OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: product(1+x^(2k-1)/(1-x^(4k-2)), k=1..infinity).
a(n) ~ (Pi^2/6 + 4*log(phi)^2)^(1/4) * exp(sqrt((Pi^2/6 + 4*log(phi)^2)*n)) / (4*sqrt(Pi)*n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016
EXAMPLE
a(8) = 4 because we have [7,1], [5,3], [5,1,1,1] and [3,1,1,1,1,1].
MAPLE
g:=product(1+x^(2*k-1)/(1-x^(4*k-2)), k=1..50): gser:=series(g, x=0, 70): seq(coeff(gser, x, n), n=0..65);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(irem(i*j, 2)=0, 0, b(n-i*j, i-1)), j=1..n/i)
+b(n, i-1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, May 31 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[Mod[i*j, 2] == 0, 0, b[n-i*j, i-1]], {j, 1, n/i}] + b[n, i-1]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k-1) - x^(4*k-2)) / (1-x^(4*k-2)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 08 2006
STATUS
approved