CN110646881A - A three-dimensional optical waveguide transition access device and preparation method thereof - Google Patents
A three-dimensional optical waveguide transition access device and preparation method thereof Download PDFInfo
- Publication number
- CN110646881A CN110646881A CN201910879572.4A CN201910879572A CN110646881A CN 110646881 A CN110646881 A CN 110646881A CN 201910879572 A CN201910879572 A CN 201910879572A CN 110646881 A CN110646881 A CN 110646881A
- Authority
- CN
- China
- Prior art keywords
- waveguide
- access device
- dimensional optical
- optical waveguide
- needle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 35
- 230000007704 transition Effects 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title abstract description 9
- 238000005253 cladding Methods 0.000 claims abstract description 30
- 239000010410 layer Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000012792 core layer Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000013307 optical fiber Substances 0.000 claims abstract description 10
- 238000003491 array Methods 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 21
- 239000011162 core material Substances 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 230000032683 aging Effects 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 claims description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 229920000178 Acrylic resin Polymers 0.000 claims 1
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 claims 1
- 230000008878 coupling Effects 0.000 abstract description 12
- 238000010168 coupling process Methods 0.000 abstract description 12
- 238000005859 coupling reaction Methods 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 5
- 239000011229 interlayer Substances 0.000 abstract description 2
- 239000000835 fiber Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007777 multifunctional material Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1228—Tapered waveguides, e.g. integrated spot-size transformers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/14—Mode converters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/12147—Coupler
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/12152—Mode converter
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本发明公开了一种三维立体光波导过渡接入装置及其制备方法,所述三维立体光波导过渡接入装置包括:衬底、固定在衬底上的透明框架、透明框架内的包层和设置在包层中用于光传播和转换光模斑的波导芯层。所述波导芯层由两层平行排列的“S”形弯曲锥形波导阵列构成,其形状上下对称,间隔设置。所述“S”形弯曲锥形波导阵列的宽端与光纤阵列连接,窄端与光子集成波导阵列对准。本发明可以实现紧密排列的双层波导阵列与标准光纤阵列的高效耦合,有效地解决了立体层间波导的耦合问题。此外,本发明的制备方法具有工艺简单,易于实现,可控性强等优点,极大程度上降低了生产成本。
The invention discloses a three-dimensional optical waveguide transition access device and a preparation method thereof. The three-dimensional optical waveguide transition access device comprises: a substrate, a transparent frame fixed on the substrate, a cladding layer in the transparent frame and a A waveguide core layer disposed in the cladding for light propagation and conversion of light mode spots. The waveguide core layer is composed of two layers of "S"-shaped curved conical waveguide arrays arranged in parallel, the shape of which is symmetrical up and down and arranged at intervals. The wide end of the "S"-shaped curved tapered waveguide array is connected with the optical fiber array, and the narrow end is aligned with the photonic integrated waveguide array. The invention can realize the efficient coupling of the closely arranged double-layer waveguide array and the standard optical fiber array, and effectively solve the coupling problem of the three-dimensional interlayer waveguide. In addition, the preparation method of the present invention has the advantages of simple process, easy realization, strong controllability and the like, and greatly reduces the production cost.
Description
技术领域technical field
本发明涉及集成光子器件技术领域,具体来说,涉及一种三维立体光波导过渡接入装置及其制备方法。The invention relates to the technical field of integrated photonic devices, in particular, to a three-dimensional optical waveguide transition access device and a preparation method thereof.
背景技术Background technique
随着光互联技术对于速度和集成密度的要求提高,传统集成光子芯片由于片上空间、损耗、制造容差的限制已经不能满足要求。近年来,三维立体集成技术逐渐引起了人们的关注。多层结构利用三维集成的性质和多功能材料,可以解决传统集成光子平台的发展限制,额外的光器件层可以提供更高密度的集成、更低的损耗、更优良的器件性能和更高的制造容差。但是,多层结构带来上述优点的同时也面临着一个巨大的问题,那就是集成光子芯片的耦合封装。With the increasing requirements of optical interconnection technology for speed and integration density, traditional integrated photonic chips can no longer meet the requirements due to the limitations of on-chip space, loss, and manufacturing tolerances. In recent years, three-dimensional integration technology has gradually attracted people's attention. Multilayer structures exploiting the nature of three-dimensional integration and multifunctional materials can address the development limitations of traditional integrated photonic platforms, and additional optical device layers can provide higher density integration, lower losses, better device performance, and higher manufacturing tolerances. However, while the multi-layer structure brings the above advantages, it also faces a huge problem, that is, the coupling package of the integrated photonic chip.
多层集成光子芯片层与层间的距离为几至几十微米,而标准单模光纤的包层直径约为125微米,光纤较大的包层直径为多层紧密间隔的波导阵列与标准光纤元件的耦合带来了重大的挑战。因此,需要一种过渡装置,来解决立体多层波导与光纤阵列耦合的问题。The distance between the layers of the multi-layer integrated photonic chip is several to tens of microns, while the cladding diameter of a standard single-mode fiber is about 125 microns. Coupling of components presents significant challenges. Therefore, a transition device is needed to solve the problem of coupling between the three-dimensional multilayer waveguide and the optical fiber array.
目前多使用锥形模斑转换器作为过渡装置来实现光子集成芯片与光纤之间的耦合。最常见的是二维锥形模斑转换器,其结构较为简单,仅在水平方向上实现尺寸的变化。然而由于垂直方向上的限制,其模场分布一般为扁平的椭圆形,大大降低了与光纤的耦合效率。三维锥形模斑转换器在水平和垂直方向上均可变化其尺寸,从而提高了与光纤模场的匹配。但是其制备工艺较为复杂,且只能在垂直方向上做尺寸的变化,无法实现垂直方向上弯曲等形状变化,这种三维模斑转换器也只能实现单层光子集成波导与光纤的耦合,不能克服光纤较大的包层直径对多层紧密间隔的波导与光纤元件耦合的限制。At present, the conical mode spot converter is mostly used as a transition device to realize the coupling between the photonic integrated chip and the optical fiber. The most common is the two-dimensional conical mode-spot converter, which has a relatively simple structure and only changes in size in the horizontal direction. However, due to the limitation in the vertical direction, the mode field distribution is generally flat and elliptical, which greatly reduces the coupling efficiency with the fiber. The three-dimensional tapered mode spot converter can vary its dimensions in both the horizontal and vertical directions, thereby improving matching to the fiber mode field. However, its preparation process is relatively complicated, and it can only change the size in the vertical direction, and cannot realize the shape change such as bending in the vertical direction. This three-dimensional mode spot converter can only realize the coupling between the single-layer photonic integrated waveguide and the optical fiber. The limitation of the larger cladding diameter of the fiber to the coupling of multiple layers of closely spaced waveguides to the fiber components cannot be overcome.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的缺陷,本发明的目的在于提供一种三维立体光波导过渡接入装置,克服光纤较大包层直径的限制,实现紧密排列的立体多层波导阵列与标准光纤阵列的耦合。In view of the defects in the prior art, the purpose of the present invention is to provide a three-dimensional optical waveguide transition access device, which overcomes the limitation of the larger cladding diameter of the optical fiber and realizes the coupling of the closely arranged three-dimensional multilayer waveguide array and the standard optical fiber array. .
技术方案:为解决上述技术问题,本发明采用如下的技术方案:Technical scheme: in order to solve the above-mentioned technical problems, the present invention adopts the following technical scheme:
本发明所述的一种三维立体光波导过渡接入装置,包括一个衬底,固定在衬底上的透明框架,在框架内有包层和设置在包层中用于光传播和转换光模斑的波导芯层。波导芯层由两层平行排列的“S”形弯曲锥形波导阵列构成,其形状上下对称,间隔设置。所述“S”形弯曲锥形波导包括宽端和窄端,由窄端到宽端成锥形渐变,不仅在水平和垂直方向上实现尺寸的变化,还在垂直方向上弯曲。所述“S”形弯曲锥形波导阵列的宽端与光纤连接,窄端与光子集成波导对准。The three-dimensional optical waveguide transition access device of the present invention includes a substrate, a transparent frame fixed on the substrate, a cladding layer in the frame and a cladding layer for light propagation and conversion of optical modes. Spotted waveguide core layer. The waveguide core layer is composed of two layers of "S"-shaped curved tapered waveguide arrays arranged in parallel. The "S"-shaped curved tapered waveguide includes a wide end and a narrow end, and is tapered gradually from the narrow end to the wide end, which not only realizes size changes in the horizontal and vertical directions, but also bends in the vertical direction. The wide end of the "S"-shaped curved tapered waveguide array is connected with the optical fiber, and the narrow end is aligned with the photonic integrated waveguide.
本发明还可以采用以下技术措施来进一步优化三维立体光波导过渡接入装置:The present invention can also adopt the following technical measures to further optimize the three-dimensional optical waveguide transition access device:
可选的,装置两端面可以是垂直的,也可以研磨成具有一定倾角的斜端面。Optionally, the two end faces of the device may be vertical, or may be ground into inclined end faces with a certain inclination angle.
可选的,“S”形弯曲锥形波导的宽端和窄端横截面均为圆形,窄端直径为D1,宽端直径为D2。Optionally, the cross sections of the wide end and the narrow end of the "S"-shaped curved tapered waveguide are both circular, the diameter of the narrow end is D1, and the diameter of the wide end is D2.
可选的,每一层中相邻两个“S”形弯曲锥形波导间距为d,两层“S”形弯曲锥形波导阵列间的垂直间距为h。Optionally, the distance between two adjacent "S"-shaped curved tapered waveguides in each layer is d, and the vertical distance between the two "S"-shaped curved tapered waveguide arrays is h.
可选的,上下两层“S”形弯曲锥形波导的位置可以对齐,也可在水平方向上错开一定距离g。Optionally, the positions of the upper and lower layers of the "S"-shaped curved tapered waveguides may be aligned, or may be staggered by a certain distance g in the horizontal direction.
可选的,衬底是硅、二氧化硅、氮化硅或者玻璃等材料。Optionally, the substrate is made of materials such as silicon, silicon dioxide, silicon nitride or glass.
可选的,透明框架是亚克力、玻璃或者环氧树脂聚合物等材料。Optionally, the transparent frame is made of materials such as acrylic, glass or epoxy polymer.
可选的,包层和波导芯层均由紫外固化聚合物材料制成,例如硅酸盐基树脂、变性丙烯酸酯、环氧树脂和有机-无机杂化树脂等。Optionally, both the cladding layer and the waveguide core layer are made of UV-curable polymer materials, such as silicate-based resins, modified acrylates, epoxy resins, organic-inorganic hybrid resins, and the like.
可选的,包层材料的粘度为v1,折射率为n1,芯层材料的粘度为v2,折射率为n2,且v1<v2、n1<n2。Optionally, the viscosity of the cladding material is v1, the refractive index is n1, the viscosity of the core material is v2, and the refractive index is n2, and v1<v2, n1<n2.
本发明还提供一种三维立体光波导过渡接入装置的制备方法,包括以下步骤:The present invention also provides a method for preparing a three-dimensional optical waveguide transition access device, comprising the following steps:
步骤1:取一衬底,用胶水将透明框架固定在衬底上。Step 1: Take a substrate and fix the transparent frame on the substrate with glue.
步骤2:用滴管将液态包层材料均匀分散在框架内,将其充满。Step 2: Use a dropper to spread the liquid cladding material evenly in the frame to fill it up.
步骤3:a)将点胶机的针筒固定在桌面控制机械手臂上。Step 3: a) Fix the syringe of the dispenser on the desktop control robotic arm.
b)把液态芯层材料加入到点胶机的针筒中。b) Add the liquid core material to the syringe of the dispenser.
c)将针头插入到液态包层材料中,通过控制机械手臂设置针头插入的位置和高度、移动轨迹和移动速度。c) Insert the needle into the liquid cladding material, and set the position and height, movement trajectory and movement speed of the needle insertion by controlling the robotic arm.
d)对针筒中的液态芯层材料施加一定的压强,使针头按照设定的速度和轨迹将液态芯层材料分散到液态包层材料中。d) A certain pressure is applied to the liquid core layer material in the needle cylinder, so that the needle head disperses the liquid core layer material into the liquid cladding layer material according to the set speed and trajectory.
e)将针头从液态包层材料中拔出。e) Pull the needle out of the liquid cladding material.
f)重复步骤b)—e)。f) Repeat steps b)-e).
步骤4:在紫外光源下固化,然后在50℃温度条件下老化12小时;Step 4: Curing under UV light source, then aging at 50°C for 12 hours;
步骤5:对三维立体光波导过渡接入装置两端进行切割、研磨和抛光处理。Step 5: Cut, grind and polish both ends of the three-dimensional optical waveguide transition access device.
可选的,波导形状由针头移动轨迹来决定,波导直径大小由压强、针头内径、针头移动速度控制,压强越小、针头内径越小、针头移动速度越快,波导直径越小。Optionally, the shape of the waveguide is determined by the movement trajectory of the needle, and the diameter of the waveguide is controlled by the pressure, the inner diameter of the needle, and the movement speed of the needle.
可选的,在制作波导芯层时,“S”形弯曲锥形波导窄端起始部分以及宽端结束部分包含一段均匀结构,用于后续切割和研磨处理。Optionally, when fabricating the waveguide core layer, the beginning part of the narrow end and the ending part of the wide end of the "S"-shaped curved tapered waveguide contain a section of uniform structure for subsequent cutting and grinding processes.
有益效果:与现有技术相比,本发明具有如下优点:Beneficial effect: Compared with the prior art, the present invention has the following advantages:
1.实现立体多层波导与光纤阵列的耦合。本发明提出一种三维立体光波导过渡接入装置,相比于普通的三维锥形模斑转换装置,不仅实现了尺寸的变化,而且在垂直方向上弯曲,可以将紧密排列的多层波导的层间距(几微米)扩大到几百微米,以克服光纤包层直径的限制,实现立体多层波导阵列与光纤阵列的高效耦合。1. Realize the coupling between the three-dimensional multilayer waveguide and the fiber array. The present invention provides a three-dimensional optical waveguide transition access device. Compared with the common three-dimensional tapered mode spot conversion device, it not only realizes the change in size, but also bends in the vertical direction, which can convert the densely arranged multilayer waveguides into The interlayer spacing (a few microns) is expanded to several hundreds of microns to overcome the limitation of the fiber cladding diameter and realize the efficient coupling of the three-dimensional multilayer waveguide array and the fiber array.
2.工艺简单,成本低。本发明一种三维立体光波导过渡接入装置的制备方法,利用一种新型针管分散方法制作三维立体光波导过渡接入装置,不同于传统光刻方法,无需光掩模,工艺简单,几分钟就可完成制作,很好地降低了生产成本。2. The process is simple and the cost is low. The present invention is a preparation method of a three-dimensional optical waveguide transition access device, which utilizes a novel needle tube dispersion method to manufacture a three-dimensional optical waveguide transition access device, which is different from the traditional photolithography method, does not require a photomask, and has a simple process that takes only a few minutes. The production can be completed, which greatly reduces the production cost.
3.调节方法简便高效,可控性高。本发明三维立体光波导过渡接入装置的制备方法,只需对针头移动轨迹、移动速度、压强等参数进行调节,就可控制波导的形状和尺寸,进而获得性能更加优异的装置。3. The adjustment method is simple and efficient, and the controllability is high. In the preparation method of the three-dimensional optical waveguide transition access device of the present invention, the shape and size of the waveguide can be controlled only by adjusting parameters such as needle movement trajectory, movement speed, and pressure, thereby obtaining a device with better performance.
附图说明Description of drawings
图1是本发明实施例提供的三维立体光波导过渡接入装置的基本结构示意图;1 is a schematic diagram of the basic structure of a three-dimensional optical waveguide transition access device provided by an embodiment of the present invention;
图2是“S”形弯曲锥形波导的局部放大图;Fig. 2 is a partial enlarged view of the "S"-shaped curved tapered waveguide;
图3是本发明三维立体光波导过渡接入装置的前视图;3 is a front view of the three-dimensional optical waveguide transition access device of the present invention;
图4是本发明三维立体光波导过渡接入装置的后视图;4 is a rear view of the three-dimensional optical waveguide transition access device of the present invention;
图5—图9是三维立体光波导过渡接入装置的制备步骤;Fig. 5-Fig. 9 are the preparation steps of the three-dimensional optical waveguide transition access device;
图中有:衬底1、透明框架2、包层3、“S”形弯曲锥形波导4。There are:
具体实施方式Detailed ways
下面将结合附图及实施例对本发明作进一步说明,但本发明不限于实施例。The present invention will be further described below with reference to the accompanying drawings and embodiments, but the present invention is not limited to the embodiments.
如图1所示,本发明三维立体光波导过渡接入装置,包括一个衬底1、在衬底上有一个固定的透明框架2、透明框架内有包层3以及波导芯层(图中未标出)。波导芯层由两层平行排列的“S”形弯曲锥形波导4阵列构成,其形状上下对称,间隔设置。如图2,“S”形弯曲锥形波导4包括宽端和窄端,宽端和窄端截面形状均为圆形,由窄端到宽端成锥形渐变,且在垂直方向上弯曲。宽端直径为10μm,与光纤对准,窄端直径为3μm,与光子集成波导连接。装置两端面均垂直,端面结构如图3和图4所示,所述“S”形弯曲锥形波导4阵列的窄端上下两层的层间距为21um,宽端上下两层的层间距为250μm。每层中相邻“S”形弯曲锥形波导4的横向间距为127μm。As shown in FIG. 1, the three-dimensional optical waveguide transition access device of the present invention includes a
所述衬底1材料是玻璃,透明框架2由亚克力板制成。所述包层3和波导芯层均由美国NORLAND公司的紫外固化光学胶水制成。包层3材料的型号为NOA76,粘度为4,000mPa·s,折射率为1.51。芯层材料的型号为NOA68T,粘度为25,000mPa·s,折射率为1.54。The
本实施例的三维立体光波导过渡接入装置的制备步骤如下:The preparation steps of the three-dimensional optical waveguide transition access device of the present embodiment are as follows:
步骤1:取一尺寸为500mm×150mm的玻璃基板作为衬底,用胶水将透明框架固定在衬底上,与衬底形成一个长300mm,宽100mm,高1mm的凹槽,如图5。Step 1: Take a glass substrate with a size of 500mm×150mm as the substrate, fix the transparent frame on the substrate with glue, and form a groove with a length of 300mm, a width of 100mm and a height of 1mm with the substrate, as shown in Figure 5.
步骤2:用滴管将液态包层材料均匀分散在框架内的凹槽中,将其充满,如图6。Step 2: Use a dropper to evenly disperse the liquid cladding material in the grooves in the frame and fill it up, as shown in Figure 6.
步骤3:a)将内径为20μm的针头安装在点胶机的针筒上,并将点胶机的针筒固定在桌面控制机械手臂上;Step 3: a) Install a needle with an inner diameter of 20 μm on the syringe barrel of the dispensing machine, and fix the syringe barrel of the dispensing machine on the desktop control robotic arm;
b)把液态芯层材料加入到点胶机的针筒中。b) Add the liquid core material to the syringe of the dispenser.
c)将针头插入到液态包层材料中,通过控制机械手臂设置针头插入的位置和高度、移动轨迹和移动速度。c) Insert the needle into the liquid cladding material, and set the position and height, movement trajectory and movement speed of the needle insertion by controlling the robotic arm.
d)对针筒中的液态芯层材料施加150kPa的压强,使针头按照设定的轨迹将液态芯层材料分散到液态包层材料中,在分散过程中,调节针头移动速度其从300mm/s逐渐变化到20mm/s,即可得到“S”形弯曲锥形波导;d) Apply a pressure of 150kPa to the liquid core layer material in the needle cylinder, so that the needle head disperses the liquid core layer material into the liquid cladding material according to the set trajectory. During the dispersion process, adjust the needle head moving speed gradually from 300mm/s. Change to 20mm/s, the "S"-shaped curved tapered waveguide can be obtained;
e)将针头从液态包层材料中拔出;e) pulling the needle out of the liquid cladding material;
f)重复步骤b)—e),即可得到两层“S”形弯曲锥形波导阵列,如图7和图8;f) Repeat steps b)-e) to obtain a two-layer "S"-shaped curved tapered waveguide array, as shown in Figure 7 and Figure 8;
步骤4:在波长为365nm,功率为8W的紫外光源下固化3分钟,然后在50℃温度条件下老化12小时,如图9。Step 4: Curing for 3 minutes under a UV light source with a wavelength of 365nm and a power of 8W, and then aging at a temperature of 50°C for 12 hours, as shown in Figure 9.
步骤5:对三维立体光波导过渡接入装置两端进行切割、研磨和抛光处理。Step 5: Cut, grind and polish both ends of the three-dimensional optical waveguide transition access device.
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。The present invention is not limited to the above-mentioned embodiments. For those skilled in the art, several improvements can be made without departing from the principles of the present invention, and these improvements are also regarded as within the protection scope of the present invention. Contents not described in detail in this specification belong to the prior art known to those skilled in the art.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910879572.4A CN110646881B (en) | 2019-09-18 | 2019-09-18 | Three-dimensional optical waveguide transition access device and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910879572.4A CN110646881B (en) | 2019-09-18 | 2019-09-18 | Three-dimensional optical waveguide transition access device and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110646881A true CN110646881A (en) | 2020-01-03 |
CN110646881B CN110646881B (en) | 2022-02-11 |
Family
ID=69010730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910879572.4A Active CN110646881B (en) | 2019-09-18 | 2019-09-18 | Three-dimensional optical waveguide transition access device and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110646881B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113341502A (en) * | 2021-06-30 | 2021-09-03 | 长飞光纤光缆股份有限公司 | Multi-core fiber coupler based on three-dimensional waveguide and preparation method |
CN114236686A (en) * | 2021-12-21 | 2022-03-25 | 南京邮电大学 | A kind of multi-layer multi-dimensional photonic integrated chip out/in light structure and preparation method |
CN114545551A (en) * | 2020-11-27 | 2022-05-27 | 深南电路股份有限公司 | Polymer waveguide and electronic equipment |
CN114603890A (en) * | 2020-12-08 | 2022-06-10 | 深南电路股份有限公司 | Manufacturing device of organic optical waveguide element and spray head assembly thereof |
CN114721093A (en) * | 2022-03-28 | 2022-07-08 | 深圳技术大学 | Two-photon polymerization 3D printing three-dimensional optical fiber stereo coupler and preparation method thereof |
CN115144960A (en) * | 2022-09-01 | 2022-10-04 | 上海羲禾科技有限公司 | Mode conversion device of multimode output waveguide and high-speed detection system |
WO2023036104A1 (en) * | 2021-09-10 | 2023-03-16 | 中兴通讯股份有限公司 | Optical connector and manufacturing method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040114869A1 (en) * | 2001-06-15 | 2004-06-17 | Fike Eugene E. | Mode converter including tapered waveguide for optically coupling photonic devices |
CN101034186A (en) * | 2007-04-17 | 2007-09-12 | 浙江大学 | Three-dimensional multilayer vertical coupling optical interconnected structure and manufacturing method of soft lithography thereof |
CN102819066A (en) * | 2012-08-20 | 2012-12-12 | 武汉邮电科学研究院 | Three-dimensional (3D) converter for coupling multi-core optical fiber and planar optical waveguides and manufacturing method thereof |
CN102902024A (en) * | 2012-09-29 | 2013-01-30 | 华中科技大学 | Method for realizing optical coupling of multi-core fiber and photoelectron chip array |
CN203241564U (en) * | 2013-05-30 | 2013-10-16 | 青岛海信宽带多媒体技术有限公司 | Optical fiber waveguide spot size converter and optical coupler |
CN107209325A (en) * | 2014-11-11 | 2017-09-26 | 菲尼萨公司 | The photonic system of two-stage thermal insulation coupling |
CN107533196A (en) * | 2015-05-04 | 2018-01-02 | 华为技术有限公司 | Three-dimensional 3D photon chips are to optical fiber inserter |
CN107561640A (en) * | 2017-08-18 | 2018-01-09 | 中国科学院半导体研究所 | Silicon nanowires waveguide and optical coupling structure and preparation method thereof |
CN109283619A (en) * | 2018-11-13 | 2019-01-29 | 苏州易缆微光电技术有限公司 | The spot-size converter and preparation method thereof led based on ELECTRODE WITH BILAYER POLYMERIC object wave |
-
2019
- 2019-09-18 CN CN201910879572.4A patent/CN110646881B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040114869A1 (en) * | 2001-06-15 | 2004-06-17 | Fike Eugene E. | Mode converter including tapered waveguide for optically coupling photonic devices |
CN101034186A (en) * | 2007-04-17 | 2007-09-12 | 浙江大学 | Three-dimensional multilayer vertical coupling optical interconnected structure and manufacturing method of soft lithography thereof |
CN102819066A (en) * | 2012-08-20 | 2012-12-12 | 武汉邮电科学研究院 | Three-dimensional (3D) converter for coupling multi-core optical fiber and planar optical waveguides and manufacturing method thereof |
CN102902024A (en) * | 2012-09-29 | 2013-01-30 | 华中科技大学 | Method for realizing optical coupling of multi-core fiber and photoelectron chip array |
CN203241564U (en) * | 2013-05-30 | 2013-10-16 | 青岛海信宽带多媒体技术有限公司 | Optical fiber waveguide spot size converter and optical coupler |
CN107209325A (en) * | 2014-11-11 | 2017-09-26 | 菲尼萨公司 | The photonic system of two-stage thermal insulation coupling |
CN107533196A (en) * | 2015-05-04 | 2018-01-02 | 华为技术有限公司 | Three-dimensional 3D photon chips are to optical fiber inserter |
CN107561640A (en) * | 2017-08-18 | 2018-01-09 | 中国科学院半导体研究所 | Silicon nanowires waveguide and optical coupling structure and preparation method thereof |
CN109283619A (en) * | 2018-11-13 | 2019-01-29 | 苏州易缆微光电技术有限公司 | The spot-size converter and preparation method thereof led based on ELECTRODE WITH BILAYER POLYMERIC object wave |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114545551A (en) * | 2020-11-27 | 2022-05-27 | 深南电路股份有限公司 | Polymer waveguide and electronic equipment |
CN114545551B (en) * | 2020-11-27 | 2024-09-20 | 深南电路股份有限公司 | Polymer waveguide and electronic equipment |
CN114603890A (en) * | 2020-12-08 | 2022-06-10 | 深南电路股份有限公司 | Manufacturing device of organic optical waveguide element and spray head assembly thereof |
CN113341502A (en) * | 2021-06-30 | 2021-09-03 | 长飞光纤光缆股份有限公司 | Multi-core fiber coupler based on three-dimensional waveguide and preparation method |
WO2023036104A1 (en) * | 2021-09-10 | 2023-03-16 | 中兴通讯股份有限公司 | Optical connector and manufacturing method |
CN114236686A (en) * | 2021-12-21 | 2022-03-25 | 南京邮电大学 | A kind of multi-layer multi-dimensional photonic integrated chip out/in light structure and preparation method |
CN114721093A (en) * | 2022-03-28 | 2022-07-08 | 深圳技术大学 | Two-photon polymerization 3D printing three-dimensional optical fiber stereo coupler and preparation method thereof |
CN114721093B (en) * | 2022-03-28 | 2023-07-25 | 深圳技术大学 | Two-photon polymerization 3D printing three-dimensional optical fiber stereoscopic coupler and preparation method thereof |
CN115144960A (en) * | 2022-09-01 | 2022-10-04 | 上海羲禾科技有限公司 | Mode conversion device of multimode output waveguide and high-speed detection system |
CN115144960B (en) * | 2022-09-01 | 2022-11-08 | 上海羲禾科技有限公司 | Mode conversion device of multimode output waveguide and high-speed detection system |
Also Published As
Publication number | Publication date |
---|---|
CN110646881B (en) | 2022-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110646881A (en) | A three-dimensional optical waveguide transition access device and preparation method thereof | |
CN101533128B (en) | A coupling packaging method of silicon nano-optical waveguide and optical fiber | |
CN108132499B (en) | Silicon waveguide mode spot converter based on multilayer polymer structure and preparation method thereof | |
CN101995609B (en) | Dispersion-decreasing ladder type waveguide grating coupler of silicon-on-insulator and manufacturing method thereof | |
US7643719B1 (en) | Superlens and a method for making the same | |
CN108535807A (en) | With the optical fiber-silicon optical chip coupler and preparation method for tilting Waveguide end face | |
CN107346049A (en) | A kind of Optical Waveguide Modes spot-size converter and preparation method thereof | |
CN104459890A (en) | Optical fiber and silicon waveguide coupling structure based on polymer waveguides and manufacturing method thereof | |
CN210666088U (en) | Silicon optical mode spot mode converter | |
CN101382622A (en) | Passive coupling method of optoelectronic device array and optical fiber array and its component preparation | |
CN110716262A (en) | Silicon optical mode spot mode converter and manufacturing method thereof | |
CN112241047B (en) | Ultra-wideband mode-spot converter based on on-chip integrated Lone Pine lens | |
CN111239905A (en) | Coupling Element and Lithium Niobate Thin Film Waveguide Coupling Device | |
CN207281327U (en) | A kind of Optical Waveguide Modes spot-size converter | |
CN115113328B (en) | Low-loss single-mode spot-size converter based on polymer waveguide and preparation method thereof | |
CN110346040B (en) | Broad-spectrum micro-nano fiber-coupled superconducting nanowire single-photon detector and preparation method thereof | |
CN112925073B (en) | Optical interconnection method of photoelectronic integrated device | |
CN207780304U (en) | Effectively high coupling ratios Optical Waveguide Modes spot conversion equipment | |
CN101191871A (en) | Vertical coupling structure and fabrication method of silicon back etch total reflection on insulator | |
JP2006330697A5 (en) | ||
Wu et al. | Fabrication of asperical lensed optical fibers with an electro-static pulling of SU-8 photoresist | |
CN110716261A (en) | Multilayer flexible waveguide writing device and preparation method of multi-cladding polymer waveguide | |
JP2018097012A (en) | Spot size converter, and method for manufacturing the same | |
US20110140130A1 (en) | Method for Forming a Thin-film Structure of a Light-Emitting Device via Nanoimprint | |
CN111025482B (en) | A mode high-efficiency coupler and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 210096, No. four archway, Xuanwu District, Jiangsu, Nanjing 2 Applicant after: SOUTHEAST University Applicant after: Nanjing Xiguang Information Technology Research Institute Co.,Ltd. Applicant after: NANJING HUAMAI TECHNOLOGY Co.,Ltd. Address before: 210096, No. four archway, Xuanwu District, Jiangsu, Nanjing 2 Applicant before: SOUTHEAST University Applicant before: NANJING SUNLIGHT INFORMATION TECHNOLOGY Co.,Ltd. Applicant before: NANJING HUAMAI TECHNOLOGY Co.,Ltd. |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |