OFFSET
0,7
COMMENTS
Also number of partitions of n into distinct even parts. Example: a(10)=3 because we have [10],[8,2] and [6,4]. - Emeric Deutsch, Feb 22 2006
Also number of partitions of n into odd parts, each part occurring an even number of times. Example: a(10)=3 because we have [5,5], [3,3,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 08 2006
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1/Product_{n>=0} (1 - x^(4*n+2)).
G.f.: 1/Product_{j>=0} (1 - x^(8*j+2))*(1 - x^(8*j+6)).
G.f.: Product_{j>=1} (1 + x^(2*j)). - Emeric Deutsch, Feb 22 2006
G.f.: Sum_{n>=1} (x^(n*(n+1)) / Product_{k=1..n} (1 - x^(2*k))). - Joerg Arndt, Mar 10 2011
If n is even, a(n) ~ exp(Pi*sqrt(n/6)) / (2^(5/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Feb 26 2015
EXAMPLE
a(10)=3 because we have [10], [6,2,2] and [2,2,2,2,2].
MAPLE
g:=product(1+x^(2*j), j=1..45): gser:=series(g, x=0, 85): seq(coeff(gser, x, n), n=0..79); # Emeric Deutsch, Feb 22 2006; a(0) added by Georg Fischer, Dec 10 2020
MATHEMATICA
nn=80; CoefficientList[Series[Product[1+ x^(2i), {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Jun 20 2014 *)
nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4 + 2;
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 03 2020 *)
PROG
(PARI)
N=166; S=2+sqrtint(N); x='x+O('x^N);
gf=sum(n=0, S, x^(n^2+n)/prod(k=1, n, 1-x^(2*k)) );
Vec(gf)
\\ Joerg Arndt, Feb 18 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Feb 22 2006
Description simplified by Joerg Arndt, Jun 24 2009
a(0)=1 prepended by Joerg Arndt, Mar 11 2011
STATUS
approved