantages of small size, suitable for packaging in a tube shell, etc. application.
Description
技术领域 technical field
本发明属于通信用光电子器件领域。涉及一种实现多芯光纤和光电子芯片阵列光耦合的方法。The invention belongs to the field of optoelectronic devices for communication. The invention relates to a method for realizing optical coupling between a multi-core optical fiber and an optoelectronic chip array.
背景技术 Background technique
随着信息的爆炸式增长,对网络带宽的需求持续快速地增长。要获得更大的光通信容量,一个方向是使用更高速的器件,例如100G、400G的光器件,这些高速光器件的技术门槛很高,导致研发周期长,生产成本高。另一个方向是开发空分复用技术,使用多芯光纤来传输光信号。如图1所示,多芯光纤与传统单模光纤的尺寸相当,但在包层中均匀地分布着多根纤芯,这些纤芯能同时独立地传输光信号,因此在同样容量要求下,可以大大降低对器件速率的要求,技术门槛相对较低。With the explosive growth of information, the demand for network bandwidth continues to grow rapidly. To obtain greater optical communication capacity, one direction is to use higher-speed devices, such as 100G and 400G optical devices. These high-speed optical devices have a high technical threshold, resulting in long R&D cycles and high production costs. Another direction is to develop space-division multiplexing technology, which uses multi-core optical fibers to transmit optical signals. As shown in Figure 1, the size of multi-core fiber is comparable to that of traditional single-mode fiber, but multiple cores are evenly distributed in the cladding, and these cores can transmit optical signals simultaneously and independently. Therefore, under the same capacity requirements, It can greatly reduce the requirements on device speed, and the technical threshold is relatively low.
使用这种多芯光纤的同时也带来了一个新的问题,即如何方便地实现多芯光纤和光电子芯片阵列的光耦合。因为多芯光纤中的纤芯通常是呈中心对称排列,而光电子芯片阵列通常是呈直线排列,传统的单模光纤和光电子芯片之间的耦合方式显然不再适用。在多芯光纤和光电子芯片阵列之间必须加上一个合适的模场转换器,以实现中心对称的模场分布和呈直线型模场分布之间的相互转换。The use of this multi-core fiber also brings a new problem, that is, how to conveniently realize the optical coupling between the multi-core fiber and the optoelectronic chip array. Because the cores in the multi-core optical fiber are usually arranged symmetrically to the center, and the optoelectronic chip array is usually arranged in a straight line, the traditional coupling method between the single-mode fiber and the optoelectronic chip is obviously no longer applicable. A suitable mode field converter must be added between the multi-core fiber and the optoelectronic chip array to realize the mutual conversion between the centrosymmetric mode field distribution and the linear mode field distribution.
现有的实现方式有三种,一种是利用块状光学元件来实现,使用透镜组将多芯光纤中的光散开,再用呈中心对称排列的光纤束进行耦合对准,最后在光纤束的另一端与器件进行互联。这种装置实现很复杂,体积较大,生产成本高,不适合大规模应用。There are three existing implementation methods, one is to use block optical components to achieve, use lens groups to spread the light in the multi-core optical fiber, and then use optical fiber bundles arranged symmetrically in the center for coupling alignment, and finally in the optical fiber bundle The other end is connected to the device. This kind of device is very complicated to implement, has a large volume and high production cost, and is not suitable for large-scale application.
另一种是利用拉锥光纤束来实现,即将多根光纤放在一起加热并拉锥,再从中间切开,这样得到的光纤束一端能和多芯光纤的纤芯匹配,另一端则是分散的光纤,可用来与器件进行互联。这种方式占用的空间也很大,不适合放在管壳中和器件一起封装。The other is to use a tapered fiber bundle to achieve, that is, put multiple optical fibers together to heat and tapered, and then cut from the middle, so that one end of the obtained fiber bundle can match the core of the multi-core optical fiber, and the other end is Scattered optical fibers that can be used to interconnect devices. This method also takes up a lot of space, and it is not suitable to be packaged together with the device in a package.
最后一种方案是利用三维波导芯片来实现,使用飞秒激光器直接在衬底材料中加工出三维波导,使其一端呈中心对称分布,与多芯光纤匹配,另一端呈直线排列,与光纤阵列匹配。这种对波导进行三维加工的方式,相关技术并不成熟,成本很高。另外由于激光直写技术更适合加工直波导,而该方式不可避免地存在光路转折,所以会带来额外的损耗。The last solution is to use a three-dimensional waveguide chip to achieve a three-dimensional waveguide directly in the substrate material by using a femtosecond laser, so that one end is symmetrically distributed to match the multi-core optical fiber, and the other end is arranged in a straight line to match the optical fiber array. match. This method of three-dimensional processing of the waveguide is not mature and the cost is very high. In addition, since laser direct writing technology is more suitable for processing straight waveguides, and this method inevitably has an optical path turning, it will bring additional losses.
发明内容 Contents of the invention
本发明所要解决的技术问题是提供一种占用体积小、适合低成本、大规模应用于实现多芯光纤和光电子芯片阵列光耦合的方法。The technical problem to be solved by the present invention is to provide a method for realizing optical coupling between multi-core optical fiber and optoelectronic chip array with small occupation volume, low cost and large-scale application.
为解决上述技术问题,本发明提供了一种实现多芯光纤和光电子芯片阵列光耦合的方法,包括将垫块固定在管壳中,然后在垫块上的小凹槽中放入焊料;将光电子芯片放在对应的凹槽中,使焊料融化以固定光电子芯片,再通过打线方式完成光电子芯片的电气连接;将多层波导的端面与垫块的出光面对准后,固定多层波导;调整并固定透镜组的位置,然后对准多芯光纤并固定,实现多芯光纤和光电子芯片阵列光耦合。In order to solve the above-mentioned technical problem, the present invention provides a kind of method that realizes the optical coupling of multi-core optical fiber and optoelectronic chip array, comprising fixing the spacer in the shell, then putting solder into the small groove on the spacer; Put the optoelectronic chip in the corresponding groove, melt the solder to fix the optoelectronic chip, and then complete the electrical connection of the optoelectronic chip by wire bonding; after aligning the end face of the multilayer waveguide with the light emitting surface of the pad, fix the multilayer waveguide ; adjust and fix the position of the lens group, and then align and fix the multi-core optical fiber to realize the optical coupling between the multi-core optical fiber and the optoelectronic chip array.
所述多层波导制作步骤如下:The manufacturing steps of the multilayer waveguide are as follows:
步骤10、在衬底材料上沉积一层低折射率材料做包层,通过光刻形成两条波导图形,再用扩散或离子注入的方法形成第一层高折射率波导;
步骤11、在步骤10形成的第一层波导芯片上沉积一层衬底层,其高度与所述多芯光纤的纤芯距对应,再通过光刻形成三条波导图形,并用扩散或离子注入的方法形成第二层高折射率波导;
步骤12、在步骤11形成的第二层波导芯片上沉积一层衬底层,其高度与所述多芯光纤的线芯距对应,再通过光刻形成两条波导图形,并用扩散或离子注入的方法形成第三层高折射率波导;
步骤13、生长一层保护层,经过解理,端面处理,镀膜等工艺后,得到多层波导。
所述垫块的实施步骤如下:The implementation steps of the pad are as follows:
先加工出具有三个不同高度的平台,其高度差与所述多芯光纤的纤芯距对应;First process platforms with three different heights, the height difference of which corresponds to the core distance of the multi-core optical fiber;
在对应的光电子芯片安装位置,用刻蚀的方法做出凹槽,其大小与光电子芯片尺寸一致;At the corresponding optoelectronic chip installation position, a groove is made by etching, and its size is consistent with the size of the optoelectronic chip;
在凹槽中再刻蚀出一个小凹槽,最后在平台上印制所需的电路。A small groove is etched in the groove, and finally the required circuit is printed on the platform.
本发明提供的一种实现多芯光纤和光电子芯片阵列光耦合的方法,核心部件为一多层波导,采用平面光波导工艺加工,其优点如下:The present invention provides a method for realizing optical coupling between a multi-core optical fiber and an optoelectronic chip array. The core component is a multi-layer waveguide, which is processed by a planar optical waveguide process. Its advantages are as follows:
1.可以充分利用现有的工艺条件。在一块晶圆上可以一次生产大量多层波导芯片,适合大规模、低成本,高一致性的生产。1. The existing process conditions can be fully utilized. A large number of multilayer waveguide chips can be produced at one time on a wafer, which is suitable for large-scale, low-cost, and high-consistency production.
2.多层波导占用的体积较小,形状规则,可以方便地放置在管壳中,因此更适合与各种形状和用途的光电子芯片一起封装。2. The multilayer waveguide occupies less volume, has a regular shape, and can be conveniently placed in a package, so it is more suitable for packaging with optoelectronic chips of various shapes and purposes.
附图说明 Description of drawings
图1是本发明实施例提供的一种实现多芯光纤和光电子芯片阵列光耦合的方法中多芯光纤截面示意图;1 is a schematic cross-sectional view of a multi-core fiber in a method for realizing optical coupling between a multi-core fiber and an optoelectronic chip array provided by an embodiment of the present invention;
图2是本发明实施例提供的一种实现多芯光纤和光电子芯片阵列光耦合的方法中多芯光纤与光电子芯片阵列光互联示意图;2 is a schematic diagram of optical interconnection between a multi-core fiber and an optoelectronic chip array in a method for realizing optical coupling between a multi-core fiber and an optoelectronic chip array provided by an embodiment of the present invention;
图3是本发明实施例提供的一种实现多芯光纤和光电子芯片阵列光耦合的方法中多层波导与多芯光纤耦合的端面示意图;Fig. 3 is a schematic diagram of an end face of a multi-layer waveguide coupled with a multi-core fiber in a method for realizing optical coupling between a multi-core fiber and an optoelectronic chip array provided by an embodiment of the present invention;
图4是本发明实施例提供的一种实现多芯光纤和光电子芯片阵列光耦合的方法中多层波导与光电子芯片阵列耦合的端面示意图;Fig. 4 is a schematic diagram of an end face of a multi-layer waveguide coupled with an optoelectronic chip array in a method for realizing optical coupling between a multi-core optical fiber and an optoelectronic chip array provided by an embodiment of the present invention;
图5是本发明实施例提供的一种实现多芯光纤和光电子芯片阵列光耦合的方法中装有光电子芯片阵列后的垫块示意图;Fig. 5 is a schematic diagram of a spacer equipped with an optoelectronic chip array in a method for realizing optical coupling between a multi-core optical fiber and an optoelectronic chip array provided by an embodiment of the present invention;
图6是本发明实施例提供的一种实现多芯光纤和光电子芯片阵列光耦合的方法中装有圆柱形光电子芯片阵列后的V槽示意图;6 is a schematic diagram of a V-groove after a cylindrical optoelectronic chip array is installed in a method for realizing optical coupling between a multi-core optical fiber and an optoelectronic chip array provided by an embodiment of the present invention;
图7-11是本发明实施例提供的一种实现多芯光纤和光电子芯片阵列光耦合的方法中多层波导的制作流程示意图;7-11 are schematic diagrams of the fabrication process of a multi-layer waveguide in a method for realizing optical coupling between a multi-core optical fiber and an optoelectronic chip array provided by an embodiment of the present invention;
图12是本发明实施例提供的一种实现多芯光纤和光电子芯片阵列光耦合的方法中多层波导制作完成后的效果图;Fig. 12 is an effect diagram after the multi-layer waveguide is fabricated in a method for realizing optical coupling between a multi-core optical fiber and an optoelectronic chip array provided by an embodiment of the present invention;
图13是本发明实施例提供的一种实现多芯光纤和光电子芯片阵列光耦合的方法中垫块的截面示意图;13 is a schematic cross-sectional view of a spacer in a method for realizing optical coupling between a multi-core optical fiber and an optoelectronic chip array according to an embodiment of the present invention;
其中,1—多芯光纤,2—透镜组,3—多层波导,4—垫块,5—光电子芯片,6—多层波导面向多芯光纤的端面,7—多层波导面向光电子芯片阵列的端面,8—焊料,9—衬底层,10-16—波导,17—凹槽,18—小凹槽。Among them, 1—multi-core optical fiber, 2—lens group, 3—multilayer waveguide, 4—block, 5—optoelectronic chip, 6—multilayer waveguide facing the end face of multicore fiber, 7—multilayer waveguide facing the
具体实施方式 Detailed ways
如图1-13所示,本发明提供了一种实现多芯光纤1和光电子芯片5阵列光耦合的方法,以激光器阵列和七芯光纤耦合为例,对本发明进行详细介绍。实现激光器阵列和七芯光纤耦合的具体方法包括以下步骤:As shown in Figures 1-13, the present invention provides a method for realizing the optical coupling of a multi-core optical fiber 1 and an array of
步骤1、将垫块4固定在管壳中,然后在垫块4上的小凹槽18中放入焊料8;Step 1. Fix the
步骤2、将光电子芯片5放在对应的凹槽17中,使焊料8融化以将光电子芯片5固定,再通过打线方式完成光电子芯片5的电气连接,在垫块4的端面就出现了水平方向呈直线性,竖直方向具有等距高度差的模场分布;
步骤3、将多层波导3的端面与垫块4的出光面对准后,固定多层波导3;这样在多层波导3的端面上可出现呈中心对称的模场分布;
步骤4、调整并固定透镜组2的位置,然后对准多芯光纤1并固定,即可实现多芯光纤1和光电子芯片5阵列光耦合。
在进行光耦合之前,必须根据多芯光纤1的尺寸加工出所需的多层波导3和垫块4。Before optical coupling, the required
如图7-11所示,多层波导3可以用平面波导加工工艺来实现。实现多层波导3的制备包括以下步骤:As shown in Figure 7-11, the
步骤10、在衬底材料上沉积一层低折射率材料做包层,通过光刻形成两条波导图形,再用扩散或离子注入的方法形成一层具有两条高折射率的波导10和11的波导芯片;
步骤11、在步骤10形成的一层波导芯片上沉积一层衬底层9,其高度与多芯光纤1的线芯距对应,再用步骤10的方法做出三根波导12、13、14;
步骤12、在步骤11形成的一层波导芯片上再沉积一层与步骤11同样高度的衬底层9,用与步骤10或11同样方法形成两根波导15、16;
步骤13、再生长一层衬底层9作为保护层,经过解理,断面处理,镀膜等工艺,从而得到多层波导3。多层波导3加工完成后,其效果如图12所示。
如图13所示,垫块4可通过以下方式制备:As shown in Figure 13,
步骤20、先在垫块4上加工出具有三个不同高度的平台;Step 20, first process platforms with three different heights on the
步骤30、在平台上光电子芯片5对应的安装位置,用刻蚀的方法做出凹槽17,其大小与光电子芯片5尺寸一致,其高度差必须与多层波导3之间高度差一致;Step 30, at the installation position corresponding to the
步骤40、在凹槽17中再刻蚀出一个小凹槽18,然后在平台上印制所需的电路。垫块4加工完成后,其端面如图13所示。Step 40, etching a
如图1所示,多芯光纤1,其纤芯呈中心对称排列,典型的纤芯数量是七个,也可以是其它个数。如图2所示,透镜组2,其作用是将多芯光纤1和多层波导3之间的光场进行适当的汇聚和准直,以增加耦合容差并提高耦合效率。透镜组2可以是单个透镜,也可以是透镜组。在一些能进行精密耦合的场合下,透镜组2可以省掉,直接将多芯光纤1和多层波导3的端面进行对准。如图3所示,多层波导3是一种具有多层多芯的波导结构,其作用是实现中心对称模场分布和呈直线型模场分布之间的相互转换。多层波导3的一个端面6,其波导呈中心对称分布,与多芯光纤1纤芯分布匹配。如图4所示,多层波导3另一端面7,在水平方向上呈直线分布,竖直方向上具有一定的高度差。如图5所示,垫块4控制光电子芯片5的位置和高度,以实现多层波导3与光电子芯片5阵列的直接对接。光电子芯片5安装位置与多层波导另一端面7的波导位置对应。为了方便光电子芯片5放置和固定,需要在光电子芯片5安装位刻蚀出凹槽17,凹槽17底部填上焊料8。为了方便光电子芯片5列的电气连接,垫块4上必须按需求加工出电路。当光电子芯片5阵列是圆柱形时,可将垫块加工成v槽的形式,如图6所示。本实施例中光电子芯片5可以是通信用的有源芯片、无源芯片或光纤,如激光器芯片,探测器芯片,光纤,半导体光放大器芯片,掺铒光纤放大器芯片等。As shown in FIG. 1 , the cores of the multi-core optical fiber 1 are arranged symmetrically to the center, and the typical number of cores is seven, but other numbers are also possible. As shown in FIG. 2 , the function of the
若光电子芯片5是半导体光放大器,掺铒光纤放大器芯片等,两端都需要和多芯光纤1互连,则需要在光电子芯片5阵列的另一端再使用一个多层波导3和一个透镜组2,实现与另一根多芯光纤1的光耦合。If the
本发明提供的一种实现多芯光纤和光电子芯片阵列光耦合的方法,其核心部件多层波导采用平面光波导工艺加工,可以充分利用现有的工艺条件。在一块晶圆上可以一次生产大量多层波导芯片,适合大规模、低成本,高一致性的生产。多层波导占用的体积较小,形状规则,可以方便地放置在管壳中,因此更适合与适合与各种形状和用途的光电子芯片一起封装。The invention provides a method for realizing optical coupling between a multi-core optical fiber and an optoelectronic chip array. The multilayer waveguide, the core component, is processed by a planar optical waveguide process, which can make full use of the existing process conditions. A large number of multilayer waveguide chips can be produced at one time on a wafer, which is suitable for large-scale, low-cost, and high-consistency production. The multilayer waveguide occupies a small volume and has a regular shape, which can be conveniently placed in a package, so it is more suitable for packaging with optoelectronic chips suitable for various shapes and purposes.
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above specific embodiments are only used to illustrate the technical solutions of the present invention without limitation, although the present invention has been described in detail with reference to examples, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements without departing from the spirit and scope of the technical solution of the present invention shall be covered by the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210380270.0A CN102902024B (en) | 2012-09-29 | 2012-09-29 | Method for realizing optical coupling of multi-core fiber and photoelectron chip array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210380270.0A CN102902024B (en) | 2012-09-29 | 2012-09-29 | Method for realizing optical coupling of multi-core fiber and photoelectron chip array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102902024A true CN102902024A (en) | 2013-01-30 |
CN102902024B CN102902024B (en) | 2015-04-01 |
Family
ID=47574357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210380270.0A Expired - Fee Related CN102902024B (en) | 2012-09-29 | 2012-09-29 | Method for realizing optical coupling of multi-core fiber and photoelectron chip array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102902024B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105676353A (en) * | 2016-04-13 | 2016-06-15 | 上海光芯集成光学股份有限公司 | Interface of optical backboard |
WO2017152721A1 (en) * | 2016-03-09 | 2017-09-14 | 华为技术有限公司 | Optical coupling connector, optical coupling system, and waveguide coupling method |
CN108490546A (en) * | 2018-05-15 | 2018-09-04 | 上海大学 | A kind of light wave guide-mode type converter improving optical waveguide transmission characteristic |
CN108873184A (en) * | 2018-07-17 | 2018-11-23 | 武汉恩达通科技有限公司 | A kind of laser writing optical fiber connector with lateral V-shaped groove |
CN110646881A (en) * | 2019-09-18 | 2020-01-03 | 东南大学 | A three-dimensional optical waveguide transition access device and preparation method thereof |
JP2020013036A (en) * | 2018-07-19 | 2020-01-23 | 日本電信電話株式会社 | Multi-core fiber connector |
CN112180515A (en) * | 2020-10-21 | 2021-01-05 | 深圳市欧亿光电技术有限公司 | Optical switch structure |
CN112540424A (en) * | 2020-12-07 | 2021-03-23 | 中国科学院半导体研究所 | Optical fiber array and manufacturing method thereof |
CN112548323A (en) * | 2020-12-09 | 2021-03-26 | 吉林大学 | Method for improving coupling efficiency by femtosecond laser direct writing waveguide coupling region |
CN113189703A (en) * | 2021-05-17 | 2021-07-30 | 派尼尔科技(天津)有限公司 | Multi-core fiber polarizing beam splitter with double-layer optical waveguide and preparation method thereof |
CN113804671A (en) * | 2021-10-20 | 2021-12-17 | 苏州灵析精密仪器有限公司 | High-sensitivity Raman spectrum detection system |
CN114236686A (en) * | 2021-12-21 | 2022-03-25 | 南京邮电大学 | A kind of multi-layer multi-dimensional photonic integrated chip out/in light structure and preparation method |
CN114613685A (en) * | 2022-03-07 | 2022-06-10 | 杭州光智元科技有限公司 | Packaging method and packaging structure |
CN114690312A (en) * | 2022-03-31 | 2022-07-01 | 武汉邮电科学研究院有限公司 | Multi-dimensional multiplexing of multi-core fiber fan-in and fan-out chips |
WO2022249868A1 (en) * | 2021-05-24 | 2022-12-01 | 住友電気工業株式会社 | Optical connection component and optical wiring |
US11914193B2 (en) | 2021-06-22 | 2024-02-27 | Corning Research & Development Corporation | Optical assembly for coupling with two-dimensionally arrayed waveguides and associated methods |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11880071B2 (en) | 2021-08-23 | 2024-01-23 | Corning Research & Development Corporation | Optical assembly for interfacing waveguide arrays, and associated methods |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5500869A (en) * | 1993-03-23 | 1996-03-19 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser array device, semiconductor laser device, and production methods therefor |
US5887097A (en) * | 1997-07-21 | 1999-03-23 | Lucent Technologies Inc. | Apparatus for pumping an optical fiber laser |
CN1384378A (en) * | 2001-04-23 | 2002-12-11 | 欧姆龙株式会社 | Optical element and optical transceiver and other optical equipment with the optical element |
US20100178007A1 (en) * | 2007-06-19 | 2010-07-15 | Robert Roderick Thomson | Waveguide device |
CN101782669A (en) * | 2009-01-20 | 2010-07-21 | 住友电气工业株式会社 | Optical communication system and arrangement converter |
US20110249940A1 (en) * | 2010-04-13 | 2011-10-13 | Sumitomo Electric Industries, Ltd. | Optical branching device and optical communication system including the same |
-
2012
- 2012-09-29 CN CN201210380270.0A patent/CN102902024B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5500869A (en) * | 1993-03-23 | 1996-03-19 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser array device, semiconductor laser device, and production methods therefor |
US5887097A (en) * | 1997-07-21 | 1999-03-23 | Lucent Technologies Inc. | Apparatus for pumping an optical fiber laser |
CN1384378A (en) * | 2001-04-23 | 2002-12-11 | 欧姆龙株式会社 | Optical element and optical transceiver and other optical equipment with the optical element |
US20100178007A1 (en) * | 2007-06-19 | 2010-07-15 | Robert Roderick Thomson | Waveguide device |
CN101782669A (en) * | 2009-01-20 | 2010-07-21 | 住友电气工业株式会社 | Optical communication system and arrangement converter |
US20110249940A1 (en) * | 2010-04-13 | 2011-10-13 | Sumitomo Electric Industries, Ltd. | Optical branching device and optical communication system including the same |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017152721A1 (en) * | 2016-03-09 | 2017-09-14 | 华为技术有限公司 | Optical coupling connector, optical coupling system, and waveguide coupling method |
US10680412B2 (en) | 2016-03-09 | 2020-06-09 | Huawei Technologies Co., Ltd. | Optical coupling connector, optical coupling system, and waveguide coupling method |
CN105676353B (en) * | 2016-04-13 | 2019-03-19 | 苏州光幔集成光学有限公司 | A kind of light back board interface |
CN105676353A (en) * | 2016-04-13 | 2016-06-15 | 上海光芯集成光学股份有限公司 | Interface of optical backboard |
CN108490546B (en) * | 2018-05-15 | 2020-01-17 | 上海大学 | An optical waveguide mode converter for improving optical waveguide transmission characteristics |
CN108490546A (en) * | 2018-05-15 | 2018-09-04 | 上海大学 | A kind of light wave guide-mode type converter improving optical waveguide transmission characteristic |
CN108873184A (en) * | 2018-07-17 | 2018-11-23 | 武汉恩达通科技有限公司 | A kind of laser writing optical fiber connector with lateral V-shaped groove |
JP7071636B2 (en) | 2018-07-19 | 2022-05-19 | 日本電信電話株式会社 | Multi-core fiber connector |
JP2020013036A (en) * | 2018-07-19 | 2020-01-23 | 日本電信電話株式会社 | Multi-core fiber connector |
WO2020017422A1 (en) * | 2018-07-19 | 2020-01-23 | 日本電信電話株式会社 | Multicore fiber connector |
CN112513702A (en) * | 2018-07-19 | 2021-03-16 | 日本电信电话株式会社 | Multi-core optical fiber connector |
US11454757B2 (en) | 2018-07-19 | 2022-09-27 | Nippon Telegraph And Telephone Corporation | Multi-core fiber connector |
CN110646881A (en) * | 2019-09-18 | 2020-01-03 | 东南大学 | A three-dimensional optical waveguide transition access device and preparation method thereof |
CN112180515A (en) * | 2020-10-21 | 2021-01-05 | 深圳市欧亿光电技术有限公司 | Optical switch structure |
CN112540424A (en) * | 2020-12-07 | 2021-03-23 | 中国科学院半导体研究所 | Optical fiber array and manufacturing method thereof |
CN112548323A (en) * | 2020-12-09 | 2021-03-26 | 吉林大学 | Method for improving coupling efficiency by femtosecond laser direct writing waveguide coupling region |
CN113189703A (en) * | 2021-05-17 | 2021-07-30 | 派尼尔科技(天津)有限公司 | Multi-core fiber polarizing beam splitter with double-layer optical waveguide and preparation method thereof |
WO2022249868A1 (en) * | 2021-05-24 | 2022-12-01 | 住友電気工業株式会社 | Optical connection component and optical wiring |
US11914193B2 (en) | 2021-06-22 | 2024-02-27 | Corning Research & Development Corporation | Optical assembly for coupling with two-dimensionally arrayed waveguides and associated methods |
CN113804671A (en) * | 2021-10-20 | 2021-12-17 | 苏州灵析精密仪器有限公司 | High-sensitivity Raman spectrum detection system |
CN114236686A (en) * | 2021-12-21 | 2022-03-25 | 南京邮电大学 | A kind of multi-layer multi-dimensional photonic integrated chip out/in light structure and preparation method |
CN114236686B (en) * | 2021-12-21 | 2024-10-25 | 南京邮电大学 | Light emitting/in structure of multilayer multidimensional photon integrated chip and preparation method |
CN114613685A (en) * | 2022-03-07 | 2022-06-10 | 杭州光智元科技有限公司 | Packaging method and packaging structure |
CN114690312A (en) * | 2022-03-31 | 2022-07-01 | 武汉邮电科学研究院有限公司 | Multi-dimensional multiplexing of multi-core fiber fan-in and fan-out chips |
Also Published As
Publication number | Publication date |
---|---|
CN102902024B (en) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102902024B (en) | Method for realizing optical coupling of multi-core fiber and photoelectron chip array | |
US10007061B2 (en) | Three-dimensional (3D) photonic chip-to-fiber interposer | |
KR101448574B1 (en) | Optical engine for point-to-point communications | |
KR101057565B1 (en) | Optical waveguide substrate and photovoltaic hybrid circuit mounting substrate using the same | |
US9322987B2 (en) | Multicore fiber coupler between multicore fibers and optical waveguides | |
JP5445579B2 (en) | Optical waveguide module | |
JP7145515B2 (en) | optoelectronic integrated circuits and computing devices | |
JP2010191365A (en) | Optical interconnection mounting circuit | |
US20030174966A1 (en) | Multi-level waveguide | |
CN102819066B (en) | Three-dimensional (3D) converter for coupling multi-core optical fiber and planar optical waveguides and manufacturing method thereof | |
CN103076659A (en) | Multicore-fiber optical interconnection structure | |
CN104765102A (en) | Packaging structure for silicon photon chip | |
CN104793298B (en) | Load board structure with side welding plate and manufacturing method of load board structure | |
JP2019502167A (en) | Optical coupling device and method | |
Chiarulli et al. | Optoelectronic multi-chip modules based on imaging fiber bundle structures | |
JP4511291B2 (en) | Manufacturing method of optical connection device and optical connection device | |
CN106526752B (en) | Directional coupler and coupling process for multimode lightguide 3dB beam splitting | |
JP2013012548A (en) | Optical module and photo-electric hybrid board | |
US20070165979A1 (en) | Optical input substrate, optical output substrate, optical input/output substrate, a fabrication method for these substrates, and an optical element integrated semiconductor integrated circuit | |
CN220252233U (en) | Photoelectric co-packaging integrated structure | |
CN116472480A (en) | Multilayer planar waveguide interconnect | |
US20240353614A1 (en) | Optical communication substrate using glass interposer | |
US11630274B2 (en) | High-density optical communications using multi-core fiber | |
CN102062910A (en) | GPON (Gigabit-Capable PON) module basic unit and manufacturing method thereof | |
CN106371170A (en) | Array waveguide type light path conversion interconnection chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150401 Termination date: 20150929 |
|
EXPY | Termination of patent right or utility model |