OFFSET
1,2
COMMENTS
The enumeration of these partitions by sum is given by A114639.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers where the prime indices are disjoint from the prime exponents.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
11: {5}
13: {6}
15: {2,3}
16: {1,1,1,1}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
32: {1,1,1,1,1}
33: {2,5}
MATHEMATICA
Select[Range[100], Intersection[PrimePi/@First/@FactorInteger[#], Last/@FactorInteger[#]]=={}&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 01 2019
STATUS
approved