CN102416590A - A flexible limit support device and installation method for a large-diameter light-weight reflector - Google Patents
A flexible limit support device and installation method for a large-diameter light-weight reflector Download PDFInfo
- Publication number
- CN102416590A CN102416590A CN2011103338374A CN201110333837A CN102416590A CN 102416590 A CN102416590 A CN 102416590A CN 2011103338374 A CN2011103338374 A CN 2011103338374A CN 201110333837 A CN201110333837 A CN 201110333837A CN 102416590 A CN102416590 A CN 102416590A
- Authority
- CN
- China
- Prior art keywords
- flexible
- support
- gear
- worm
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000009434 installation Methods 0.000 title claims abstract description 9
- 238000007667 floating Methods 0.000 claims abstract description 29
- 230000005540 biological transmission Effects 0.000 claims abstract description 23
- 230000007246 mechanism Effects 0.000 claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 230000000694 effects Effects 0.000 claims abstract description 7
- 230000005484 gravity Effects 0.000 claims abstract description 4
- 230000007704 transition Effects 0.000 claims abstract description 3
- 230000008859 change Effects 0.000 claims abstract 2
- 230000003321 amplification Effects 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims 6
- 238000010276 construction Methods 0.000 claims 5
- 230000005764 inhibitory process Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000004304 visual acuity Effects 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 6
- 230000009471 action Effects 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 description 13
- 238000005498 polishing Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 238000007517 polishing process Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 4
- 238000013433 optimization analysis Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 206010033307 Overweight Diseases 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005486 microgravity Effects 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Landscapes
- Telescopes (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
Description
技术领域 technical field
本发明涉及轻质反射镜支撑装置的技术领域,特别涉及一种大口径轻质反射镜柔性限位支撑装置及方法,该支撑装置及方法可应用于大口径磨盘的能动抛光过程以及检测过程,在实施应用阶段,该支撑装置及方法可以降低外界力载荷,惯性载荷及热载荷的负作用,从而保证光学系统的成像质量。The present invention relates to the technical field of light mirror support devices, in particular to a flexible limit support device and method for a large-diameter light mirror. The support device and method can be applied to the active polishing process and detection process of large-diameter grinding discs. In the implementation and application stage, the support device and method can reduce the negative effects of external force load, inertial load and thermal load, thereby ensuring the imaging quality of the optical system.
背景技术 Background technique
随着现代光学系统性能要求的不断提高,光学零件的质量要求也在不断提高。为提高光学系统的成像质量并降低成本,现代光学零件正朝着非球面、大相对口径、高轻量化的趋势发展。但由于使用过程中,轻质镜容易受外界作用力,如空间微重力、惯性载荷、振动、装配误差应力、气流、温度载荷等的变化而影响光学系统的成像质量,因此,需要采用一种柔性支撑的隔离装置隔离支撑系统中机械和热作用对光学系统的影响,保证反射镜及其支撑结构具有良好的动态结构性能及热稳定性。With the continuous improvement of performance requirements of modern optical systems, the quality requirements of optical components are also continuously improved. In order to improve the imaging quality of the optical system and reduce the cost, modern optical parts are developing towards the trend of aspheric surface, large relative aperture and high light weight. However, during use, the lightweight mirror is easily affected by external forces, such as space microgravity, inertial load, vibration, assembly error stress, airflow, temperature load, etc., which affect the imaging quality of the optical system. Therefore, it is necessary to use a The flexible support isolation device isolates the influence of mechanical and thermal effects on the optical system in the support system, ensuring that the mirror and its support structure have good dynamic structural performance and thermal stability.
大口径轻质反射镜的加工方法主要有CCOS小磨头技术,磁流变(MRF)技术,离子束(IBF)技术,以及应力盘抛光CCAL技术等。然而,CCOS抛光技术容易造成工件表面的中高频误差,影响光学系统成像质量,而且,在大口径光学元件加工过程中难以保证去除函数的一致性;而MRF及IBF成本昂贵,去除量低,一般应用于加工工序的纳米精度提升阶段。CCAL抛光技术基于弹性薄板理论,采用工件口径1/6-1/3尺寸的铝盘在外加变力矩的作用下,薄板产生高次曲面变形匹配非球面主镜表面,完成主镜高精度抛光,具有去除效率高,抑制中高频等优势。The processing methods of large-diameter lightweight mirrors mainly include CCOS small grinding head technology, magnetorheological (MRF) technology, ion beam (IBF) technology, and stress disk polishing CCAL technology. However, CCOS polishing technology is likely to cause medium and high frequency errors on the surface of the workpiece, which affects the imaging quality of the optical system. Moreover, it is difficult to ensure the consistency of the removal function during the processing of large-diameter optical components; while MRF and IBF are expensive and have low removal volume. Applied to the nanometer precision improvement stage of the processing process. CCAL polishing technology is based on the theory of elastic thin plates, using an aluminum plate with a diameter of 1/6-1/3 under the action of external variable torque, the thin plate produces high-order curved surface deformation to match the surface of the aspheric primary mirror, and completes the high-precision polishing of the primary mirror. It has the advantages of high removal efficiency and suppression of medium and high frequencies.
目前,大口径轻质反射镜的支撑模型主要为Whiffletree浮动支撑结构模型与Grubb摇板式支撑结构模型。Whiffletree支撑模型能通过调节支撑盘浮动来平衡工件界面的外在载荷,使反射镜面受力更加均匀,特别是大口径磨盘能动磨盘抛光过程。Whiffletree支撑模型是在基层支撑面上选定支撑点,通过杠杆平衡原理将支撑点扩展为双倍支撑面,并在每个支撑面上设定动态的支撑盘。该支撑模型选定的支撑点相对独立,而支撑点上扩展的每组支撑面构成动态平衡。Grubb支撑模型是在每一个静定的支撑点上通过一个刚性的浮动支架,把支撑点扩展为多点支撑再作用于主镜面,作用于镜面的多点支撑服从静力平衡规则。Whiffletree及Grubb支撑模型在工件支撑面上的定位精度通过支撑板的三点水平度来保证,因此工件在应用过程中支撑面受力容易达到平衡。然而,Whiffletree及Grubb支撑模型最终的支撑力都体现在刚性支撑杆上,对外界温度变化引起的热-结构变形、振动载荷、气流变化引其的局部变形无法消除。At present, the support models for large-aperture lightweight mirrors are mainly the Whiffletree floating support structure model and the Grubb rocking plate support structure model. The Whiffletree support model can balance the external load on the workpiece interface by adjusting the floating of the support disc, so that the force on the mirror surface is more uniform, especially in the polishing process of the large-diameter grinding disc and the active grinding disc. The Whiffletree support model is to select support points on the base support surface, expand the support points to double support surfaces through the principle of leverage balance, and set a dynamic support plate on each support surface. The selected support points of the support model are relatively independent, and each group of support surfaces extended on the support points constitutes a dynamic balance. The Grubb support model is to expand the support points into multi-point supports through a rigid floating bracket on each statically definite support point, and then act on the main mirror. The multi-point supports acting on the mirror obey the rules of static balance. The positioning accuracy of the Whiffletree and Grubb support models on the workpiece support surface is guaranteed by the three-point levelness of the support plate, so the force on the support surface of the workpiece is easily balanced during the application process. However, the final support force of the Whiffletree and Grubb support models is reflected in the rigid support rods, which cannot eliminate the local deformation caused by thermal-structural deformation, vibration load, and airflow changes caused by external temperature changes.
参考文献:“Jerry E.Nelson,Jacob Lubliner,Terry S.Mast,Telescope mirror suppors:platedeflections on point supports[J].Advanced Technology Optical Telescopes,SPIE,1982(332),212-228”公开了基于薄板变形理论及Vukobratovich“网格效应”公式,本领域技术人员容易根据上述理论及相关公式大致推算出大口径轻质镜的支撑点以及支撑点环带位置。References: "Jerry E. Nelson, Jacob Lubliner, Terry S. Mast, Telescope mirror supports: plate deflections on point supports [J]. Advanced Technology Optical Telescopes, SPIE, 1982(332), 212-228" discloses the Theory and Vukobratovich's "grid effect" formula, those skilled in the art can easily calculate the support point and the position of the support point ring of the large-diameter lightweight mirror based on the above theory and related formulas.
柔性限位支撑将柔性支撑方式与刚性支撑方式相结合。柔性支撑装置为组合的柔性弹簧,其目的是平衡抛光磨头的压力,消除振动误差以及抑制外界负载荷引起的镜面变形;刚性支撑旨于在抛光以及应用阶段对大口径轻质镜进行限位以及保护。在能动磨盘抛光过程中,由于能动磨盘重量大,当磨盘处于工件边沿位置时(磨盘露出工件边沿尺寸小于磨盘尺寸的1/3),会导致工件产生微米级的倾斜,而此时可以同时采用三点刚性支撑同时作用于工件支撑面,以此消除工件抛光过程的微量倾斜,三点限位支撑将大口径轻质镜边沿抛光时由初始的倾斜量由3.4微米降低为0.96微米,该精度远低于抛光机床Z轴的定位精度,而且,该支撑方式下的镜面变形具有可恢复性。经过仿真分析,采用柔性限位支撑模型,柔性支撑装置可支撑工件及磨盘80%的重力,支撑面等效应力变化较低,最大主应力满足工件的极限应力要求,极大提高了工件抵制外界振动,大气湍流变化、温度热载荷变形的能力。The flexible limit support combines the flexible support method with the rigid support method. The flexible support device is a combination of flexible springs, whose purpose is to balance the pressure of the polishing grinding head, eliminate vibration errors and suppress mirror deformation caused by external loads; the rigid support is designed to limit the position of large-diameter lightweight mirrors during polishing and application stages and protection. During the polishing process of the active grinding disc, due to the heavy weight of the active grinding disc, when the grinding disc is at the edge of the workpiece (the size of the edge of the workpiece exposed by the grinding disc is less than 1/3 of the size of the grinding disc), it will cause the workpiece to have a micron-level inclination. At this time, it can be used at the same time The three-point rigid support acts on the workpiece support surface at the same time, so as to eliminate the slight inclination during the polishing process of the workpiece. The three-point limit support reduces the initial inclination from 3.4 microns to 0.96 microns when the edge of the large-caliber lightweight mirror is polished. It is far lower than the positioning accuracy of the Z-axis of the polishing machine, and the mirror deformation under this support method is recoverable. After simulation analysis, using the flexible limit support model, the flexible support device can support 80% of the gravity of the workpiece and the grinding disc, the equivalent stress of the support surface changes relatively low, and the maximum principal stress meets the ultimate stress requirements of the workpiece, which greatly improves the resistance of the workpiece to the outside world Vibration, atmospheric turbulence changes, thermal load deformation capability.
发明内容 Contents of the invention
本发明的目的是为设计一种可应用于大口径磨盘加工、实施应用的柔性限位支撑装置,该支撑装置具有提高大口径轻质镜边沿抛光时镜面受力平衡、消除了支撑面局部主应力过大以及在实施应用过程中提高光学系统抵制外界负载影响从而提高光学成像质量等优势。从而提供了一种结构简单紧凑、成本低廉、控制简单、集成度高、操作方便,能够实现大口径、高轻量化反射镜的高精度抛光及光学系统安装应用的柔性限位装置。The object of the present invention is to design a flexible position-limiting support device that can be applied to large-diameter grinding disc processing and implementation. The advantages of excessive stress and the improvement of the optical system to resist the influence of external loads during the implementation and application process to improve the quality of optical imaging. Therefore, a flexible limiting device with simple and compact structure, low cost, simple control, high integration, convenient operation, and high-precision polishing of large-diameter, high-weight and light-weight mirrors and optical system installation is provided.
本发明的目的是由下述技术方案实现的:The purpose of the present invention is achieved by the following technical solutions:
一种大口径轻质反射镜柔性限位支撑装置,该装置包括浮动支撑结构、柔性支撑结构、齿轮传动机构以及压力传感装置;其中:A flexible position-limiting support device for a large-diameter lightweight reflector, which includes a floating support structure, a flexible support structure, a gear transmission mechanism, and a pressure sensing device; wherein:
所述浮动支撑结构,其采用Whiffletree模型,该模型为一种过渡的支撑结构模型,其目的是对工件进行初始定位;所述浮动支撑结构包括底座、中心柱、杠杆支撑架、杠杆、圆球、三角架、浮动定位柱、浮动支撑盘、圆柱销;其中杠杆支撑架、杠杆、圆球、三角架构成浮动杠杆平衡模型;The floating support structure adopts the Whiffletree model, which is a transitional support structure model, and its purpose is to initially position the workpiece; the floating support structure includes a base, a central column, a lever support frame, a lever, and a ball , tripod, floating positioning column, floating support plate, cylindrical pin; wherein the lever support frame, lever, ball, and tripod form a floating lever balance model;
所述柔性支撑结构,包括支撑柱,基座,柔性支撑盘,侧支撑架,限位支撑孔、柔性支撑柱以及组合式弹簧模型;基座固定于三根支撑柱上;The flexible support structure includes a support column, a base, a flexible support plate, a side support frame, a limit support hole, a flexible support column and a combined spring model; the base is fixed on three support columns;
所述压力传感装置,包括压力传感器、信号转换器以及压力输出显示器,其目的是对每个柔性支撑结构模型对轻质镜产生的作用力进行监控;信号转换器包括信号放大电路以及A/D转换电路,输出为每个柔性支撑盘对工件的弹性作用力。The pressure sensing device includes a pressure sensor, a signal converter and a pressure output display, and its purpose is to monitor the force that each flexible support structure model produces on the lightweight mirror; the signal converter includes a signal amplification circuit and an A/ D conversion circuit, the output is the elastic action force of each flexible support plate on the workpiece.
进一步的,浮动定位柱、浮动支撑盘的连接方式为球头万向节连接。Further, the connection mode of the floating positioning column and the floating support plate is a ball joint connection.
进一步的,杠杆两端表面为半球凹面,与三角架的连接方式为球头万向节连接。Further, the surfaces at both ends of the lever are hemispherical concave surfaces, and the connection mode with the tripod is a ball-joint universal joint connection.
进一步的,组合式弹簧模型包括安装架、组合弹簧,安装架与升降柱固定配合,柔性支撑结构具有抑制振动,抵抗热载荷干扰的功能。Further, the combined spring model includes a mounting frame and a combined spring, the mounting frame is fixedly matched with the lifting column, and the flexible support structure has the functions of suppressing vibration and resisting thermal load interference.
进一步的,Whiffletree模型支撑的升降模型采用蜗轮蜗杆传动机构,柔性支撑盘及限位支撑盘的升降模型采用伞齿轮传动机构;蜗轮蜗杆传动机构可应用于大重量负载,并带有自锁功能;而伞齿轮传动机构传动比高,定位精度好。Furthermore, the lifting model supported by the Whiffletree model adopts a worm gear transmission mechanism, and the lifting model of the flexible support plate and the limit support plate adopts a bevel gear transmission mechanism; the worm gear transmission mechanism can be applied to heavy loads and has a self-locking function; The bevel gear transmission mechanism has high transmission ratio and good positioning accuracy.
进一步的,蜗轮蜗杆传动机构的主动齿轮为蜗杆、从动齿轮为蜗轮、调节齿轮为中心柱;伞齿轮传动机构主动齿轮为伞齿轮、从动齿轮为伞齿轮、调节齿轮为升降柱;其中从动蜗轮、从动伞齿轮为变向齿轮,从动蜗轮左端为蜗轮、右端为直齿轮;从动伞齿轮外端为伞齿轮、内环为螺纹孔。Further, the driving gear of the worm gear transmission mechanism is a worm, the driven gear is a worm gear, and the adjusting gear is a central column; the driving gear of the bevel gear transmission mechanism is a bevel gear, the driven gear is a bevel gear, and the adjusting gear is a lifting column; The driven worm gear and the driven bevel gear are direction-changing gears, the left end of the driven worm gear is a worm gear, and the right end is a spur gear; the outer end of the driven bevel gear is a bevel gear, and the inner ring is a threaded hole.
进一步的,蜗轮蜗杆传动机构通过轴承固定于底座内部,杠杆平衡模型安装于基座上方,浮动支撑模型的升降方式为通过旋转蜗杆,带动蜗轮,并由蜗轮右端直齿轮与中心柱直齿配合实现底座升降。Further, the worm and gear transmission mechanism is fixed inside the base through bearings, and the lever balance model is installed above the base. The lifting method of the floating support model is to drive the worm wheel by rotating the worm, and the spur gear at the right end of the worm wheel cooperates with the spur gear of the center column to achieve The base lifts.
进一步的,伞齿轮传动机构通过轴承固定于基座内部,升降柱穿过限位支撑孔与从动伞齿轮配合,柔性及限位支撑的升降方式位通过旋转主动伞齿轮,带动伞齿轮,并由伞齿轮的内螺纹实现升降柱的升降。Furthermore, the bevel gear transmission mechanism is fixed inside the base through bearings, and the lifting column passes through the limit support hole to cooperate with the driven bevel gear. The flexible and limit-supported lifting method rotates the active bevel gear to drive the bevel gear, and The lifting of the lifting column is realized by the inner thread of the bevel gear.
进一步的,压力传感器为贴片式压力传感器,该贴片式压力传感器分辨力为0.1mV的电压输出模拟信号。Further, the pressure sensor is a patch-type pressure sensor, and the resolution of the patch-type pressure sensor is 0.1 mV and outputs an analog signal.
根据上述的一种大口径轻质反射镜柔性限位支撑装置的安装方法,所述安装方法步骤如下:According to the above-mentioned installation method of a flexible limit support device for a large-diameter light-weight reflector, the steps of the installation method are as follows:
第一步:基于薄板变形理论及Vukobratovich“网格效应”公式,大致推算出大口径轻质镜的支撑点以及支撑点环带位置;The first step: Based on the thin plate deformation theory and Vukobratovich's "grid effect" formula, roughly calculate the support point and the position of the support point ring of the large-diameter lightweight mirror;
第二步:采用有限元分析软件,分析在重力以及磨盘压力作用下,优化分析大口径轻质反射镜面低精度变形的柔性、限位支撑盘口径、位置以及支撑面所受的支反力;The second step: use finite element analysis software to analyze the flexibility of the low-precision deformation of the large-diameter light-weight mirror surface under the action of gravity and the pressure of the grinding disc, the diameter and position of the limit support disc, and the support reaction force on the support surface;
第三步:将压力传感器置于柔性支撑盘上,并将传感器电压输出信号通过信号放大电路以及A/D转换电路将测量压力输出到压力输出显示器中;Step 3: Place the pressure sensor on the flexible support plate, and output the sensor voltage output signal to the pressure output display through the signal amplification circuit and the A/D conversion circuit;
第四步:将与工件同等质量的金属平板置于柔性限位支撑结构模型上,对针对第一步计算的作用力对主动伞齿轮进行调节,大致对每个柔性限位支撑盘的位置进行定位,并撤消平板;Step 4: Place a metal plate with the same quality as the workpiece on the flexible limit support structure model, adjust the active bevel gear according to the force calculated in the first step, and roughly adjust the position of each flexible limit support plate Position and undo the tablet;
第五步:调节手轮蜗杆,提升Whiffletree支撑平台,将工件置于安装平台的Whiffletree浮动支撑模型上,对工件进行定位;缓慢降低Whiffletree支撑平台,实现工件底面支撑由Whiffletree浮动支撑过度到柔性限位支撑;Step 5: Adjust the hand wheel and worm, lift the Whiffletree support platform, place the workpiece on the Whiffletree floating support model of the installation platform, and position the workpiece; slowly lower the Whiffletree support platform, and realize the transition of the bottom surface support of the workpiece from the Whiffletree floating support to the flexible limit. bit support;
第六步:通过旋转主动伞齿轮,调节每个柔性限位支撑盘,并通过压力传感装置反馈得到的压力传感器数字对每个柔性限位支撑盘进行精确定位。Step 6: Adjust each flexible limit support plate by rotating the active bevel gear, and precisely position each flexible limit support plate through the pressure sensor number obtained by the feedback of the pressure sensor device.
与现有技术相比,本发明的优点为:Compared with prior art, the advantage of the present invention is:
1、本发明的大口径轻质反射镜柔性限位支撑装置对光学系统的支撑能力主要体现在柔性支撑结构上,提高了支撑结构的抗振动能力以及抵制外界负载荷变形能力;1. The supporting capacity of the large-caliber lightweight mirror flexible limit support device of the present invention to the optical system is mainly reflected in the flexible support structure, which improves the anti-vibration capacity of the support structure and the ability to resist external load deformation;
2、相对于浮动支撑及摆动支撑,柔性限位支撑降低大大降低了工件的最大主应力,消除了应用过程应力集中的情况;2. Compared with the floating support and swing support, the reduction of the flexible limit support greatly reduces the maximum principal stress of the workpiece and eliminates the stress concentration in the application process;
3、柔性限位支撑在能动磨盘抛光过程中,磨盘重力载荷完全作用在柔性支撑模型上,磨盘抛光面与镜面完全贴合,抛光区域受力更加均匀;3. Flexible limit support During the polishing process of the active grinding disc, the gravitational load of the grinding disc fully acts on the flexible support model, the polishing surface of the grinding disc is completely attached to the mirror surface, and the force on the polishing area is more uniform;
4、浮动支撑模型或摆动支撑模型对工件的支撑力随抛光盘位置到镜子中心距离而变化,而柔性支撑模型各个支撑盘对工件的支撑力几乎一致,支撑面受力均匀。4. The support force of the floating support model or the swing support model to the workpiece varies with the distance from the position of the polishing disc to the center of the mirror, while the support force of each support disc of the flexible support model to the workpiece is almost the same, and the force on the support surface is uniform.
附图说明 Description of drawings
图1为柔性限位支撑结构模型示意图;Fig. 1 is a schematic diagram of a flexible limit support structure model;
图2为浮动支撑结构模型示意图;Fig. 2 is a schematic diagram of a floating support structure model;
图3为杠杆平衡装置模型示意图;Fig. 3 is a schematic diagram of a lever balance device model;
图4为组合式弹簧模型示意图;Fig. 4 is a schematic diagram of a combined spring model;
图5为蜗轮蜗杆传动模型示意图;Fig. 5 is a schematic diagram of a worm gear transmission model;
图6为伞齿轮传动装置示意图Figure 6 is a schematic diagram of a bevel gear transmission
图7为压力传感显示装置示意图;7 is a schematic diagram of a pressure sensing display device;
图8为口径Φ1.8m轻质镜柔性限位支撑位置示意图;Figure 8 is a schematic diagram of the position of the flexible limit support of the lightweight mirror with a diameter of Φ1.8m;
图9为限位支撑盘位置优化分析图;Fig. 9 is a position optimization analysis diagram of the limit support plate;
图10为限位支撑盘口径优化分析;Figure 10 is the optimization analysis of the caliber of the limit support plate;
图11为基于柔性限位支撑条件下能动磨盘边缘抛光时的镜面变形;Figure 11 shows the mirror surface deformation when the edge of the active grinding disc is polished based on the flexible limit support condition;
图12为浮动结构模型、柔性支撑模型、柔性限位支撑模型下支撑盘受力分布。Figure 12 shows the force distribution of the support plate under the floating structure model, flexible support model, and flexible limit support model.
图中标号:101、底座;102、中心柱;103、杠杆支撑架;104、杠杆;105、圆球;106、三角架;107、浮动定位柱;108、浮动支撑盘;109、圆柱销;201、支撑柱;202、基座;203、柔性支撑盘;204、侧支撑架;205、限位支撑孔;206、安装架;207、组合弹簧;208、柔性支撑;301、蜗杆;302、从动蜗轮;303、轴承;304、升降柱;305、主动伞齿轮;306、从动伞齿轮;401、压力传感器;402、信号放大电路;403、A/D转换电路;404、压力输出显示器;Labels in the figure: 101, base; 102, central column; 103, lever support frame; 104, lever; 105, ball; 106, tripod; 107, floating positioning column; 108, floating support plate; 109, cylindrical pin; 201, support column; 202, base; 203, flexible support plate; 204, side support frame; 205, limit support hole; 206, installation frame; 207, combined spring; 208, flexible support; 301, worm; Driven worm gear; 303, bearing; 304, lifting column; 305, driving bevel gear; 306, driven bevel gear; 401, pressure sensor; 402, signal amplification circuit; 403, A/D conversion circuit; 404, pressure output display ;
具体实施方式 Detailed ways
以下结合附图以及具体实施方式对本发明做进一步的解释:Below in conjunction with accompanying drawing and specific embodiment, the present invention is further explained:
如图1、2、3所示,本发明装置的浮动支撑结构采用Whiffletree模型,为一种过渡的支撑结构模型,其目的是对工件进行初始定位。浮动支撑结构主要包括底座101、中心柱102、杠杆支撑架103、杠杆104、圆球105、三角架106、浮动定位柱107、浮动支撑盘108、圆柱销109。其中杠杆支撑架103、杠杆104、圆球105、三角架106构成浮动杠杆平衡模型;As shown in Figures 1, 2, and 3, the floating support structure of the device of the present invention adopts the Whiffletree model, which is a transitional support structure model, and its purpose is to initially position the workpiece. The floating support structure mainly includes a
如图3所示,杠杆104两端表面为半球凹面,与三角架106的连接方式为球头万向节连接;As shown in FIG. 3 , the surfaces at both ends of the
如图1、4所示,柔性支撑结构主要包括支撑柱201,基座202,柔性支撑盘203,侧支撑架204,限位支撑孔205、柔性支撑柱208、安装架206以及组合弹簧207;基座202固定于三根支撑柱201上;安装架206与升降柱304固定配合;As shown in Figures 1 and 4, the flexible support structure mainly includes a
如图1、2、5、6所示,蜗轮蜗杆传动机构的主动齿轮为蜗杆301、从动齿轮为蜗轮302、调节齿轮为中心柱102;伞齿轮传动机构主动齿轮为伞齿轮305、从动齿轮为伞齿轮306、调节齿轮为升降柱304;其中蜗轮302、从动伞齿轮306为变向齿轮,蜗轮302左端为蜗轮、右端为直齿轮;从动伞齿轮306外端为伞齿轮、内环为螺纹孔。蜗轮蜗杆传动机构通过轴承303固定于底座101内部,杠杆平衡模型安装于基座上方,浮动支撑模型的升降方式为通过旋转蜗杆301,带动蜗轮302,并由齿轮302右端直齿轮与中心柱102直齿配合实现底座101升降。伞齿轮传动机构通过轴承固定于基座202内部,升降柱304穿过限位支撑孔205与传动伞齿轮306配合,柔性及限位支撑的升降方式位通过旋转主动伞齿轮305,带动伞齿轮306,并由伞齿轮306的内螺纹实现升降柱304的升降;As shown in Figures 1, 2, 5, and 6, the driving gear of the worm gear transmission mechanism is the
如图7所示,压力传感装置包括贴片式压力传感器401、信号放大电路402、A/D转换电路403以及压力输出显示器404,信号放大电路402和A/D转换电路403组成信号转换器,其目的是对每个柔性支撑结构模型对轻质镜产生的作用力进行监控,并根据测量数据对主动伞齿轮305进行定位;As shown in Figure 7, the pressure sensing device includes a patch pressure sensor 401, a signal amplification circuit 402, an A/D conversion circuit 403, and a pressure output display 404, and the signal amplification circuit 402 and the A/D conversion circuit 403 form a signal converter , the purpose of which is to monitor the force generated by each flexible support structure model on the lightweight mirror, and to position the
本实施例子结合一块口径1.8m的高轻量化双曲面轻质镜进行模拟仿真,轻质镜材料为熔石英,工件重量为408.68Kg,轻量化为(80.3%),采用能动磨盘抛光技术,磨盘重量为20kg。图8为基于薄板理论模型,优化后得到的18个柔性支撑盘以及3点限位支撑盘位置及口径的分布图。通过有限元仿真分析,采用Whiffletree模型中,内、外环每个支撑盘的作用力随圆环半径变化,外环每个支撑面的支反力为225.217N,内环每个支撑面的支反力为217.743N;而柔性支撑结构模型中,18个支撑盘的对工件的作用力为222.73N,因此,柔性支撑具有消除支撑面应力集中的优势;This implementation example combines a highly lightweight hyperboloid lightweight mirror with a diameter of 1.8m for simulation. The material of the lightweight mirror is fused silica, the workpiece weight is 408.68Kg, and the weight is (80.3%). The weight is 20kg. Figure 8 is a distribution diagram of the positions and diameters of 18 flexible support plates and 3-point limit support plates obtained after optimization based on the thin plate theoretical model. Through finite element simulation analysis, using the Whiffletree model, the force of each support plate of the inner and outer rings varies with the radius of the ring, the support reaction force of each support surface of the outer ring is 225.217N, and the support force of each support surface of the inner ring is 225.217N. The reaction force is 217.743N; while in the flexible support structure model, the force of the 18 support plates on the workpiece is 222.73N. Therefore, the flexible support has the advantage of eliminating the stress concentration on the support surface;
图9为基于柔性支撑模型,对三点刚性限位支撑盘的位置进行优化分析;Figure 9 is an optimization analysis of the position of the three-point rigid limit support plate based on the flexible support model;
图10为基于柔性支撑模型,对三点刚性限位支撑盘的口径进行优化分析;Figure 10 is an optimization analysis of the diameter of the three-point rigid limit support plate based on the flexible support model;
图11为磨盘处于工件边沿处抛光时,基于柔性限位支撑模型分析得到的镜面变形,PV(峰谷值)964.4nm、RMS(均方根值)215.0nm;Figure 11 shows the mirror surface deformation obtained based on the analysis of the flexible limit support model when the grinding disc is polished at the edge of the workpiece, PV (peak-to-valley value) 964.4nm, RMS (root mean square value) 215.0nm;
图12对采用Whiffletree浮动支撑、柔性支撑以及柔性限位支撑三种模型对口径1.8m的高轻量化双曲面轻质镜支撑时的受力进行对比分析。Whiffletree模型外环位置支撑受力(A7-A18)比内环位置支撑受力(A1-A6)大,而且支撑盘受力受磨盘抛光位置的影响;柔性支撑模型18点受力分布均匀,而且支撑盘对工件作用力基本不受磨盘位置的影响,但磨盘边沿抛光时,支撑面会产生微米量级倾斜;柔性限位支撑结合了前两者的优点,A1-A18为柔性支撑特征,受力分布均匀,而且支撑盘对工件作用力基本不受磨盘位置的影响,A19-A21为限位支撑,对工件进行限位保护以及降低工件抛光过程的倾斜。Figure 12 compares and analyzes the force of a 1.8m-diameter high-weight hyperboloid lightweight mirror supported by three models of Whiffletree floating support, flexible support and flexible limit support. The support force of the outer ring position (A7-A18) of the Whiffletree model is greater than the support force of the inner ring position (A1-A6), and the force of the support plate is affected by the polishing position of the grinding disc; the force distribution of the flexible support model is uniform at 18 points, and The force of the support disc on the workpiece is basically not affected by the position of the grinding disc, but when the edge of the grinding disc is polished, the support surface will have a micron-scale inclination; the flexible limit support combines the advantages of the former two, and A1-A18 is a flexible support feature. The distribution is even, and the force of the support disc on the workpiece is basically not affected by the position of the grinding disc. A19-A21 are limit supports, which can limit the protection of the workpiece and reduce the inclination of the workpiece during the polishing process.
本发明未详细阐述的部分属于本领域公知技术。The parts not described in detail in the present invention belong to the well-known technology in the art.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110333837.4A CN102416590B (en) | 2011-10-28 | 2011-10-28 | Flexible limiting and supporting device for large-caliber light reflector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110333837.4A CN102416590B (en) | 2011-10-28 | 2011-10-28 | Flexible limiting and supporting device for large-caliber light reflector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102416590A true CN102416590A (en) | 2012-04-18 |
CN102416590B CN102416590B (en) | 2014-03-12 |
Family
ID=45941372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110333837.4A Expired - Fee Related CN102416590B (en) | 2011-10-28 | 2011-10-28 | Flexible limiting and supporting device for large-caliber light reflector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102416590B (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104280858A (en) * | 2014-10-23 | 2015-01-14 | 中国工程物理研究院总体工程研究所 | Flexible back supporting device for large-caliber reflector |
CN104459936A (en) * | 2014-12-11 | 2015-03-25 | 北京空间机电研究所 | Microstress assembling method for large-caliber reflector assembly |
CN105259634A (en) * | 2015-11-17 | 2016-01-20 | 中国科学院长春光学精密机械与物理研究所 | Two-degree-of-freedom flexible joint in whiffletree supporting structure of large-aperture reflecting mirror |
CN105259635A (en) * | 2015-11-17 | 2016-01-20 | 中国科学院长春光学精密机械与物理研究所 | Whiffletree support structure applied to statically determined support of large-aperture reflector |
CN106772918A (en) * | 2016-12-20 | 2017-05-31 | 中国科学院长春光学精密机械与物理研究所 | A kind of angle self adaptation high accuracy mirror body lateral support mechanism |
CN106826463A (en) * | 2016-07-25 | 2017-06-13 | 中国科学院长春光学精密机械与物理研究所 | A kind of complex-curved processing method |
CN107272193A (en) * | 2017-05-31 | 2017-10-20 | 长光卫星技术有限公司 | The ultralightization Optimization Design of lightweight mirror |
CN107498423A (en) * | 2017-08-22 | 2017-12-22 | 长光卫星技术有限公司 | Heat sink for speculum ion beam polishing |
CN107783247A (en) * | 2017-11-16 | 2018-03-09 | 中国科学院西安光学精密机械研究所 | Single-degree-of-freedom rotating shaft, whiffletree supporting structure and reflector supporting device |
CN107942503A (en) * | 2017-09-13 | 2018-04-20 | 中国科学院国家天文台南京天文光学技术研究所 | Extremely large telescope height shafting supports and driving hydraulic pressure whiffletree control mobile systems |
CN108197352A (en) * | 2017-12-14 | 2018-06-22 | 中国科学院西安光学精密机械研究所 | Accurate surface shape calculation method for large-aperture reflector |
CN109159008A (en) * | 2018-08-20 | 2019-01-08 | 江苏尚唯汽车饰件有限公司 | A kind of lightweight vehicle noise insulation pad interlayer Scissoring device |
CN110666596A (en) * | 2019-09-02 | 2020-01-10 | 中国兵器科学研究院宁波分院 | Positioning and attitude adjusting device for optical element |
CN112454140A (en) * | 2020-11-24 | 2021-03-09 | 许昌学院 | Automatic large flat plate polishing device and using method thereof |
CN112894560A (en) * | 2021-01-28 | 2021-06-04 | 浙江欧凯车业有限公司 | Electric scooter frame machining device and method |
CN113043116A (en) * | 2021-04-13 | 2021-06-29 | 罗俊涛 | Optical lens polishing device and polishing process |
CN114460713A (en) * | 2021-12-28 | 2022-05-10 | 北京空间机电研究所 | Precise unloading structure of large-diameter reflector |
CN114777716A (en) * | 2022-06-20 | 2022-07-22 | 菏泽鲁信光学科技有限公司 | Lens thickness detector |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS572002A (en) * | 1980-06-04 | 1982-01-07 | Nippon Sheet Glass Co Ltd | Reflector unit |
JPH02101422A (en) * | 1988-10-11 | 1990-04-13 | Nec Corp | Oscillation reflecting mirror supporting mechanism |
CN1165369A (en) * | 1996-01-09 | 1997-11-19 | 日本先锋公司 | Objective lens driving device and method for manufacturing the same |
US6539159B1 (en) * | 2001-03-13 | 2003-03-25 | Terabeam Corporation | Adaptive support for positioning optical components |
CN101718899A (en) * | 2009-12-22 | 2010-06-02 | 中国科学院长春光学精密机械与物理研究所 | Periphery supporting mechanism of reflecting mirror in space remote sensing camera |
CN101887160A (en) * | 2010-06-30 | 2010-11-17 | 苏州大学 | Supporting system for processing large-aperture space optics mirrors |
US20120055405A1 (en) * | 2007-05-09 | 2012-03-08 | Blake Koelmel | Apparatus and method for supporting, positioning and rotating a substrate in a processing chamber |
-
2011
- 2011-10-28 CN CN201110333837.4A patent/CN102416590B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS572002A (en) * | 1980-06-04 | 1982-01-07 | Nippon Sheet Glass Co Ltd | Reflector unit |
JPH02101422A (en) * | 1988-10-11 | 1990-04-13 | Nec Corp | Oscillation reflecting mirror supporting mechanism |
CN1165369A (en) * | 1996-01-09 | 1997-11-19 | 日本先锋公司 | Objective lens driving device and method for manufacturing the same |
US5850313A (en) * | 1996-01-09 | 1998-12-15 | Pioneer Electronic Corporation | Objective lens driving device and a method for manufacturing the same |
US6539159B1 (en) * | 2001-03-13 | 2003-03-25 | Terabeam Corporation | Adaptive support for positioning optical components |
US20120055405A1 (en) * | 2007-05-09 | 2012-03-08 | Blake Koelmel | Apparatus and method for supporting, positioning and rotating a substrate in a processing chamber |
CN101718899A (en) * | 2009-12-22 | 2010-06-02 | 中国科学院长春光学精密机械与物理研究所 | Periphery supporting mechanism of reflecting mirror in space remote sensing camera |
CN101887160A (en) * | 2010-06-30 | 2010-11-17 | 苏州大学 | Supporting system for processing large-aperture space optics mirrors |
Non-Patent Citations (3)
Title |
---|
吴小霞等: "大口径球面镜支撑系统的优化设计", 《光子学报》, vol. 38, no. 1, 31 January 2009 (2009-01-31) * |
杨利伟等: "一种基于有限元分析的柔性支撑结构设计", 《长春理工大学学报》, vol. 31, no. 1, 31 March 2008 (2008-03-31) * |
陈晓丽等: "大口径超轻型反射镜定位与支撑方案研究", 《航天返回与遥感》, vol. 31, no. 3, 30 June 2010 (2010-06-30) * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104280858A (en) * | 2014-10-23 | 2015-01-14 | 中国工程物理研究院总体工程研究所 | Flexible back supporting device for large-caliber reflector |
CN104459936A (en) * | 2014-12-11 | 2015-03-25 | 北京空间机电研究所 | Microstress assembling method for large-caliber reflector assembly |
CN105259634A (en) * | 2015-11-17 | 2016-01-20 | 中国科学院长春光学精密机械与物理研究所 | Two-degree-of-freedom flexible joint in whiffletree supporting structure of large-aperture reflecting mirror |
CN105259635A (en) * | 2015-11-17 | 2016-01-20 | 中国科学院长春光学精密机械与物理研究所 | Whiffletree support structure applied to statically determined support of large-aperture reflector |
CN106826463A (en) * | 2016-07-25 | 2017-06-13 | 中国科学院长春光学精密机械与物理研究所 | A kind of complex-curved processing method |
CN106772918A (en) * | 2016-12-20 | 2017-05-31 | 中国科学院长春光学精密机械与物理研究所 | A kind of angle self adaptation high accuracy mirror body lateral support mechanism |
CN107272193A (en) * | 2017-05-31 | 2017-10-20 | 长光卫星技术有限公司 | The ultralightization Optimization Design of lightweight mirror |
CN107498423A (en) * | 2017-08-22 | 2017-12-22 | 长光卫星技术有限公司 | Heat sink for speculum ion beam polishing |
CN107498423B (en) * | 2017-08-22 | 2018-12-25 | 长光卫星技术有限公司 | Cooling device for reflecting mirror ion beam polishing |
CN107942503A (en) * | 2017-09-13 | 2018-04-20 | 中国科学院国家天文台南京天文光学技术研究所 | Extremely large telescope height shafting supports and driving hydraulic pressure whiffletree control mobile systems |
CN107942503B (en) * | 2017-09-13 | 2020-04-21 | 中国科学院国家天文台南京天文光学技术研究所 | Very Large Telescope Height Shafting Support and Drive Hydraulic Whiffletree Control Airborne System |
CN107783247A (en) * | 2017-11-16 | 2018-03-09 | 中国科学院西安光学精密机械研究所 | Single-degree-of-freedom rotating shaft, whiffletree supporting structure and reflector supporting device |
CN107783247B (en) * | 2017-11-16 | 2024-04-05 | 中国科学院西安光学精密机械研究所 | Single-degree-of-freedom rotating shaft, whistle supporting structure and reflector supporting device |
CN108197352A (en) * | 2017-12-14 | 2018-06-22 | 中国科学院西安光学精密机械研究所 | Accurate surface shape calculation method for large-aperture reflector |
CN108197352B (en) * | 2017-12-14 | 2020-07-31 | 中国科学院西安光学精密机械研究所 | Accurate surface shape calculation method for large-aperture reflector |
CN109159008A (en) * | 2018-08-20 | 2019-01-08 | 江苏尚唯汽车饰件有限公司 | A kind of lightweight vehicle noise insulation pad interlayer Scissoring device |
CN110666596B (en) * | 2019-09-02 | 2021-08-06 | 中国兵器科学研究院宁波分院 | Positioning and attitude adjusting device for optical element |
CN110666596A (en) * | 2019-09-02 | 2020-01-10 | 中国兵器科学研究院宁波分院 | Positioning and attitude adjusting device for optical element |
CN112454140A (en) * | 2020-11-24 | 2021-03-09 | 许昌学院 | Automatic large flat plate polishing device and using method thereof |
CN112894560A (en) * | 2021-01-28 | 2021-06-04 | 浙江欧凯车业有限公司 | Electric scooter frame machining device and method |
CN113043116A (en) * | 2021-04-13 | 2021-06-29 | 罗俊涛 | Optical lens polishing device and polishing process |
CN114460713A (en) * | 2021-12-28 | 2022-05-10 | 北京空间机电研究所 | Precise unloading structure of large-diameter reflector |
CN114460713B (en) * | 2021-12-28 | 2024-03-15 | 北京空间机电研究所 | Precise unloading structure of large-caliber reflector |
CN114777716A (en) * | 2022-06-20 | 2022-07-22 | 菏泽鲁信光学科技有限公司 | Lens thickness detector |
CN114777716B (en) * | 2022-06-20 | 2022-09-23 | 菏泽鲁信光学科技有限公司 | Lens thickness detector |
Also Published As
Publication number | Publication date |
---|---|
CN102416590B (en) | 2014-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102416590A (en) | A flexible limit support device and installation method for a large-diameter light-weight reflector | |
CN102436054B (en) | Composite primary reflector supporting device for large telescope | |
WO2022088713A1 (en) | Apparatus and method for measuring micro-vibration influence of spatial orientation measuring instrument | |
CN111169653A (en) | Hinge point force testing device of nose landing gear and load calibration method | |
WO2018184256A1 (en) | Single point laser vibration measurer based multi-directional wide-angle and continuous-scan vibration measurement auxiliary instrument | |
CN109188648B (en) | Floating support device for unloading space optical load ground gravity | |
CN102589804B (en) | Satellite attitude transformation device for testing quality characteristics of satellite | |
CN105806586A (en) | Small asymmetrical reentry body aerodynamic force measuring device supported by air bearing | |
CN107479187B (en) | A Two-Dimensional Fast Swing Mirror and Its Working Method | |
CN101520320A (en) | Aspheric aperture splicing measuring device based on spherical air-bearing shafts | |
CN106404400A (en) | Integrated high-stiffness gas thrust bearing dynamic performance test experiment table | |
Miller et al. | The Optical Corrector for the Dark Energy Spectroscopic Instrument | |
Martin et al. | Fabrication of mirrors for the Magellan Telescopes and the Large Binocular Telescope | |
CN116124344B (en) | Micro-thrust measuring device based on Roberval balance structure | |
TWI541616B (en) | Objective lens support device and lithography machine | |
CN114779428A (en) | A suspension-type precision adjustment device for the pose of multi-layer nested mirrors | |
CN108058146B (en) | Intelligent Supports Made is used in a kind of high-precision assembly of space | |
CN106596057A (en) | Surface shape inspection method of large-aperture reflector assembly | |
CN112985458B (en) | Star sensor pointing measuring instrument and method for imaging under deformation loading | |
CN117347013A (en) | Ground simulation adjustment measuring device and method for large-caliber space optical telescope | |
Semenov et al. | M1 and M2 mirror manufacturing for ARIES project: current status | |
Gressler et al. | LSST secondary mirror assembly | |
Gong et al. | Design and analysis of support system of the LAMOST primary mirror | |
CN106571097A (en) | Clearance space-contained manipulator simulation device | |
CN106438972A (en) | Joint capable of adjusting gear clearance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140312 Termination date: 20211028 |