压力传感器
技术领域
本发明涉及一种压力传感器,并适用于通过不采用油作为压力传感器的承压介质来实现压力传感器用途的多样化。
背景技术
以往,公知有水压计、气压计、差压计等使用压电振动元件作为压敏元件的压力传感器。所述压电振动元件为,例如在板状的压电基板上形成电极图案,将力的检测方向设定为检测轴,在该检测轴的方向上作用有压力时,所述压电振动件的共振频率改变,根据该共振频率的改变检测压力。在专利文献1~3中,公开有使用压电振动元件作为压敏元件的压力传感器。通过压力导入口向波纹管施加压力时,与该波纹管的有效面积相应的力经由以支轴(pivot)(挠性铰链)为支点的力传递单元,以压缩力或拉伸力的形式将力F施加到压电振动元件上。在所述压电振动件中产生与该力F相应的应力,通过该应力使共振频率改变。该压力传感器通过检测压电子所产生的共振频率的变化来测定压力。
对以往的压力传感器,使用专利文献1等中公开了的例子进行说明。图11是示出现有的压力传感器的结构的示意图。
图11所示的现有的压力传感器101包括:具有对置地配置的第一压力输入口102和第二压力输入口103的框体104;和框体104内部的力传递单元105,并且以夹持力传递单元105的一端的方式将第一波纹管106和第二波纹管107连接起来。并且,第一波纹管106的另一端与第一压力输入口102连接,第二波纹管107的另一端与第二压力输入口103连接。进而,在力传递单元105的另一端与基板108的非支轴(支点)侧的端部之间配置有双音叉型振动件109作为压敏元件。
在此,在压力传感器中,在高精度地检测压力时,在波纹管内部填 充有液体。该液体一般采用粘度较高的硅油等油,以防止气泡进入或者积存在波纹管的内部或内部的波纹部分。
像这样,在第一波纹管106内部填充具有粘性的油110,并且形成为在压力测定的对象为液体时,通过开设于第一压力输入口的开口部111使液体与油110接触并相对。另外,开口部111的开口直径被设定为不会使油110泄漏到外部。
在如此构成的压力传感器101中,在由作为压力测定对象的液体对填充在第一波纹管106内部的油110施加压力F时,压力F经由第一波纹管106施加到力传递单元105(被支轴支撑的摆动杆)的一端。另一方面,在第二波纹管107上施加大气压力,与大气压力相当的力也施加在力传递单元105的一端。
其结果是,作为压力测定对象的液体所施加的压力F与大气压力之间产生有压力差,与该压力差相当的力以基板108的支轴为支点,经由力传递单元105的另一端,作为压缩力或者拉伸力施加到双音叉型振动件109上。在双音叉型振动件109上施加有压缩力或者拉伸力时,在双音叉型振动件109中产生应力,共振频率根据该应力的大小而变化,因此通过测定该共振频率,能够检测出压力F的大小。
另一方面,在专利文献4中,提出了如下结构的压力传感器:采用上述的压力传感器中使用的以支轴(挠性铰链)为支点的摆动杆,而不采用高成本的力传递单元(悬臂)。在传感器外壳内,在一条直线上排列两个波纹管,并在波纹管之间夹入支座,通过支座的动作来检测由被导入到各波纹管中的压力的差所引起的压力变动。由此,在第一波纹管的一端和第二波纹管的一端之间夹入振动件粘接用支座,在第二波纹管的外周侧,将压敏元件的两端分别固定于所述支座和第二波纹管另一端侧的外壳壁面上。并且,采用如下结构:加强板配置与压敏元件将第二波纹管夹在之间的线对称位置上,并将该加强板的两端分别固定于所述支座和所述外壳壁面上。
进而,在专利文献5中,对于专利文献4中公开了的所述压力传感器,为了解决相对于来自与波纹管的压力检测轴方向正交的方向的冲击 的强度较弱的课题,提出了如下的压力传感器:在与压力检测轴方向正交的方向上,使用加强用弹性单元(所谓弹簧)将所述支座和外壳连接起来。
接着,在专利文献6、7中,公开了为了检测发动机内部的油压而固定在发动机机体上使用的压力传感器。该压力传感器由以下单元构成:输出与所施加的压力相对应的电信号的传感部;承受压力的承压用膜片部;以及用于从膜片部向传感部传递压力的压力传递单元,具体来说,在中空金属筒的一个端面设置承压用第一膜片,在另一端面设置检测用第二膜片,在筒内的所述第一膜片和第二膜片之间夹设力传递单元。力传递单元是由金属或者陶瓷构成的轴,将其以施加有预应力的状态夹设于一对膜片之间。并且,在第二膜片的外端面上贴附有作为压力检测元件且具有应变仪功能的芯片,将第一膜片受到的压力通过力传递单元传递到第二膜片,并通过应变仪芯片将第二膜片的变形转换成电信号,从而检测出发动机油压。
【专利文献1】日本特开昭56-119519号公报
【专利文献2】日本特开昭64-9331号公报
【专利文献3】日本特开平2-228534号公报
【专利文献4】日本特开2005-121628号公报
【专利文献5】日本特开2007-57395号公报
【专利文献6】日本特开2006-194736号公报
【专利文献7】日本特开2007-132697号公报
然而,在专利文献1~3的发明中,如图11所示的压力传感器那样,填充于第一波纹管106中的油110与构成压力传感器101的其他要素(例如,力传递单元105、双音叉型振动件109等)相比,油110的热膨胀系数较大,因此构成压力传感器的各部件因温度变化而产生热变形。这样的热变形作为不必要的应力而作用在双音叉型振动件109上,因此,存在所测定的压力值产生误差从而导致压力传感器的特性恶化的问题。
此外,虽然填充于第一波纹管106中的油110与作为压力测定对象的液体接触并相对,然而根据压力传感器的设置方法不同,有时油110 会流出到作为压力测定对象的液体侧,或者液体流入到第一波纹管106侧,因此会有在填充于第一波纹管106中的油110内产生气泡的情况发生。在油110内产生有气泡时,作为压力的传递介质而发挥作用的油110无法将力经由力传递单元105稳定地传递到双音叉型振动件,因此压力测定有可能产生误差。
进而,如上所述,由于油110与作为压力测定对象的液体接触并相对,因此根据压力传感器的设置方法不同,油110可能会流出到作为压力测定对象的液体侧,因而在对忌有异物混入的洁净液体进行压力测定时,存在无法使用采用了油110的现有压力传感器的问题。
进而,此外,现有的压力传感器101的力传递单元105具有复杂结构,会妨碍压力传感器小型化。此外,由于力传递单元105构成为需要有径部较细的挠曲铰链,因此成为高成本的零部件,存在使压力传感器的制造成本升高的问题。
专利文献4和5中提出的压力传感器在倾斜时,波纹管会发生下垂,因此存在施加给压敏元件(双音叉型振动件)的力产生变化,由此使共振频率也产生变动的问题。
进而,由于形成为将内部填充有油的管(pipe)与压力传感器的压力导入口连接,并使该管的另一端与被测定液体接触的结构,因此如专利文献1~3中所公开的那样,填充于波纹管或管中的油与作为压力测定对象的液体接触并相对,因而根据压力传感器的设置方法不同,有时油会流出到作为压力测定对象的液体侧,或者液体流入到波纹管侧,因此会有在填充于波纹管中的油内产生气泡的情况发生,在油内产生了气泡的话,作为压力的传递介质而发挥作用的油无法将力经由支座稳定地传递到双音叉型振动件,因此存在压力测定产生误差的问题。
在专利文献5中,由于该压力传感器构成为将夹在波纹管之间的支座通过由板簧构成的加强用弹性部件支撑在外壳侧面,因此不可否认的是会作用有这样的力:即,该力抑制支座随着波纹管的轴向移动而动作。由此,有可能导致压力检测灵敏度下降。此外,为了强化支撑而增大加强用弹性部件的硬度的话,则存在抑制波纹管的动作从而使压力检测灵 敏度下降的问题。
进而,在专利文献4、5中,由于加强板与压敏元件隔着波纹管对置配置于线对称位置上,因此存在抑制波纹管的动作从而使压力检测灵敏度下降的问题。
在专利文献6、7中,虽然膜片和轴以施加有预应力的状态接触,然而由于压力传感器是在高温高压条件下使用的,因此如果进行刚性固定的话,有可能因各部件的热膨胀的不同而使机构被破坏,因而,考虑到该热膨胀,仅将膜片与轴进行点接触,并未使用粘接剂等粘接方式进行粘着。因而,由于压力变动使得膜片和轴动作时,点接触部位相互偏离的可能性非常高,在接触点偏离的过程中,作用于膜片和轴两者上的力会泄漏,因而存在无法进行高精度的压力检测的问题。此外,由于专利文献6、7中记载的压力传感器原本就是用于高温高压条件下的,因此为了在承压部和传感部之间留出距离以避免对传感部的芯片等产生热影响,优选力传递单元尽量长,因此,并不优选应用于要实现小型化的技术。此外,在专利文献6、7的情况下,在一对膜片之间夹设有轴来进行力的传递,然而由于构成为在传感部的膜片上安装传感器芯片,因此膜片的性状在承压侧和传感部侧是不同的,因而存在无法提高计量精度的较大缺点。
发明内容
因此,本发明正是鉴于如上所述的各种问题点而完成的,即,其目的在于提供一种压力传感器,不使用油作为内部的承压介质,通过将力传递单元的结构简单化来实现小型化,并且提高了压力检测的测定精度,灵敏度良好。
本发明是为了解决上述课题的至少一部分而完成的,并且能够通过下面的方式或者应用例来实现。
【应用例1】一种压力传感器,其特征在于,该压力传感器包括:外壳;膜片,其封闭该外壳的压力输入口,且该膜片的一面为承压面;以及压敏部,其以力的检测方向为检测轴,该压敏部的一端与所述膜片 的另一面的中央区域连接,所述压敏部的另一端连接于所述外壳上,所述检测轴大致垂直于所述承压面。
根据这样的本发明,以膜片作为承受被压力测定环境中的压力的承压介质,在压力传感器中不需要作为承压介质的油,因此,不会有油流出到被压力测定环境中,能够用于例如对作为被压力测定环境的忌有异物混入的洁净液体的压力测定等用途中。
此外,由于避免了使用热膨胀系数较大的油作为承压介质,因此能够大幅度提高压力传感器的温度特性。
【应用例2】如上所述的压力传感器,其特征在于,所述压敏部由如下单元构成:力传递单元,其一端与所述膜片的另一面的中央区域接触;活动单元,其固定于该力传递单元上;以及压敏元件,其一端部与该活动单元连接,另一端部与外壳连接。
根据这样的本发明,由于不需要高成本且结构复杂的力传递单元从而实现了简单化,因此能够实现压力传感器的小型化和低成本。
【应用例3】如上所述的压力传感器,其特征在于,所述力传递单元为轴。
根据这样的本发明,能够避免压敏元件产生不必要的变形。
【应用例4】如上所述的压力传感器,其特征在于,所述压敏元件具有在所述压敏元件的两端部设置的基部,并且在设于该两端部的基部之间具有振动部。
根据这样的本发明,通过使用由于压敏元件产生的拉伸、压缩应力而使共振频率改变的双音叉振动件、厚度剪切振动件或者弹性表面波装置,从而能够容易地实现压力传感器。特别是由于双音叉型振动件对拉伸、压缩应力的灵敏度良好且分解能力优秀,因此使用双音叉型振动件能够实现用于检测微小的压力差的压力传感器。
【应用例5】如上所述的压力传感器,其特征在于,膜片的材质为金属、陶瓷或者压电晶体。
根据这样的本发明,对于膜片的材质,根据测定对象的材质来选择使用像不锈钢那样的金属或陶瓷等耐腐蚀性优秀的材质、或者像水晶那 样的单晶体等,从而能够构成测定精度较高且稳定的压力传感器。
【应用例6】如上所述的压力传感器,其特征在于,所述轴的材质为不锈钢、铝或者陶瓷。
根据这样的本发明,对于轴的材质,根据压力传感器的用途来选择使用像不锈钢或者铝那样的强度高且稳定的材质、或者容易加工的陶瓷等,从而能够构成测定精度较高且稳定的压力传感器。
【应用例7】如上所述的压力传感器,其特征在于,所述外壳的材质为不锈钢、铝或者陶瓷。
根据这样的本发明,能够缓和热对压敏元件的变形的影响。
【应用例8】一种压力传感器,其特征在于,该压力传感器包括:外壳,其具有压力输入口;膜片,其封闭该外壳的所述压力输入口,且该膜片的外表面为承压面;以及压敏部,在所述外壳内部,该压敏部的一端与该膜片的内表面的中央区域连接,另一端与所述外壳连接,并且该压敏部沿与所述膜片的承压面垂直的轴设定检测轴。
根据这样的本发明,以膜片作为承受被压力测定环境中的压力的承压介质,在压力传感器中不需要作为承压介质的油,因此,能够用于例如对忌有异物混入的洁净液体的压力测定等用途中,并且由于避免了使用热膨胀系数较大的油作为承压介质,因此能够大幅度提高压力传感器的温度特性。并且,由于压敏部收纳在外壳中,因此能够实现小型化。
【应用例9】在所述应用例1中的压力传感器的基础上,其特征在于,所述压敏部由与膜片垂直连接的力传递单元、以及一端与该力传递单元连接且另一端与所述外壳壁面连接的压敏元件构成。
根据这样的本发明,由于不需要具有支轴结构的力传递单元从而实现了简单化,因此能够实现压力传感器的小型化和低成本。
【应用例10】一种压力传感器,其特征在于,该压力传感器包括:外壳;压力输入口,其同轴地设置于该外壳的相对置的壁面上;膜片,其封闭所述压力输入口,且该膜片的外表面为承压面;力传递单元,其在所述外壳内部与所述膜片的内表面的中央区域连接;以及压敏元件,其一端与该力传递单元连接,另一端与所述外壳连接,并且该压敏元件 沿与所述膜片的承压面垂直的轴设定检测轴。
根据这样的结构,能够实现无油且小型的压力传感器用作绝对压力传感器。
【应用例11】一种压力传感器,其特征在于,该压力传感器包括:外壳;一对压力输入口,它们设置于该外壳的相对置的壁面上;第一、第二膜片,它们封闭所述压力输入口,且第一、第二膜片的外表面为承压面;力传递单元,其在所述外壳的内部与所述第一膜片、第二膜片的内表面的中央区域连接;以及压敏元件,其一端与该力传递单元的中途连接,另一端与所述外壳连接,并且该压敏元件沿与所述膜片的承压面垂直的轴平行地设定检测轴。
根据该结构,能够实现无油且小型的压力传感器用作相对压力传感器。
【应用例12】根据应用例8~11中的任一项所述的压力传感器,其特征在于,在外壳内部设有与所述检测轴平行的引导轴。
根据该结构,由于能够对压敏元件仅作用沿其检测轴方向的力,因此能够提高检测精度。
【应用例13】在应用例10~11中的任一项所述的压力传感器中,其特征在于,由轴形成所述力传递单元,并且与所述轴平行地配置压敏元件。
根据该结构,能够降低外壳高度,能够促进小型化。
【应用例14】在应用例10~11中的任一项所述的压力传感器中,其特征在于,由轴形成所述力传递单元,并且与所述轴同轴地配置压敏元件。
根据该结构,能够以简单的结构构成绝对压力检测用的压力传感器,且能够降低成本。
【应用例15】一种压力传感器,其特征在于,该压力传感器包括:外壳,其由相互对置的端板状的第一、第二壳体以及包围在这些壳体周围并形成侧面部件的第三壳体形成;凸缘,其设于所述壳体中的一个上;第一、第二膜片,它们将开口于所述第一、第二壳体的压力输入口封闭; 中心轴,在所述外壳内该中心轴在所述第一、第二膜片的中央区域将所述第一、第二膜片之间连接起来而形成为一体,从而能够进行力的传递;压敏元件,其两端部安装于被固定在该中心轴上的活动支座和设于所述外壳内表面部的固定支座上,并且该压敏元件的检测轴被设定为与所述中心轴平行;以及多个支撑杆,它们配置于所述中心轴的周围,并将第一、第二壳体之间连接起来。
根据这样的应用例15,除了不使用油就能够进行压力的传递之外,特别是通过多个支撑杆能够进行高精度的压力测定,而与外壳的安装姿势无关,通过以构成外壳的带凸缘的壳体作为安装到测定对象液体容器时的安装支座,从而不会在安装时对中心轴等压敏部产生不必要的应力。
【应用例16】一种压力传感器,其特征在于,该压力传感器包括:外壳,其由相互对置的端板状的第一、第二壳体以及围绕在这些壳体周围并形成侧面部件的第三壳体形成;第一膜片,其对开口于所述第一壳体的压力输入口进行封闭;中心轴,在所述外壳内,该中心轴在所述第一膜片的中央区域与所述第一膜片连接而形成为一体,从而能够进行力的传递;压敏元件,其两端部安装于被固定在该中心轴的端部上的活动支座和被设在所述第二壳体的内表面部的固定支座上,并且该压敏元件的检测轴被设定为与所述中心轴同轴;以及多个支撑杆,它们配置于所述中心轴的周围,并将第一、第二壳体之间连接起来。
由于是如此地构成,因此能够形成不使用油的压力传感器,能够以简单的结构形成绝对压力检测用的压力传感器,并且降低成本。
【应用例17】根据应用例16或者17所述的压力传感器,其特征在于,所述中心轴和活动支座由一个材料经切削加工而一体形成。
由此,能够防止作为中心轴的固定部相对支座晃动和偏移。
【应用例18】根据应用例16或者17所述的压力传感器,其特征在于,所述中心轴与膜片的中央区域通过粘接剂接合为一体。
在该结构中,能够防止膜片与中心轴的位置偏移,并且能够防止测定精度降低。
附图说明
图1是示出本发明所述的压力传感器的第一实施方式的结构的示意图。
图2是示出压力传感器1的外壳4的结构的示意图。
图3是示出本发明所述的压力传感器的组装顺序的流程图。
图4是示出采用了定位夹具的组装方法的图。
图5是示出本发明所述的压力传感器的第二实施方式的结构的示意图。
图6是第三实施方式所述的压力传感器的示意剖视图。
图7是该压力传感器的主要部件的立体图。
图8是该压力传感器的局部剖切立体图。
图9是该压力传感器的组装工序图。
图10是第四实施方式所述的压力传感器的示意剖视图。
图11是示出现有的压力传感器的结构例的剖视图。
标号说明
1、30:压力传感器;2:第一压力输入口;3:第二压力输入口;4、36:外壳;5:第一膜片;6:第二膜片;7、32:轴;9:活动部件;10、35:固定部;11:压敏元件;12a、12b:支撑杆;20、31:第一壳体;21、33:第二壳体;22:第三壳体;25:定位夹具;26:孔口;27:第一组件;28:第二组件;40:压力传感器:42:外壳;44:凸缘端板(第一壳体);46:密封端子台;47:第一压力输入口;48:圆筒侧壁;49:第二压力输入口;50:第一膜片;52:第二膜片;54:中心轴;56:活动部;58:压敏元件;60:凸台部;62a、62b:支撑杆(引导轴);64:密封端子;70:压力传感器;72:外壳;74:凸缘端板(第一壳体);76:密封端子台;77:压力输入口;78:圆筒侧壁;80:承压用膜片:84:中心轴;86:活动部;88:压敏元件;90:支座;92a、92b:支撑杆(引导轴)。
具体实施方式
下面,基于图示的实施方式,对本发明进行详细说明。另外,以测 定对象物为液体的情况为例,对各实施方式进行说明。
图1是示出本发明所述的压力传感器的第一实施方式的结构的示意图。
该图1所示的压力传感器1包括用于收纳后述各结构要素的外壳4,该外壳4的内部为真空,并且具有对置配置的第一压力输入口2和第二压力输入口3。在第一压力输入口2的前端部安装有着随作为测定对象的液体的压力而弯曲的第一膜片(承压用膜片)5,该第一膜片5露出于外部。在第二压力输入口3的前端部安装有随着大气压力而弯曲的第二膜片(大气压力用膜片)6。在第一膜片5和第二膜片6之间安装有作为力传递单元的轴7,并使该轴7露出于外部。在轴7的预定位置安装有活动部件9。通过将两端的支撑部分别连接并支撑在活动部件9和第二壳体21的固定部10上来固定压敏元件11,该压敏元件11的两端沿着力的检测轴方向配置。压敏元件11的移位方向配置成与将第一膜片5和第二膜片6连接起来的承压部的轴7的移位方向相同,即与力的检测轴方向平行。在第一壳体20与第二壳体21之间设有支撑杆12a、12b,并且在第一壳体20和第二壳体21的内部表面形成有仿形为支撑杆12a、12b的剖面外形的形状的暗榫孔(未图示),作为引导轴的支撑杆12a、12b插入到该暗榫孔中与之接合,从而起到在组装时和使用产品时避免使压敏元件产生不必要的变形的功能。另外,在图示中形成了两根支撑杆,然而也可以形成一根或者三根以上。
参照图1、图2,更为具体地对第一实施方式详细地进行说明。该压力传感器1具有由中空圆筒体构成的外壳4。该外壳4由作为端板的第一壳体(下端板)20、第二壳体(上端板)21和作为圆筒侧壁的第三壳体22这三个组件构成,且该外壳4内部为中空。在第一壳体20、第二壳体21的外端面上分别沿外壳4的轴芯突出设置有作为第一安装部的接头和第二安装部的接头,在这些接头上切出有外螺纹,以形成作为用于导入测定对象液体或大气的连接部的安装配件13。在第一、第二壳体20、21中(包括所述接头部分),与内部空间连通的第一压力输入口2、第二压力输入口3与外壳轴芯同心地贯穿,并且在接头部分的前端面开口。并 且,在各接头的外端面安装有分别封闭这些压力输入口2、3并将内外隔开的膜片。在该实施方式中,在第一壳体20侧安装有承压用的第一膜片5,在第二壳体21侧安装有大气压力设定用的第二膜片6。这些膜片5、6是相同的,两者被设定为在承受相同的压力时的弯曲量相同。当然,由此,外壳4成为内外被隔断的状态,并且通过未图示的空气抽取装置能够使内部保持在真空状态。
在这样的外壳结构中,在所述外壳4的内部具有以力的检测方向为检测轴的压敏部,该压敏部的一端与所述膜片的另一面的中央区域连接,所述压敏部的另一端与所述外壳连接,所述检测轴相对于所述承压面大致垂直。即,构成压敏部的一部分的中心轴7沿外壳4的轴芯进行配置,并且贯穿所述第一压力输入口2和第二压力输入口3,该中心轴7的前端部通过粘接剂被固定连接在上述的膜片5、6的中央区域。由此,能够将膜片5、6中的一方的弯曲变形传递到另一方。即,中心轴7构成力传递部件。中心轴7由不锈钢、铝等金属或者陶瓷构成,由不产生压曲等变形的刚性材料形成。在实现该中心轴7的轻量化时,其能够由管形成。在中心轴7的中途,通过一体成型或者后期追加设有作为后述的压敏元件的安装支座的小组件,该小组件作为随着中心轴7的轴向移动而移动的活动部9。中心轴7和活动部9也可以由一个部件经切削加工而一体地形成。通过这样,就不会存在活动部9在中心轴7的固定部上晃动、偏移的情况,因此检测精度提高。
此外,在所述中心轴7上协动连接有构成压敏部主体的压敏元件11。在实施方式中,压敏元件11采用双音叉型振动件,其一端侧的安装支撑部固定于活动部9,另一端侧的安装支撑部固定于上述的第二壳体21的固定部10。此时,该压敏元件11以如下方式进行配置:将检测轴设定为与所述中心轴7平行,并且进行力传递以使与承压用第一膜片5的承压面垂直的中心轴上产生的轴向变化经由所述活动部9而成为压敏元件11沿其检测轴的变化。另外,在第二壳体21上以形成与所述活动部9的侧面同排的侧面的方式形成凹陷部,压敏元件11被安装成与中心轴7平行,同时实现了外壳高度的降低。
在上述外壳4的内部配置有多个作为引导轴的支撑杆12a、12b,它们与所述中心轴7平行并位于其周围。所述支撑杆12a、12b保持第一壳体20和第二壳体21之间的间隔固定,避免由外力引起的外壳4的变形或者任意姿态而导致检测精度降低。为此,将支撑杆12的端部压入到形成于第一壳体20和第二壳体21的暗榫孔中进行稳定的固定。
如图1所示,通过将周围切出有螺旋状的槽以发挥螺纹功能的安装配件13、13等,这样构成的压力传感器1安装到作为测定对象的液体的收纳容器上,使第一膜片5直接与作为测定对象的液体接触。安装配件13、13需要根据作为测定对象的液体的压力强度以及液体的收纳容器的结构而具有预定的形状和壁厚。
第一膜片5为具有弹性的承压元件,在被所接触的液体侧施加压力时,第一膜片5向中心轴7侧弯曲,经由中心轴7对活动单元9沿图1中的纸面的上下方向施加力F1。另一方面,第二膜片6上施加有大气压力,由承受大气压力的第二膜片6经由中心轴7向活动单元9施加力F2。
该情况下,在活动单元9的一侧的面(与膜片的承压面平行的表面)上施加有相当于液体施加到第一膜片5上的力F1与大气压力施加到第二膜片6上的力F2的压力差的力(F1-F2),因此在活动单元9的另一侧的面(与膜片的承压面垂直(交叉)的面)与第二壳体21的固定部10之间配置的压敏元件11上,施加有压缩力或者拉伸力。在压敏元件11上施加有压缩力或者拉伸力时,在压敏元件11中产生伸长(拉伸)应力或者压缩应力,因而其共振频率随该应力的大小而变化,通过测定其共振频率,能够通过微型计算机等求得以大气压力为零基准的相对压力值。
然而,在组装压力传感器1时,需要避免压敏元件11由于不必要的应力而产生变形。因此,在本实施方式中,采用了两根支撑杆12a、12b将膜片、轴或者活动部件等高精度地组装起来。
接着,对压力传感器1的组装方法进行说明。
图2是示出压力传感器1的外壳4的结构的示意图。
外壳4由以下的三个组件构成:具有作为相对于测定对象液体的承压介质的第一膜片5的第一壳体20;具有作为相对于大气压力的承压介 质的第二膜片6的第二壳体21;以及用于将压力传感器1气密封闭起来的第三壳体22。并且,通过将第一壳体20、第二壳体21和支撑杆12a、12b组合起来进行组装,提高了组装精度。
接着,对压力传感器1的组装顺序进行说明。
图3是示出本发明的压力传感器的组装顺序的流程图。
该情况下,首先,将第一膜片5与设于第一壳体20上的第一压力输入口2的前端部连接(ST1)。接着,将第二膜片6与设于第二壳体21上的第二压力输入口3的前端部连接(ST2)。然后,使用后述的组装夹具将轴7的一端沿垂直方向高精度地连接在第一膜片5上(ST3)。进而,使用后述的组装夹具将轴7的另一端沿垂直方向高精度地连接在第二膜片6上(ST4)。接着,通过将支撑杆12a、12b的一端插入到与轴7的一端和第一膜片5进行连接的第一壳体20的暗榫孔中来将支撑杆12a、12b与第一壳体20连接起来(ST5),进而,通过将支撑杆12a、12b的另一端插入到与轴7的另一端和第二膜片6进行连接的第二壳体21的暗榫孔中来将支撑杆12a、12b与第二壳体21连接起来(ST6)。接着,在轴7的预定位置连接活动部件9(ST7),在活动部件9和固定部件10之间连接压敏元件11,并使压敏元件11的移位方向与第一膜片5和第二膜片6的移位方向相同(ST8)。最后,将安装有各结构要素的第一壳体20和第二壳体21与用于将壳体内封闭起来的第三壳体22接合(ST9),通过将壳体内真空地封闭起来而完成压力传感器1的组装(ST10)。
另外,为了提高压力传感器的测定精度,要求分别沿垂直方向与第一膜片5和第二膜片6连接的轴7,在连接时高精度地保证垂直度。因此,在本实施方式中,通过图4所示的定位组装方法组装轴。
图4是示出采用了定位夹具的组装方法的图。
定位夹具25形成为圆筒状的开槽形状,能够分成两个半圆形的组件。并且,定位夹具25能够紧密地插入到与设于外壳4的第一压力输入口2连通的孔口26中,在将定位夹具25配置于孔口26中后,将轴7插入到定位夹具25的中心部。接着,将已插入的轴7与第一膜片5(未图示)连接后,将定位夹具25的第一组件27和第二组件28分离并卸下, 则轴7被高精度地沿垂直方向连接到第一膜片5上,因此能够提高压力传感器的测定精度。此外,第二膜片6与轴7的连接同样也需要使用定位夹具25来进行。
本实施方式的压力传感器中使用的压敏元件11采用水晶、铌酸锂、钽酸锂等压电材料形成为双音叉型振动件、SAW共振件、厚度剪切振动件等。压敏元件11的两端部分别与活动单元9和固定部件10的固定部连接并被它们支撑。此时,压敏元件11将力的检测方向设定为检测轴,连接压敏元件11的所述两端部的方向与所述检测轴为平行关系。此外,压敏元件11与安装在外壳4上的振荡电路(未图示)电连接,通过来自振荡电路(未图示)的交流电压而以固有共振频率进行振动。并且,压敏元件11在受到来自活动单元9的伸长(拉伸)力或者压缩力时,在内部产生有伸长(拉伸)应力或者压缩应力,因此共振频率变化。特别是,与厚度剪切振动件等相比,双音叉型振动件的共振频率相对于伸长·压缩应力的变化非常大且共振频率的可变幅度也较大,因此适用于检测微小的压力差那样的分解能力优秀的高精度压力传感器。双音叉型振动件受到伸长应力时,振幅臂(振动部)的振幅幅度减小,因而共振频率增大,受到压缩应力后,振幅臂(振动部)的振幅幅度增大,因而共振频率减小。另外,优选采用温度特性优良的水晶作为双音叉型振动件的压电基板。
此外,第一膜片5和第二膜片6的材质例如可以是不锈钢那样的金属或者陶瓷等耐腐蚀性优良的材料,此也可以是水晶那样的单晶体,或者其他非晶体。并且,优选的是,与作为测定对象的液体接触的第一膜片5选用在与液体接触时不受腐蚀或劣化等影响的材质。此外,轴7、第一膜片5以及第二膜片6、外壳4的材质优选采用相同的材质,如不锈钢、铝或陶瓷等,然而也可以采用不同材料。
此外,压力传感器的外壳内部是真空室,能够提高压敏元件的Q值(品质因数)以确保稳定的共振频率,因此能够确保压力传感器的长期稳定性。
此外,由于相对于作为测定对象的液体的承压介质和相对于大气压 力的承压介质均采用相同的膜片方式,因而能够改善作为无变化的恒压力即静压特性。
此外,外壳4和轴7的材质选定并使用温度膨胀系数较小的材料,因此能够改善压力传感器的温度特性。特别是轴7采用陶瓷的话,由于其温度膨胀系数较小,因此压力传感器温度特性基本依赖于压敏元件的温度特性。
如上所说明的那样,第一实施方式所述的压力传感器由于采用膜片作为与测定对象液体接触的介质而无需油,因此不会有油流出到液体侧的情况,能够用于对忌有异物混入的洁净液体进行压力测定等用途。此外,在第一实施方式所述的压力传感器中,承受的压力由膜片转换成力,经由轴传递到压敏元件,因此不再使用悬臂那样高成本且具有复杂结构的力传递单元,因此能够使压力传感器小型化,并且能够实现低成本化。
接着,对本发明所述的压力传感器的第二实施方式进行说明。
图5是示出本发明所述的压力传感器的第二实施方式的结构的示意图。另外,对与图1相同的部位标以相同符号并省略重复说明。
第一实施方式的压力传感器具有对以大气压力为零基准进行显示的相对压力进行测定的功能,因此活动部件9与承受大气压力的承压介质连接,然而,第二实施方式的压力传感器具有对以真空状态为零基准的绝对压力进行测定的功能,其特征在于,除去对应于大气压力的承压介质,使活动部件9仅与对应于测定对象液体的承压介质连接。
在图5所示的压力传感器30中,由于活动部件9仅与对应于作为测定对象的液体的承压介质连接,因此液体压力F产生的力施加在活动部件9上。因而,活动部件9将与施加到第一膜片5上的压力相当的力,作为压缩力或者拉伸力施加到压敏元件11上。压敏元件11根据被施加的压缩力或拉伸力在内部产生伸长(拉伸)应力或者压缩应力,从而使共振频率改变,因此能够通过测定该共振频率,使用微型计算机等计算设备求得以真空状态为零基准的绝对压力值。因而,在第二实施方式中,压力传感器起到了作为绝对压力传感器的作用。
另外,第二实施方式也依照第一实施方式中说明的组装顺序进行组 装。具体来说,经过如下工序完成产品:将第一膜片5与第一壳体31连接起来的工序;将第一膜片5与轴32连接起来的工序;将第一壳体31与支撑杆12a、12b连接起来的工序;将轴32与活动部件9连接起来的工序;通过将压敏元件11的沿力的检测轴方向配置的两端的支撑部分别连接并支撑在活动部件9和第二壳体33的固定部35上从而连接支撑压敏元件11的工序;将第三壳体34与第一壳体31和第二壳体33接合起来的工序;以及将壳体内真空封闭起来的工序。以上对压力传感器的实施方式进行了说明,然而压敏元件并不限于双音叉型振动件,只要是共振频率随拉伸·压缩应力而变化的压电振动件,则无论何种压电振动件均可采用,例如可以使用SAW共振件、厚度剪切振动件等。
此外,对测定对象液体的压力进行检测的膜片也可以在表面上进行涂敷,从而使液体等不会腐蚀膜片。例如,如果是金属制的膜片的话可以涂敷镍化合物,如果膜片是水晶那样的压电晶体的话,可以涂敷钾。
此外,所述第一壳体、第二壳体如果是由不锈钢、铝等金属形成的话,加工容易,较为优选。此外,所述第三壳体由陶瓷形成的话,能够缓和热对压敏元件的变形的影响。
像这样的本申请发明所述的压力传感器以由作为结构要素的膜片、压敏部和外壳构成的结构为基本结构,如图1和图5所示的压敏部由力传递单元、活动单元和压敏元件构成。
此外,本发明所述的压力传感器的实施方式对以液体作为压力测定对象的情况进行了说明,然而本发明并不限定于此,也能够应用于测定气体等的压力。
图6示出了第三实施方式所述的压力传感器40,图7、图8示出了该压力传感器的主要部件立体图、局部剖切立体图。图示的例子为第一实施方式所示的用于检测相对压力的压力传感器的变形例。
该压力传感器40具有由中空圆筒体构成的外壳42。该外壳42以凸缘端板44为构成第一壳体(下端板)的端板,并且以密封端子台46为第二壳体(上端板),并且通过作为第三壳体的圆筒侧壁48将隔开配置的端板周围包围起来,从而构成中空密闭容器。在凸缘端板44和密封端 子台46中,与外壳42的轴芯同心地贯穿有第一压力输入口47、第二压力输入口49,所述第一压力输入口47、第二压力输入口49与内部空间连通并朝外部开口。这些开口部分别被第一膜片50、第二膜片52将内外隔开,且第一膜片50和第二膜片52分别与凸缘端板44和密封端子台46结合为一体。凸缘端板44侧的第一膜片50为承压用部件,密封端子台46侧的第二膜片52为大气压力设定用部件。这样的外壳42也形成为内外隔开的状态,并且能够通过未图示的空气抽取单元将内部保持为真空状态,这一点也与第一实施方式相同。
在所述外壳42的内部,沿外壳42的轴芯配置有中心轴(力传递单元)54,该中心轴54将所述第一、第二膜片50、52的内表面的中央区域相互连接起来,从而将第一、第二膜片50、52这两者粘接连接起来。并且,在该中心轴54的中途一体地设有作为压敏元件支座的活动部56,该活动部56上安装有压敏元件58的一端部,所述压敏元件58由双音叉型振动件构成,并且将检测轴设定为平行于与膜片50、52的承压面垂直的轴。压敏元件58的另一端部与作为压敏元件支座的凸台部60连接,所述凸台部60设于所述外壳42的密封端子台46上并向内侧突出。由此,在承压用第一膜片50和大气压力用第二膜片52的压力差的作用下,中心轴54沿轴向移动的话,活动部56的位置随之变动,该力对压敏元件58产生检测轴方向的作用力。
在上述外壳42的内部配置有多个作为引导轴的支撑杆62a、62b,所述支撑杆62a、62b与所述中心轴54平行,并位于所述中心轴54周围。这些支撑杆将作为第一壳体的凸缘端板44和作为第二壳体的密封端子台46的间隔保持为恒定,不会由于因外力作用而引起的外壳42的变形或者任意的姿势而导致检测精度降低,这与第一实施方式是相同的。
在该第三实施方式中,特别地,以密封端子台46为上部端板,并以密封端子64贯穿端子台46,从而能够从外部获取压敏元件58的信号。
根据这样的第三实施方式,一对膜片50、52之间连接有中心轴54,设于中心轴54中途的活动部56随膜片50、52的动作而一体地沿轴方向移动(这是由一对膜片50、52受到的压力差引起的动作),成为与对作 为双音叉型振动件的压敏元件58沿检测轴方向作用的力相应的动作。因而,能够不使用油而构成检测精度较高的压力传感器,且形成小型并容易组装的结构。此外,凸缘端板44、密封端子台46以及圆筒侧壁48形成了作为真空容器的外壳42,凸缘端板44与第一膜片50一体形成,且密封端子台46与第二膜片52一体形成,使得组装能够简便地进行。为了将该压力传感器40安装到下沉(浸入)于测定对象液体中的容器上,将凸缘端板44经由O型密封圈接合并通过螺栓紧固而安装到测定对象液体容器上,所述O型封闭圈将第一膜片50周围包围起来。在该安装作业中,由于不是像第一实施方式那样以与中心轴连接的膜片所具有的接头部分拧入的方式构成,因此能够防止由于中心轴的伸长而引起的对压敏元件产生拉伸力的不良情况。
另外,在该第三实施方式中,中心轴54和作为压敏元件固定用支座的活动部56也可以由一个部件经过切削加工而一体形成。这样的话,就不会有活动部56相对于轴的固定部晃动、偏移的情况发生。
接着,在图9中示出上述的第三实施方式所述的制造过程。如图所示,首先,使用夹具A保持密封端子台46,并将第二膜片52通过焊接而接合到其压力输入口49(图9(1))。另一方面,使用夹具B保持凸缘端板44,并将第一膜片50焊接到其压力输入口47(图9(2))。接着,将中心轴54垂直地结合到安装在密封端子台46上的第二膜片52的内侧中央部,然而也可以采用图4所示的定位夹具25。将定位夹具25装配在密封端子台46的凸台部60上,将前端附着有粘接剂的中心轴54插入定位夹具25中进行定位,并与膜片52的中央部垂直地立起安装。此外,对于凸缘端子板44,通过夹具B和夹具C一起夹持并保持该凸缘端子板44,该夹具C具有供作为引导轴的支撑杆62(62a、62b)贯穿的插入贯通孔。在该状态下,将支撑杆62插入,并以其前端埋设于凸缘端子板44中的状态进行安装(图9(4))。
接着,使凸缘端子板44与密封端子台46相对设置,将引导轴(支撑杆)62的前端埋入密封端子台46中进行粘接,并且将中心轴54的另一端部与凸缘端子板44的第一膜片50的中央部粘接。此时,利用夹具A、 B、C实现了两者的定位和安装,此后只要将夹具分割并卸下即可。将活动部56相对于一体化后的凸缘端子板44和密封端子台46安装到中心轴54局部上。由于需要将活动部56距凸缘端子板44的高度保持在预定高度,因此使用了高度调整夹具D。该夹具D整体为L字形状,由进入到凸缘端子板44的上端面与活动部56的下表面之间的间隙中的高度调整支座部分和保持该支座部分相对于密封端子台46定位的位置保持背板部分构成。能够通过支座的厚度来调整高度,通过背板将凸缘端子板44与密封端子台46之间的间隔保持恒定(图9(5))。
然后,将压敏元件58以检测轴与中心轴54的轴芯平行的方式安装在密封端子台46的凸台部60和中心轴54的活动部56之间,在进行布线处理后,安装圆筒侧壁48,将内部密闭,进行真空抽吸并进行隔断(图9(6))。最后,在密封端子台46的外端面部分安装IC(集成电路),并安装导线,从而完成安装(图9(7))。
这样,能够制造出不使用油、检测精度较高且结构简单的压力传感器。
接着,在图10中示出了第四实施方式所述的压力传感器70的剖视图。图示的例子为第二实施方式所示的用于检测绝对压力用的压力传感器的变形例,特别是使中心轴与压敏元件同心配置,并将它们配置于穿过承压用膜片的中央区域的轴线上,这一点与之前的实施方式不同。
该压力传感器70具有由中空圆筒体构成的外壳72。该外壳72以凸缘端板74为构成第一壳体(下端板)的端板,并且以密封端子台76为第二壳体(上端板),并且通过作为第三壳体的圆筒侧壁78将隔开配置的端板周围包围起来,从而构成中空密闭容器。在凸缘端板74中与外壳72的轴芯同心地贯穿有压力输入口77,该压力输入口77与内部空间连通并且朝外部开口。该开口部由第一膜片80将内外隔开,并与凸缘端板74结合为一体。膜片80为测定对象液体的承压用。密封端子台76构成为压力输入口和膜片均被省略掉的端板。这样的外壳72也形成为内外被隔开的状态,并且能够通过未图示的空气抽取单元将内部保持为真空状态,这一点也与其他实施方式相同。
在所述外壳72的内部,在所述膜片80的内表面的中央区域垂直地立起设置有中心轴(力传递单元)84,该中心轴84沿外壳72的轴芯进行配置。并且,在该中心轴84的前端部一体地设有作为压敏元件支座的活动部86,在该活动部86上安装有压敏元件88的一端部,所述压敏元件88由检测轴被设定为与中心轴84同轴的双音叉型振动件构成。压敏元件88的另一端部与支座90连接,所述支座90设于所述外壳72的密封端子台76的中央区域并向内侧突出。由此,承压用膜片80在受到测定对象液体的压力作用而弯曲时,使中心轴84沿轴向移动,随之对与活动部86连接的压敏元件88产生沿该压敏元件检测轴方向的作用力。
此外,在上述外壳72的内部配置有多个作为引导轴的支撑杆92a、92b,它们与所述中心轴84平行并且位于其周围。这些支撑杆将作为第一壳体的凸缘端板74和作为第二壳体的密封端子台76的间隔保持恒定,从而不会由于因外力作用而引起的外壳42的变形或者任意的姿势导致检测精度降低,这与其他实施方式是相同的。
该第四实施方式与第三实施方式相同地,以密封端子台76为上部端板,并以未图示的密封端子贯穿密封端子台76,从而能够从外部获取压敏元件88的信号。
根据这样的第四实施方式,由凸缘端板74、密封端子台76以及圆筒侧壁78形成作为真空容器的外壳72,凸缘端板74与膜片80一体形成,从而能够简单地进行组装。将承压用膜片80与中心轴84同心地在一条直线上连接起来,使设于中心轴84前端的活动部86随膜片80的动作而沿轴向移动,从而产生了作用于作为双音叉型振动件的压敏元件88的检测轴方向上的力。因而,不使用油就能够构成检测精度较高的压力传感器,且形成为小型且容易组装的结构。
另外,在该第四实施方式中,中心轴84和作为压敏元件固定用支座的活动部86也可以由一个部件经过切削加工而一体形成。这样的话,就不会有活动部86相对于轴的固定部晃动、偏移的情况发生。