[go: up one dir, main page]

login
A047966
a(n) = Sum_{ d divides n } q(d), where q(d) = A000009 = number of partitions of d into distinct parts.
126
1, 2, 3, 4, 4, 8, 6, 10, 11, 15, 13, 25, 19, 29, 33, 42, 39, 62, 55, 81, 84, 103, 105, 153, 146, 185, 203, 253, 257, 344, 341, 432, 463, 552, 594, 747, 761, 920, 1003, 1200, 1261, 1537, 1611, 1921, 2089, 2410, 2591, 3095, 3270, 3815, 4138, 4769, 5121, 5972, 6394, 7367, 7974, 9066, 9793, 11305, 12077, 13736, 14940
OFFSET
1,2
COMMENTS
Number of partitions of n such that every part occurs with the same multiplicity. - Vladeta Jovovic, Oct 22 2004
Christopher and Christober call such partitions uniform. - Gus Wiseman, Apr 16 2018
Equals inverse Mobius transform (A051731) * A000009, where the latter begins (1, 1, 2, 2, 3, 4, 5, 6, 8, ...). - Gary W. Adamson, Jun 08 2009
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
A. David Christopher and M. Davamani Christober, Relatively Prime Uniform Partitions, Gen. Math. Notes, Vol. 13, No. 2, December, 2012, pp.1-12.
FORMULA
G.f.: Sum_{k>0} (-1+Product_{i>0} (1+z^(k*i))). - Vladeta Jovovic, Jun 22 2003
G.f.: Sum_{k>=1} q(k)*x^k/(1 - x^k), where q() = A000009. - Ilya Gutkovskiy, Jun 20 2018
a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 27 2018
EXAMPLE
The a(6) = 8 uniform partitions are (6), (51), (42), (33), (321), (222), (2211), (111111). - Gus Wiseman, Apr 16 2018
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(add(
`if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= n-> add(b(d), d=divisors(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Jul 11 2016
MATHEMATICA
b[n_] := b[n] = If[n==0, 1, Sum[DivisorSum[j, If[OddQ[#], #, 0]&]*b[n-j], {j, 1, n}]/n]; a[n_] := DivisorSum[n, b]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 06 2016 after Alois P. Heinz *)
Table[DivisorSum[n, PartitionsQ], {n, 20}] (* Gus Wiseman, Apr 16 2018 *)
PROG
(PARI)
N = 66; q='q+O('q^N);
D(q)=eta(q^2)/eta(q); \\ A000009
Vec( sum(e=1, N, D(q^e)-1) ) \\ Joerg Arndt, Mar 27 2014
KEYWORD
nonn
STATUS
approved