[go: up one dir, main page]

login
Search: a265062 -id:a265062
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 3*2^n.
(Formerly M2561)
+10
242
3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
OFFSET
0,1
COMMENTS
Same as Pisot sequences E(3, 6), L(3, 6), P(3, 6), T(3, 6). See A008776 for definitions of Pisot sequences.
Numbers k such that A006530(A000010(k)) = A000010(A006530(k)) = 2. - Labos Elemer, May 07 2002
Also least number m such that 2^n is the smallest proper divisor of m which is also a suffix of m in binary representation, see A080940. - Reinhard Zumkeller, Feb 25 2003
Length of the period of the sequence Fibonacci(k) (mod 2^(n+1)). - Benoit Cloitre, Mar 12 2003
The sequence of first differences is this sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
Subsequence of A122132. - Reinhard Zumkeller, Aug 21 2006
Apart from the first term, a subsequence of A124509. - Reinhard Zumkeller, Nov 04 2006
Total number of Latin n-dimensional hypercubes (Latin polyhedra) of order 3. - Kenji Ohkuma (k-ookuma(AT)ipa.go.jp), Jan 10 2007
Number of different ternary hypercubes of dimension n. - Edwin Soedarmadji (edwin(AT)systems.caltech.edu), Dec 10 2005
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n + 1} -> {1, 2, 3} such that for fixed, different x_1, x_2,...,x_n in {1, 2, ..., n + 1} and fixed y_1, y_2,...,y_n in {1, 2, 3} we have f(x_i) <> y_i, (i = 1,2,...,n). - Milan Janjic, May 10 2007
a(n) written in base 2: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, n times 0 (see A003953). - Jaroslav Krizek, Aug 17 2009
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
Numbers containing the number 3 in their Collatz trajectories. - Reinhard Zumkeller, Feb 20 2012
a(n-1) gives the number of ternary numbers with n digits with no two adjacent digits in common; e.g., for n=3 we have 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210 and 212. - Jon Perry, Oct 10 2012
If n > 1, then a(n) is a solution for the equation sigma(x) + phi(x) = 3x-4. This equation also has solutions 84, 3348, 1450092, ... which are not of the form 3*2^n. - Farideh Firoozbakht, Nov 30 2013
a(n) is the upper bound for the "X-ray number" of any convex body in E^(n + 2), conjectured by Bezdek and Zamfirescu, and proved in the plane E^2 (see the paper by Bezdek and Zamfirescu). - L. Edson Jeffery, Jan 11 2014
If T is a topology on a set V of size n and T is not the discrete topology, then T has at most 3 * 2^(n-2) many open sets. See Brown and Stephen references. - Ross La Haye, Jan 19 2014
Comment from Charles Fefferman, courtesy of Doron Zeilberger, Dec 02 2014: (Start)
Fix a dimension n. For a real-valued function f defined on a finite set E in R^n, let Norm(f, E) denote the inf of the C^2 norms of all functions F on R^n that agree with f on E. Then there exist constants k and C depending only on the dimension n such that Norm(f, E) <= C*max{ Norm(f, S) }, where the max is taken over all k-point subsets S in E. Moreover, the best possible k is 3 * 2^(n-1).
The analogous result, with the same k, holds when the C^2 norm is replaced, e.g., by the C^1, alpha norm (0 < alpha <= 1). However, the optimal analogous k, e.g., for the C^3 norm is unknown.
For the above results, see Y. Brudnyi and P. Shvartsman (1994). (End)
Also, coordination sequence for (infinity, infinity, infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The average of consecutive powers of 2 beginning with 2^1. - Melvin Peralta and Miriam Ong Ante, May 14 2016
For n > 1, a(n) is the smallest Zumkeller number with n divisors that are also Zumkeller numbers (A083207). - Ivan N. Ianakiev, Dec 09 2016
Also, for n >= 2, the number of length-n strings over the alphabet {0,1,2,3} having only the single letters as nonempty palindromic subwords. (Corollary 21 in Fleischer and Shallit) - Jeffrey Shallit, Dec 02 2019
Also, a(n) is the minimum link-length of any covering trail, circuit, path, and cycle for the set of the 2^(n+2) vertices of an (n+2)-dimensional hypercube. - Marco Ripà, Aug 22 2022
The known fixed points of maps n -> A163511(n) and n -> A243071(n). [See comments in A163511]. - Antti Karttunen, Sep 06 2023
The finite subsequence a(3), a(4), a(5), a(6) = 24, 48, 96, 192 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A000244 (see comment there). - Felix Huber, Feb 15 2024
A level 1 Sierpiński triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. For n>2, a(n-3) is the radius of the level n Sierpiński triangle graph. - Allan Bickle, Aug 03 2024
REFERENCES
Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
K. Bezdek and Tudor Zamfirescu, A Characterization of 3-dimensional Convex Sets with an Infinite X-ray Number, in: Coll. Math. Soc. J. Bolyai 63., Intuitive Geometry, Szeged (Hungary), North-Holland, Amsterdam, 1991, pp. 33-38.
Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
Yuri Brudnyi and Pavel Shvartsman, Generalizations of Whitney's extension theorem, International Mathematics Research Notices 1994.3 (1994): 129-139.
J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
Tomislav Došlić, Kepler-Bouwkamp Radius of Combinatorial Sequences, Journal of Integer Sequences, Vol. 17, 2014, #14.11.3.
Lukas Fleischer and Jeffrey Shallit, Words With Few Palindromes, Revisited, arxiv preprint arXiv:1911.12464 [cs.FL], November 27 2019.
A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
Tanya Khovanova, Recursive Sequences
Roberto Rinaldi and Marco Ripà, Optimal cycles enclosing all the nodes of a k-dimensional hypercube, arXiv:2212.11216 [math.CO], 2022.
Edwin Soedarmadji, Latin Hypercubes and MDS Codes, Discrete Mathematics, Volume 306, Issue 12, Jun 28 2006, Pages 1232-1239
D. Stephen, Topology on Finite Sets, American Mathematical Monthly, 75: 739 - 741, 1968.
FORMULA
G.f.: 3/(1-2*x).
a(n) = 2*a(n - 1), n > 0; a(0) = 3.
a(n) = Sum_{k = 0..n} (-1)^(k reduced (mod 3))*binomial(n, k). - Benoit Cloitre, Aug 20 2002
a(n) = A118416(n + 1, 2) for n > 1. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n) + A000079(n + 1). - Zerinvary Lajos, May 12 2007
a(n) = A000079(n)*3. - Omar E. Pol, Dec 16 2008
From Paul Curtz, Feb 05 2009: (Start)
a(n) = b(n) + b(n+3) for b = A001045, A078008, A154879.
a(n) = abs(b(n) - b(n+3)) with b(n) = (-1)^n*A084247(n). (End)
a(n) = 2^n + 2^(n + 1). - Jaroslav Krizek, Aug 17 2009
a(n) = A173786(n + 1, n) = A173787(n + 2, n). - Reinhard Zumkeller, Feb 28 2010
A216022(a(n)) = 6 and A216059(a(n)) = 7, for n > 0. - Reinhard Zumkeller, Sep 01 2012
a(n) = (A000225(n) + 1)*3. - Martin Ettl, Nov 11 2012
E.g.f.: 3*exp(2*x). - Ilya Gutkovskiy, May 15 2016
A020651(a(n)) = 2. - Yosu Yurramendi, Jun 01 2016
a(n) = sqrt(A014551(n + 1)*A014551(n + 2) + A014551(n)^2). - Ezhilarasu Velayutham, Sep 01 2019
a(A048672(n)) = A225546(A133466(n)). - Michel Marcus and Peter Munn, Nov 29 2019
Sum_{n>=1} 1/a(n) = 2/3. - Amiram Eldar, Oct 28 2020
MAPLE
A007283:=n->3*2^n; seq(A007283(n), n=0..50); # Wesley Ivan Hurt, Dec 03 2013
MATHEMATICA
Table[3(2^n), {n, 0, 32}] (* Alonso del Arte, Mar 24 2011 *)
PROG
(PARI) a(n)=3*2^n
(PARI) a(n)=3<<n \\ Charles R Greathouse IV, Oct 10 2012
(Magma) [3*2^n: n in [0..30]]; // Vincenzo Librandi, May 18 2011
(Haskell)
a007283 = (* 3) . (2 ^)
a007283_list = iterate (* 2) 3
-- Reinhard Zumkeller, Mar 18 2012, Feb 20 2012
(Maxima) A007283(n):=3*2^n$
makelist(A007283(n), n, 0, 30); /* Martin Ettl, Nov 11 2012 */
(Scala) (List.fill(40)(2: BigInt)).scanLeft(1: BigInt)(_ * _).map(3 * _) // Alonso del Arte, Nov 28 2019
(Python)
def A007283(n): return 3<<n # Chai Wah Wu, Feb 14 2023
CROSSREFS
Subsequence of the following sequences: A029744, A029747, A029748, A029750, A362804 (after 3), A364494, A364496, A364289, A364291, A364292, A364295, A364497, A364964, A365422.
Essentially same as A003945 and A042950.
Row sums of (5, 1)-Pascal triangle A093562 and of (1, 5) Pascal triangle A096940.
Cf. Latin squares: A000315, A002860, A003090, A040082, A003191; Latin cubes: A098843, A098846, A098679, A099321.
KEYWORD
easy,nonn
STATUS
approved
Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4), with a(0)=a(1)=0, a(2)=1, a(3)=2.
(Formerly M0795 N0301)
+10
49
0, 0, 1, 2, 3, 6, 12, 23, 44, 85, 164, 316, 609, 1174, 2263, 4362, 8408, 16207, 31240, 60217, 116072, 223736, 431265, 831290, 1602363, 3088654, 5953572, 11475879, 22120468, 42638573, 82188492, 158423412, 305370945, 588621422, 1134604271, 2187020050
OFFSET
0,4
COMMENTS
Also (with a different offset), coordination sequence for (4,infinity,infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
Apparently for n>=2 the number of 1-D walks of length n-2 using steps +1, +3 and -1, avoiding consecutive -1 steps. - David Scambler, Jul 15 2013
From Elkhan Aday and Greg Dresden, Jun 24 2024: (Start)
For n > 1, a(n) is the number of ways to tile a skew double-strip of n-1 cells with one extra initial cell, using squares and all possible "dominoes". Here is the skew double-strip corresponding to n=12, with 11 cells:
___ ___ ___ ___ ___
| | | | | |
___ _|___|___|___|___|___|
| | | | | | |
|___|___|___|___|___|___|,
and here are the three possible "domino" tiles:
___ ___
| | | |
_| _| |_ |_ _______
| | | | | |
|___|, |___|, |_______|.
As an example, here is one of the a(12) = 609 ways to tile the skew double-strip of 11 cells:
___ _______ _______
| | | | | |
_____|_ |___|_ _|_ _| _|
| | | | | |
|_______|___|___|___|___|. (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..3503 (terms 0..500 from T. D. Noe)
Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
W. C. Lynch, The t-Fibonacci numbers and polyphase sorting, Fib. Quart., 8 (1970), pp. 6ff.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Helmut Prodinger, Counting Palindromes According to r-Runs of Ones Using Generating Functions, J. Int. Seq. 17 (2014) # 14.6.2, even length, r=3.
FORMULA
G.f.: -x^2*(1+x)/(-1+x+x^2+x^3+x^4). [Simon Plouffe in his 1992 dissertation]
a(n) = A000078(n) + A000078(n+1) = a(n-1) + A000078(n+1) - A000078(n-1). - Henry Bottomley
a(n) = 2*a(n-1) - a(n-5) with n>4, a(0)=a(1)=0, a(2)=1, a(3)=2, a(4)=3. - Vincenzo Librandi, Dec 21 2010
G.f.: x^2 + x^3*G(0) where G(k) = 2 + x*(1 + x + x^2 + (1+x)*(1+x^2)*G(k+1)). - Sergei N. Gladkovskii, Jan 27 2013 [Edited by Michael Somos, Nov 12 2013]
EXAMPLE
G.f. = x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 23*x^7 + 44*x^8 + 85*x^9 + ...
MAPLE
a:= proc(n) option operator; local M; M := Matrix(4, (i, j)-> if (i=j-1) or j=1 then 1 else 0 fi)^n; M[1, 4]+M[1, 3] end; seq (a(n), n=0..34); # Alois P. Heinz, Aug 01 2008
MATHEMATICA
a=0; b=0; c=1; d=2; lst={a, b, c, d}; Do[e=a+b+c+d; AppendTo[lst, e]; a=b; b=c; c=d; d=e, {n, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 30 2008 *)
RecurrenceTable[{a[0] == a[1] == 0, a[2] == 1, a[3] == 2, a[n] == a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4]}, a, {n, 35}] (* or *) a = {0, 0, 1, 2}; Do[AppendTo[a, a[[-1]] + a[[-2]] + a[[-3]] + a[[-4]]], {35}]; a (* Bruno Berselli, Jan 29 2013 *)
CoefficientList[Series[- x^2 * (1 + x)/(- 1 + x + x^2 + x^3 + x^4), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 29 2013 *)
LinearRecurrence[{1, 1, 1, 1}, {0, 0, 1, 2}, 40] (* Harvey P. Dale, Aug 25 2013 *)
PROG
(Magma) I:=[0, 0, 1, 2]; [n le 4 select I[n] else Self(n-1)+ Self(n-2) + Self(n-3) + Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jan 29 2013
(PARI) concat([0, 0], Vec(-x^2*(1+x)/(-1+x+x^2+x^3+x^4) + O(x^50))) \\ Michel Marcus, Dec 30 2015
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
a(1)=a(2)=a(3)=1, a(4)=3; thereafter a(n) = a(n-1) + a(n-3).
+10
43
1, 1, 1, 3, 4, 5, 8, 12, 17, 25, 37, 54, 79, 116, 170, 249, 365, 535, 784, 1149, 1684, 2468, 3617, 5301, 7769, 11386, 16687, 24456, 35842, 52529, 76985, 112827, 165356, 242341, 355168, 520524, 762865, 1118033, 1638557, 2401422, 3519455, 5158012, 7559434
OFFSET
1,4
COMMENTS
Also (essentially), coordination sequence for (2,4,infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
Column sums of shifted (1,2) Pascal array:
1 1 1 1 1 1 1 1 1
......2 3 4 5 6 7
............2 5 9
.................
----------------- +
1 1 1 3 4 5 8 ...
a(n+1) is the number of multus bitstrings of length n with no runs of 2 0's. - Steven Finch, Mar 25 2020
From Areebah Mahdia and Greg Dresden, Jun 13 2020: (Start)
For n >= 5, a(n) gives the number of ways to tile the following board of length n-3 with squares and trominos:
._ _
|_|_|
|_|_|_ _ _ _ _
|_|_|_|_|_|_|_| ... . (End)
LINKS
J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
FORMULA
a(n) = A000930(n-1) + A000930(n-4).
G.f.: x - x^2*(1+2*x^2) / ( -1+x+x^3 ). - R. J. Mathar, Oct 30 2011
a(n) = A000930(n-2)+2*A000930(n-4) for n>3. - R. J. Mathar, May 19 2024
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 0, 1}, {1, 1, 3}, 80]] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2012 *)
PROG
(Haskell)
a179070 n = a179070_list !! (n-1)
a179070_list = 1 : zs where zs = 1 : 1 : 3 : zipWith (+) zs (drop 2 zs)
-- Reinhard Zumkeller, Jul 23 2012
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 0, 1]^(n-1)*[1; 1; 1])[1, 1] \\ Charles R Greathouse IV, Apr 08 2016
KEYWORD
easy,nonn
AUTHOR
Mark Dols, Jun 27 2010
EXTENSIONS
Simpler definition from N. J. A. Sloane, Aug 29 2013
STATUS
approved
Layer counting sequence for hyperbolic tessellation by cuspidal triangles of angles (Pi/3,Pi/3,0) (this is the classical modular tessellation).
+10
37
1, 3, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338, 126491972
OFFSET
0,2
COMMENTS
The layer sequence is the sequence of the cardinalities of the layers accumulating around a ( finite-sided ) polygon of the tessellation under successive side-reflections; see the illustration accompanying A054888.
Equivalently, coordination sequence for (3,3,infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
Equivalently, spherical growth series for modular group.
Also, number of sequences of length n with terms 1, 2, and 3, with no adjacent terms equal, and no three consecutive terms (1, 2, 3) or (3, 2, 1). - Pontus von Brömssen, Jan 03 2022
REFERENCES
P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 156.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..999 [Offset changed to 0 by Georg Fischer, Mar 01 2022]
J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
Index entries for Coordination Sequences [A layer sequence is a kind of coordination sequence. - N. J. A. Sloane, Nov 20 2022]
FORMULA
G.f.: (1+2*x+2*x^2+x^3)/(1-x-x^2) = (x^2+x+1)*(1+x)/(1-x-x^2).
a(n) = 2*F(n+2) for n >= 2, with F(n) the n-th Fibonacci number (cf. A000045).
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/5 - 1 - x. - Stefano Spezia, Apr 18 2022
MATHEMATICA
Join[{1, 3}, 2Fibonacci[Range[4, 40]]] (* Harvey P. Dale, Jan 06 2012 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((1+2*x+2*x^2+x^3)/(1-x-x^2)) \\ G. C. Greubel, Aug 06 2017
CROSSREFS
Essentially the same as A006355.
KEYWORD
nonn,easy,nice
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
EXTENSIONS
Offset changed to 0 by N. J. A. Sloane, Jan 03 2022 at the suggestion of Pontus von Brömssen
STATUS
approved
Expansion of (1-x)/(1+x-x^2+x^3).
+10
30
1, -2, 3, -6, 11, -20, 37, -68, 125, -230, 423, -778, 1431, -2632, 4841, -8904, 16377, -30122, 55403, -101902, 187427, -344732, 634061, -1166220, 2145013, -3945294, 7256527, -13346834, 24548655, -45152016, 83047505, -152748176, 280947697, -516743378, 950439251, -1748130326, 3215312955
OFFSET
0,2
COMMENTS
Absolute values give coordination sequence for (3,infinity,infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
a(n) is the upper left entry of the n-th power of the 3 X 3 matrix M = [-2, -2, 1; 1, 1, 0; 1, 0, 0]; a(n) = M^n [1, 1]. - Philippe Deléham, Apr 19 2023
LINKS
J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
FORMULA
a(n) = -a(n-1) + a(n-2) - a(n-3) for n > 2; a(0)=1, a(1)=-2, a(2)=3. - Harvey P. Dale, Jun 01 2012
a(n) = (-1)^n * A001590(n+2).
a(n) = Sum_{k=0..n} A188316(n,k)*(-2)^k. - Philippe Deléham, Apr 19 2023
MATHEMATICA
CoefficientList[Series[(1-x)/(1+x-x^2+x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{-1, 1, -1}, {1, -2, 3}, 40] (* Harvey P. Dale, Jun 01 2012 *)
PROG
(PARI) Vec((1-x)/(1+x-x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) [n le 3 select -n*(-1)^n else -Self(n-1)+Self(n-2)-Self(n-3): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
+10
27
1, 3, 6, 12, 24, 48, 93, 180, 351, 684, 1332, 2592, 5046, 9825, 19128, 37239, 72498, 141144, 274788, 534972, 1041513, 2027676, 3947595, 7685400, 14962368, 29129580, 56711106, 110408373, 214949232, 418475259, 814711182, 1586125572, 3087958512
OFFSET
0,2
COMMENTS
Also, coordination sequence for (6,6,6) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The initial terms coincide with those of A003945, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
FORMULA
G.f.: (x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 1)/(x^6 - x^5 - x^4 - x^3 - x^2 - x + 1).
G.f.: (1+x)*(1-x^6)/(1-2*x+2*x^6-x^7). - G. C. Greubel, Apr 25 2019
a(n) = -a(n-6) + Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 07 2021
MATHEMATICA
coxG[{6, 1, -1, 40}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 22 2015 *)
CoefficientList[Series[(1+x)*(1-x^6)/(1-2*x+2*x^6-x^7), {x, 0, 40}], x] (* G. C. Greubel, Aug 06 2017, modified Apr 25 2019 *)
PROG
(PARI) x='x+O('x^40); Vec((x^6+2*x^5+2*x^4+2*x^3+2*x^2+2*x+1)/(x^6-x^5- x^4-x^3-x^2-x+1)) \\ G. C. Greubel, Aug 06 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^6)/(1-2*x+2*x^6-x^7) )); // G. C. Greubel, Apr 25 2019
(Sage) ((1+x)*(1-x^6)/(1-2*x+2*x^6-x^7)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved
Coordination sequence for (2,3,7) tiling of hyperbolic plane.
+10
27
1, 3, 5, 7, 9, 12, 16, 20, 24, 28, 33, 40, 48, 57, 67, 78, 92, 109, 129, 152, 178, 209, 246, 290, 342, 402, 472, 555, 653, 769, 905, 1064, 1251, 1471, 1731, 2037, 2396, 2818, 3314, 3898, 4586, 5395, 6346, 7464, 8779, 10327, 12148, 14290, 16809, 19771, 23256, 27356, 32179, 37852, 44524, 52372
OFFSET
0,2
LINKS
J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
Index entries for linear recurrences with constant coefficients, signature (-1, 0, 1, 1, 1, 1, 1, 0, -1, -1).
FORMULA
G.f.: (x^6+x^5+x^4+x^3+x^2+x+1)*(x^2+x+1)*(x+1)^2/(x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1).
MATHEMATICA
CoefficientList[Series[(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) (x^2 + x + 1) (x + 1)^2/(x^10 + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
PROG
(PARI) x='x+O('x^50); Vec((x^6+x^5+x^4+x^3+x^2+x+1)*(x^2+x+1)*(x+1)^2/(x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1)) \\ G. C. Greubel, Aug 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 29 2015
STATUS
approved
Coordination sequence for (2,3,8) tiling of hyperbolic plane.
+10
27
1, 3, 5, 7, 9, 12, 16, 21, 27, 33, 40, 49, 61, 76, 94, 116, 142, 174, 214, 264, 326, 401, 493, 606, 745, 917, 1129, 1390, 1710, 2103, 2587, 3183, 3917, 4820, 5931, 7297, 8977, 11045, 13590, 16722, 20575, 25315, 31147, 38322, 47151, 58015, 71382, 87828, 108062, 132958, 163590, 201280, 247654
OFFSET
0,2
LINKS
J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 1, 0, 1, 0, 1, 0, 0, -1).
FORMULA
G.f.: (x+1)^2*(x^2+x+1)*(x^6+x^4+x^2+1)/(x^10-x^7-x^5-x^3+1).
MATHEMATICA
CoefficientList[Series[(x + 1)^2 (x^2 + x + 1) (x^6 + x^4 + x^2 + 1)/(x^10 - x^7 - x^5 - x^3 + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
PROG
(PARI) x='x+O('x^50); Vec((x+1)^2*(x^2+x+1)*(x^6+x^4+x^2+1)/(x^10-x^7-x^5-x^3+1)) \\ G. C. Greubel, Aug 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 29 2015
STATUS
approved
Coordination sequence for (2,3,9) tiling of hyperbolic plane.
+10
27
1, 3, 5, 7, 9, 12, 16, 21, 28, 36, 45, 56, 70, 89, 113, 143, 181, 228, 287, 361, 455, 575, 726, 916, 1155, 1456, 1836, 2315, 2920, 3684, 4647, 5861, 7391, 9321, 11756, 14827, 18701, 23587, 29749, 37520, 47320, 59681, 75272, 94936, 119737, 151016, 190466, 240221, 302973, 382119, 481941, 607840, 766627
OFFSET
0,2
LINKS
J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 1, 0, 0, 1, 0, -1).
FORMULA
G.f.: (x+1)^2*(x^2+x+1)*(x^6+x^3+1)/(x^10-x^8-x^5-x^2+1).
MATHEMATICA
CoefficientList[Series[(x + 1)^2 (x^2 + x + 1) (x^6 + x^3 + 1)/(x^10 - x^8 - x^5 - x^2 + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
PROG
(PARI) x='x+O('x^50); Vec((x+1)^2*(x^2+x+1)*(x^6+x^3+1)/(x^10-x^8-x^5-x^2+1)) \\ G. C. Greubel, Aug 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 29 2015
STATUS
approved
Coordination sequence for (2,4,5) tiling of hyperbolic plane.
+10
27
1, 3, 5, 8, 12, 16, 21, 28, 36, 46, 60, 77, 98, 126, 162, 207, 265, 340, 435, 557, 714, 914, 1170, 1499, 1920, 2458, 3148, 4032, 5163, 6612, 8468, 10844, 13887, 17785, 22776, 29167, 37353, 47836, 61260, 78452, 100469, 128664, 164772, 211014, 270232, 346069, 443190, 567566, 726846, 930827, 1192053, 1526588
OFFSET
0,2
LINKS
J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
FORMULA
G.f.: (x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)/(x^8-x^5-x^4-x^3+1).
MATHEMATICA
CoefficientList[Series[(x + 1)^2 (x^2 + 1) (x^4 + x^3 + x^2 + x + 1)/(x^8 - x^5 - x^4 - x^3 + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
PROG
(PARI) x='x+O('x^50); Vec((x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)/(x^8-x^5-x^4-x^3+1)) \\ G. C. Greubel, Aug 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 29 2015
STATUS
approved

Search completed in 0.022 seconds