[go: up one dir, main page]

login
A117958
Number of partitions of n into odd parts, each part occurring an odd number of times.
14
1, 1, 0, 2, 1, 2, 2, 2, 4, 4, 6, 4, 8, 6, 10, 12, 15, 14, 18, 20, 22, 30, 30, 36, 40, 51, 50, 66, 66, 80, 86, 102, 108, 130, 138, 164, 182, 200, 224, 250, 280, 306, 352, 378, 428, 470, 530, 566, 660, 703, 792, 854, 960, 1034, 1172, 1264, 1402, 1520, 1688, 1828, 2036
OFFSET
0,4
LINKS
FORMULA
G.f.: product(1+x^(2k-1)/(1-x^(4k-2)), k=1..infinity).
a(n) ~ (Pi^2/6 + 4*log(phi)^2)^(1/4) * exp(sqrt((Pi^2/6 + 4*log(phi)^2)*n)) / (4*sqrt(Pi)*n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016
EXAMPLE
a(8) = 4 because we have [7,1], [5,3], [5,1,1,1] and [3,1,1,1,1,1].
MAPLE
g:=product(1+x^(2*k-1)/(1-x^(4*k-2)), k=1..50): gser:=series(g, x=0, 70): seq(coeff(gser, x, n), n=0..65);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(irem(i*j, 2)=0, 0, b(n-i*j, i-1)), j=1..n/i)
+b(n, i-1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, May 31 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[Mod[i*j, 2] == 0, 0, b[n-i*j, i-1]], {j, 1, n/i}] + b[n, i-1]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k-1) - x^(4*k-2)) / (1-x^(4*k-2)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)
CROSSREFS
Sequence in context: A072209 A226559 A060169 * A113401 A071227 A285442
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 08 2006
STATUS
approved