OFFSET
1,9
COMMENTS
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
The number of nonprime parts is given by A330944, so A001222(n) = a(n) + A330944(n). - Gus Wiseman, Jan 17 2020
REFERENCES
George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000
FORMULA
Additive with a(p^e) = e if primepi(p) is prime, and 0 otherwise. - Amiram Eldar, Nov 03 2023
EXAMPLE
a(30) = 2 because the partition with Heinz number 30 = 2*3*5 is [1,2,3], having 2 prime parts.
MAPLE
with(numtheory): a := proc (n) local B, ct, s: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for s to nops(B(n)) do if isprime(B(n)[s]) = true then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 130);
MATHEMATICA
B[n_] := Module[{nn, j, m}, nn = FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[Table[Table[PrimePi[ m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];
a[n_] := Module[{ct, s}, ct = 0; For[s = 1, s <= Length[B[n]], s++, If[ PrimeQ[B[n][[s]]], ct++]]; ct];
Table[a[n], {n, 1, 130}] (* Jean-François Alcover, Apr 25 2017, translated from Maple *)
Table[Total[Cases[FactorInteger[n], {p_, k_}/; PrimeQ[PrimePi[p]]:>k]], {n, 30}] (* Gus Wiseman, Jan 17 2020 *)
PROG
(PARI) a(n) = my(f = factor(n)); sum(i=1, #f~, if(isprime(primepi(f[i, 1])), f[i, 2], 0)); \\ Amiram Eldar, Nov 03 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 20 2015
STATUS
approved