[go: up one dir, main page]

login
A257994
Number of prime parts in the partition having Heinz number n.
26
0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 2, 0, 1, 2, 0, 1, 1, 1, 0, 1, 2, 0, 3, 0, 0, 2, 1, 0, 2, 1, 1, 2, 0, 0, 1, 1, 1, 1, 0, 1, 3, 0, 0, 1, 0, 2, 2, 0, 0, 3, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 1, 1, 1, 1, 0, 2, 0, 0, 3, 0, 1, 1, 0, 1, 4, 1, 1, 1, 2, 0, 1, 1, 0, 3
OFFSET
1,9
COMMENTS
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
The number of nonprime parts is given by A330944, so A001222(n) = a(n) + A330944(n). - Gus Wiseman, Jan 17 2020
REFERENCES
George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
LINKS
FORMULA
Additive with a(p^e) = e if primepi(p) is prime, and 0 otherwise. - Amiram Eldar, Nov 03 2023
EXAMPLE
a(30) = 2 because the partition with Heinz number 30 = 2*3*5 is [1,2,3], having 2 prime parts.
MAPLE
with(numtheory): a := proc (n) local B, ct, s: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for s to nops(B(n)) do if isprime(B(n)[s]) = true then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 130);
MATHEMATICA
B[n_] := Module[{nn, j, m}, nn = FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[Table[Table[PrimePi[ m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];
a[n_] := Module[{ct, s}, ct = 0; For[s = 1, s <= Length[B[n]], s++, If[ PrimeQ[B[n][[s]]], ct++]]; ct];
Table[a[n], {n, 1, 130}] (* Jean-François Alcover, Apr 25 2017, translated from Maple *)
Table[Total[Cases[FactorInteger[n], {p_, k_}/; PrimeQ[PrimePi[p]]:>k]], {n, 30}] (* Gus Wiseman, Jan 17 2020 *)
PROG
(PARI) a(n) = my(f = factor(n)); sum(i=1, #f~, if(isprime(primepi(f[i, 1])), f[i, 2], 0)); \\ Amiram Eldar, Nov 03 2023
CROSSREFS
Positions of positive terms are A331386.
Primes of prime index are A006450.
Products of primes of prime index are A076610.
The number of nonprime prime indices is A330944.
Sequence in context: A369596 A054973 A030351 * A188921 A334568 A072617
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 20 2015
STATUS
approved