OFFSET
1,2
COMMENTS
Number of partitions of n such that every part occurs with the same multiplicity. - Vladeta Jovovic, Oct 22 2004
Christopher and Christober call such partitions uniform. - Gus Wiseman, Apr 16 2018
Equals inverse Mobius transform (A051731) * A000009, where the latter begins (1, 1, 2, 2, 3, 4, 5, 6, 8, ...). - Gary W. Adamson, Jun 08 2009
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
A. David Christopher and M. Davamani Christober, Relatively Prime Uniform Partitions, Gen. Math. Notes, Vol. 13, No. 2, December, 2012, pp.1-12.
FORMULA
G.f.: Sum_{k>0} (-1+Product_{i>0} (1+z^(k*i))). - Vladeta Jovovic, Jun 22 2003
G.f.: Sum_{k>=1} q(k)*x^k/(1 - x^k), where q() = A000009. - Ilya Gutkovskiy, Jun 20 2018
a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 27 2018
EXAMPLE
The a(6) = 8 uniform partitions are (6), (51), (42), (33), (321), (222), (2211), (111111). - Gus Wiseman, Apr 16 2018
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(add(
`if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= n-> add(b(d), d=divisors(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Jul 11 2016
MATHEMATICA
b[n_] := b[n] = If[n==0, 1, Sum[DivisorSum[j, If[OddQ[#], #, 0]&]*b[n-j], {j, 1, n}]/n]; a[n_] := DivisorSum[n, b]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 06 2016 after Alois P. Heinz *)
Table[DivisorSum[n, PartitionsQ], {n, 20}] (* Gus Wiseman, Apr 16 2018 *)
PROG
(PARI)
N = 66; q='q+O('q^N);
D(q)=eta(q^2)/eta(q); \\ A000009
Vec( sum(e=1, N, D(q^e)-1) ) \\ Joerg Arndt, Mar 27 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved