[go: up one dir, main page]

login
Search: a351982 -id:a351982
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers whose prime factorization has all odd indices and all odd exponents.
+10
8
1, 2, 5, 8, 10, 11, 17, 22, 23, 31, 32, 34, 40, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 88, 94, 97, 103, 109, 110, 115, 118, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 166, 167, 170, 179, 184, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of integer partitions with all odd parts and all odd multiplicities, counted by A117958.
LINKS
FORMULA
Intersection of A066208 and A268335.
A257991(a(n)) = A001222(a(n)).
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A162641(a(n)) = 0.
EXAMPLE
The terms together with their prime indices begin:
1 = 1
2 = prime(1)
5 = prime(3)
8 = prime(1)^3
10 = prime(1) prime(3)
11 = prime(5)
17 = prime(7)
22 = prime(1) prime(5)
23 = prime(9)
31 = prime(11)
32 = prime(1)^5
34 = prime(1) prime(7)
40 = prime(1)^3 prime(3)
MATHEMATICA
Select[Range[100], #==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
PROG
(Python)
from itertools import count, islice
from sympy import primepi, factorint
def A352142_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())), count(max(startvalue, 1)))
A352142_list = list(islice(A352142_gen(), 30)) # Chai Wah Wu, Mar 18 2022
CROSSREFS
The restriction to primes is A031368.
The first condition alone is A066208, counted by A000009.
These partitions are counted by A117958.
The squarefree case is A258116, even A258117.
The second condition alone is A268335, counted by A055922.
The even-even version is A352141 counted by A035444.
A000290 = exponents all even, counted by A035363.
A056166 = exponents all prime, counted by A055923.
A066207 = indices all even, counted by A035363 (complement A086543).
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352143 = odd indices with odd conjugate indices, counted by A053253 aerated.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 18 2022
STATUS
approved
Numbers whose prime factorization has all even indices and all even exponents.
+10
7
1, 9, 49, 81, 169, 361, 441, 729, 841, 1369, 1521, 1849, 2401, 2809, 3249, 3721, 3969, 5041, 6241, 6561, 7569, 7921, 8281, 10201, 11449, 12321, 12769, 13689, 16641, 17161, 17689, 19321, 21609, 22801, 25281, 26569, 28561, 29241, 29929, 32761, 33489, 35721
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of partitions with all even parts and all even multiplicities, counted by A035444.
LINKS
FORMULA
Intersection of A000290 and A066207.
A257991(a(n)) = A162642(a(n)) = 0.
A257992(a(n)) = A001222(a(n)).
A162641(a(n)) = A001221(a(n)).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2*k)^2) = 1.163719... . - Amiram Eldar, Sep 19 2022
EXAMPLE
The terms together with their prime indices begin:
1 = 1
9 = prime(2)^2
49 = prime(4)^2
81 = prime(2)^4
169 = prime(6)^2
361 = prime(8)^2
441 = prime(2)^2 prime(4)^2
729 = prime(2)^6
841 = prime(10)^2
1369 = prime(12)^2
1521 = prime(2)^2 prime(6)^2
1849 = prime(14)^2
2401 = prime(4)^4
2809 = prime(16)^2
3249 = prime(2)^2 prime(8)^2
3721 = prime(18)^2
3969 = prime(2)^4 prime(4)^2
MATHEMATICA
Select[Range[1000], #==1||And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
PROG
(Python)
from itertools import count, islice
from sympy import factorint, primepi
def A352141_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda k:all(map(lambda x: not (x[1]%2 or primepi(x[0])%2), factorint(k).items())), count(max(startvalue, 1)))
A352141_list = list(islice(A352141_gen(), 30)) # Chai Wah Wu, Mar 18 2022
CROSSREFS
The second condition alone (all even exponents) is A000290, counted by A035363.
The restriction to primes is A031215.
These partitions are counted by A035444.
The first condition alone is A066207, counted by A035363, squarefree A258117.
A056166 = exponents all prime, counted by A055923.
A066208 = prime indices all odd, counted by A000009.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even exponents, odd A162642.
A257991 counts odd indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352142 = odd indices with odd exponents, counted by A117958.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 18 2022
STATUS
approved
Numbers whose prime factorization has all even prime indices and all odd exponents.
+10
6
1, 3, 7, 13, 19, 21, 27, 29, 37, 39, 43, 53, 57, 61, 71, 79, 87, 89, 91, 101, 107, 111, 113, 129, 131, 133, 139, 151, 159, 163, 173, 181, 183, 189, 193, 199, 203, 213, 223, 229, 237, 239, 243, 247, 251, 259, 263, 267, 271, 273, 281, 293, 301, 303, 311, 317
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
Also Heinz numbers of integer partitions with all even parts and all odd multiplicities, counted by A055922 aerated.
All terms are odd. - Michael S. Branicky, Mar 12 2022
FORMULA
Intersection of A066207 and A268335.
A257991(a(n)) = A162641(a(n)) = 0.
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A001222(a(n)).
EXAMPLE
The terms together with their prime indices begin:
1 = 1
3 = prime(2)^1
7 = prime(4)^1
13 = prime(6)^1
19 = prime(8)^1
21 = prime(4)^1 prime(2)^1
27 = prime(2)^3
29 = prime(10)^1
37 = prime(12)^1
39 = prime(6)^1 prime(2)^1
43 = prime(14)^1
53 = prime(16)^1
57 = prime(8)^1 prime(2)^1
61 = prime(18)^1
71 = prime(20)^1
MATHEMATICA
Select[Range[100], And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
PROG
(Python)
from sympy import factorint, primepi
def ok(n):
if n%2 == 0: return False
return all(primepi(p)%2==0 and e%2==1 for p, e in factorint(n).items())
print([k for k in range(318) if ok(k)]) # Michael S. Branicky, Mar 12 2022
CROSSREFS
The restriction to primes is A031215.
These partitions are counted by A055922 (aerated).
The first condition alone is A066207, counted by A035363.
The squarefree case is A258117.
The second condition alone is A268335, counted by A055922.
A056166 = exponents all prime, counted by A055923.
A066208 = prime indices all odd, counted by A000009.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352141 = even indices with even exponents, counted by A035444.
A352142 = odd indices with odd exponents, counted by A117958.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 11 2022
STATUS
approved
Numbers whose prime factorization has all odd prime indices and all even prime exponents.
+10
5
1, 4, 16, 25, 64, 100, 121, 256, 289, 400, 484, 529, 625, 961, 1024, 1156, 1600, 1681, 1936, 2116, 2209, 2500, 3025, 3481, 3844, 4096, 4489, 4624, 5329, 6400, 6724, 6889, 7225, 7744, 8464, 8836, 9409, 10000, 10609, 11881, 12100, 13225, 13924, 14641, 15376
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
Also Heinz numbers of integer partitions with all odd parts and all even multiplicities, counted by A035457 (see Emeric Deutsch's comment there).
LINKS
FORMULA
Squares of elements of A066208.
Intersection of A066208 and A000290.
A257991(a(n)) = A001222(a(n)).
A162641(a(n)) = A001221(a(n)).
A162642(a(n)) = A257992(a(n)) = 0.
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2*k-1)^2) = 1.4135142... . - Amiram Eldar, Sep 19 2022
EXAMPLE
The terms together with their prime indices begin:
1: 1
4: prime(1)^2
16: prime(1)^4
25: prime(3)^2
64: prime(1)^6
100: prime(1)^2 prime(3)^2
121: prime(5)^2
256: prime(1)^8
289: prime(7)^2
400: prime(1)^4 prime(3)^2
484: prime(1)^2 prime(5)^2
529: prime(9)^2
625: prime(3)^4
961: prime(11)^2
1024: prime(1)^10
1156: prime(1)^2 prime(7)^2
1600: prime(1)^6 prime(3)^2
1681: prime(13)^2
1936: prime(1)^4 prime(5)^2
MATHEMATICA
Select[Range[1000], #==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
PROG
(Python)
from sympy import factorint, primepi
def ok(n):
return all(primepi(p)%2==1 and e%2==0 for p, e in factorint(n).items())
print([k for k in range(15500) if ok(k)]) # Michael S. Branicky, Mar 12 2022
CROSSREFS
The second condition alone (exponents all even) is A000290, counted by A035363.
The distinct prime factors of terms all come from A031368.
These partitions are counted by A035457 or A000009 aerated.
The first condition alone (indices all odd) is A066208, counted by A000009.
The squarefree square roots are A258116, even A258117.
A056166 = exponents all prime, counted by A055923.
A066207 = indices all even, counted by complement of A086543.
A076610 = indices all prime, counted by A000607.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even exponents, odd A162642.
A257991 counts odd indices, even A257992.
A268335 = exponents all odd, counted by A055922.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A352140 = even indices with odd exponents, counted by A055922 (aerated).
A352141 = even indices with even exponents, counted by A035444.
A352142 = odd indices and odd multiplicities, counted by A117958.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 11 2022
STATUS
approved
Numbers with all prime indices and exponents > 2.
+10
5
1, 125, 343, 625, 1331, 2197, 2401, 3125, 4913, 6859, 12167, 14641, 15625, 16807, 24389, 28561, 29791, 42875, 50653, 68921, 78125, 79507, 83521, 103823, 117649, 130321, 148877, 161051, 166375, 205379, 214375, 226981, 274625, 279841, 300125, 300763, 357911
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 3000 terms from Amiram Eldar)
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p prime > 3} (1 + 1/(p^2*(p-1))) = (72/95)*A065483 = 1.0154153584... . - Amiram Eldar, May 28 2022
EXAMPLE
The initial terms together with their prime indices:
1: {}
125: {3,3,3}
343: {4,4,4}
625: {3,3,3,3}
1331: {5,5,5}
2197: {6,6,6}
2401: {4,4,4,4}
3125: {3,3,3,3,3}
4913: {7,7,7}
6859: {8,8,8}
12167: {9,9,9}
14641: {5,5,5,5}
15625: {3,3,3,3,3,3}
16807: {4,4,4,4,4}
24389: {10,10,10}
28561: {6,6,6,6}
29791: {11,11,11}
42875: {3,3,3,4,4,4}
MATHEMATICA
Select[Range[10000], #==1||!MemberQ[FactorInteger[#], {_?(#<5&), _}|{_, _?(#<3&)}]&]
CROSSREFS
The version for only parts is A007310, counted by A008483.
The version for <= 2 instead of > 2 is A018256, # of compositions A137200.
The version for only multiplicities is A036966, counted by A100405.
The version for indices and exponents prime (instead of > 2) is:
- listed by A346068
- counted by A351982
- only exponents: A056166, counted by A055923
- only parts: A076610, counted by A000607
The version for > 1 instead of > 2 is A062739, counted by A339222.
The version for compositions is counted by A353428, see A078012, A353400.
The partitions with these Heinz numbers are counted by A353501.
A000726 counts partitions with multiplicities <= 2, compositions A128695.
A001222 counts prime factors with multiplicity, distinct A001221.
A004250 counts partitions with some part > 2, compositions A008466.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A295341 counts partitions with some multiplicity > 2, compositions A335464.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 16 2022
STATUS
approved
Number of integer compositions of n with all prime parts and all prime run-lengths.
+10
4
1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 4, 0, 2, 2, 5, 4, 9, 1, 5, 12, 20, 11, 19, 18, 31, 43, 54, 37, 63, 95, 121, 124, 154, 178, 261, 353, 393, 417, 565, 770, 952, 1138, 1326, 1647, 2186, 2824, 3261, 3917, 4941, 6423, 7935, 9719, 11554, 14557, 18536, 23380, 27985
OFFSET
0,7
LINKS
EXAMPLE
The a(13) = 2 through a(16) = 9 compositions:
(22333) (77) (555) (3355)
(33322) (2255) (33333) (5533)
(5522) (222333) (22255)
(223322) (333222) (55222)
(2222222) (332233)
(2222233)
(2223322)
(2233222)
(3322222)
MAPLE
b:= proc(n, h) option remember; `if`(n=0, 1, add(`if`(i<>h and isprime(i),
add(`if`(isprime(j), b(n-i*j, i), 0), j=2..n/i), 0), i=2..n/2))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..70); # Alois P. Heinz, May 18 2022
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], And@@PrimeQ/@#&&And@@PrimeQ/@Length/@Split[#]&]], {n, 0, 15}]
CROSSREFS
The first condition only is A023360, partitions A000607.
For partitions we have A351982, only run-lens A100405, only parts A008483.
The second condition only is A353401, partitions A055923.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A052284 counts compositions into nonprimes, partitions A002095.
A106356 counts compositions by number of adjacent equal parts.
A114901 counts compositions with no runs of length 1, ranked by A353427.
A329738 counts uniform compositions, partitions A047966.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 16 2022
EXTENSIONS
a(26)-a(56) from Alois P. Heinz, May 18 2022
STATUS
approved
Number of non-constant integer partitions of n into prime parts with prime multiplicities.
+10
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 3, 0, 1, 4, 5, 3, 1, 3, 5, 7, 3, 5, 6, 8, 8, 11, 7, 6, 8, 15, 14, 14, 10, 15, 17, 21, 18, 23, 20, 28, 25, 31, 27, 35, 32, 33, 37, 46, 41, 50, 45, 58, 56, 63, 59, 78, 69, 76, 81, 85, 80, 103, 107, 111, 114, 127
OFFSET
0,17
EXAMPLE
The a(n) partitions for selected n (B = 11):
n = 10 16 19 20 25 28
---------------------------------------------------------------
3322 5533 55333 7733 77722 BB33
55222 55522 77222 5533333 BB222
3322222 3333322 553322 5553322 775522
33322222 5522222 55333222 55533322
332222222 55522222 772222222
333333322 3322222222222
3333322222
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], !SameQ@@#&&And@@PrimeQ/@#&& And@@PrimeQ/@Length/@Split[#]&]], {n, 0, 30}]
CROSSREFS
Constant partitions are counted by A001221, ranked by A000961.
Non-constant partitions are counted by A144300, ranked A024619.
The constant version is A230595, ranked by A352519.
This is the non-constant case of A351982, ranked by A346068.
These partitions are ranked by A352518.
A000040 lists the primes.
A000607 counts partitions into primes, ranked by A076610.
A001597 lists perfect powers, complement A007916.
A038499 counts partitions of prime length.
A053810 lists primes to primes.
A055923 counts partitions with prime multiplicities, ranked by A056166.
A257994 counts prime indices that are themselves prime.
A339218 counts powerful partitions into prime parts, ranked by A352492.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 24 2022
STATUS
approved
Number of integer partitions of n with all parts and all multiplicities > 2.
+10
2
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 2, 3, 0, 0, 6, 2, 0, 6, 3, 2, 9, 2, 5, 11, 3, 5, 18, 6, 4, 20, 13, 8, 26, 10, 17, 37, 14, 16, 51, 23, 24, 58, 38, 32, 75, 44, 52, 100, 52, 59, 143, 75, 77, 159, 114, 112, 203, 132, 154, 266, 175
OFFSET
0,13
EXAMPLE
The a(n) partitions for selected n (A = 10):
n=9: n=12: n=21: n=24: n=30:
------------------------------------------------------
(333) (444) (777) (888) (AAA)
(3333) (444333) (6666) (66666)
(3333333) (444444) (555555)
(555333) (666444)
(4443333) (777333)
(33333333) (6663333)
(55533333)
(444333333)
(3333333333)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Min@@#>2&&Min@@Length/@Split[#]>2&]], {n, 0, 30}]
CROSSREFS
The version for only parts > 2 is A008483.
The version for only multiplicities > 2 is A100405.
The version for parts and multiplicities > 1 is A339222, ranked by A062739.
For prime parts and multiplicities we have A351982, compositions A353429.
The version for compositions is A353428 (partial A078012, A353400).
These partitions are ranked by A353502.
A000726 counts partitions with all mults <= 2, compositions A128695.
A004250 counts partitions with some part > 2, compositions A008466.
A137200 counts compositions with all parts and run-lengths <= 2.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 16 2022
STATUS
approved

Search completed in 0.012 seconds