[go: up one dir, main page]

login
Search: a261919 -id:a261919
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,k) is the number of unlabeled simple graphs with n edges and k vertices and without endpoints or isolated vertices.
+0
5
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 3, 5, 2, 0, 0, 0, 0, 2, 11, 9, 3, 0, 0, 0, 0, 1, 15, 32, 16, 4, 0, 0, 0, 0, 1, 12, 63, 76, 25, 5, 0, 0, 0, 0, 0, 8, 89, 234, 162, 39, 6, 0, 0, 0, 0, 0, 5, 97, 515, 730, 332, 60, 9
OFFSET
1,20
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
FORMULA
T(n,k) = A123551(k,n) - A123551(k-1,n).
EXAMPLE
Triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 0, 1;
0, 0, 0, 1, 1;
0, 0, 0, 1, 3, 2;
0, 0, 0, 0, 3, 5, 2;
0, 0, 0, 0, 2, 11, 9, 3;
0, 0, 0, 0, 1, 15, 32, 16, 4;
0, 0, 0, 0, 1, 12, 63, 76, 25, 5;
...
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n) = {my(s=O(x*x^n)); sum(k=0, n, forpart(p=k, s+=permcount(p) * edges(p, w->1+y^w+O(y*y^n)) * x^k * prod(i=1, #p, 1-(y*x)^p[i], 1+O(x^(n-k+1))) / k!)); s*(1-x)}
T(n)={my(r=Vec(substvec(G(n), [x, y], [y, x]))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y), i)) }
{ my(A=T(12)); for(i=1, #A, print(A[i])) }
CROSSREFS
Row sums are A369290.
Column sums are A261919.
Main diagonal is A008483.
Cf. A342557 (connected), A123551 (without endpoints).
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 07 2024
STATUS
approved
Triangle read by rows where T(n,k) is the number of unlabeled simple graphs covering n vertices with exactly k endpoints (vertices of degree 1).
+0
5
1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 3, 1, 1, 1, 1, 11, 5, 4, 1, 2, 0, 62, 29, 18, 6, 4, 2, 1, 510, 225, 101, 32, 13, 4, 3, 0, 7459, 2674, 842, 223, 72, 19, 9, 3, 1, 197867, 50834, 10784, 2171, 504, 115, 34, 9, 4, 0, 9808968, 1653859, 228863, 32322, 5268, 944, 209, 46, 16, 4, 1
OFFSET
0,11
FORMULA
Column-wise first differences of A327371.
EXAMPLE
Triangle begins:
1
0 0
0 0 1
1 0 1 0
3 1 1 1 1
11 5 4 1 2 0
PROG
(PARI) \\ Needs G(n) defined in A327371.
T(n)={my(v=Vec(G(n)*(1 - x))); vector(#v, n, Vecrev(v[n], n))}
my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 11 2024
CROSSREFS
Row sums are A002494.
Column k = 0 is A261919.
The non-covering version is A327371.
The labeled version is A327377.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 04 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Sep 11 2019
STATUS
approved
Number of simple graphs on n unlabeled nodes with minimum degree exactly 1.
+0
4
0, 1, 1, 4, 12, 60, 378, 3843, 64455, 1921532, 104098702, 10348794144, 1893781768084, 639954768875644, 400905675004630820, 467554784370658979194, 1019317687720204607541914, 4170177760438554428852944352, 32130458453030025927403299167172
OFFSET
1,4
FORMULA
a(n) = A002494(n) - A261919(n).
First differences of A141580. - Andrew Howroyd, Jan 11 2021
CROSSREFS
Column k = 1 of A294217.
A diagonal of A263293.
The labeled version is A327227.
The generalization to set-systems is A327335, with covering case A327230.
Unlabeled covering graphs are A002494.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 03 2019
STATUS
approved
Number of simple graphs on n unlabeled nodes with minimum degree exactly 2.
+0
2
0, 0, 1, 2, 8, 43, 360, 4869, 113622, 4605833, 325817259, 40350371693, 8825083057727, 3447229161054412, 2432897732375453872, 3135299553791882831175, 7445569254636418368355175, 32831169277561326131677454356, 270499962116368309216399255404116
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Minimum Vertex Degree
FORMULA
a(n) = A261919(n) - A007111(n).
CROSSREFS
Column k=2 of A294217.
A diagonal of A263293.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 03 2019
STATUS
approved
Number of non-isomorphic set-systems with n vertices and at least one endpoint/leaf.
+0
5
0, 1, 4, 18, 216
OFFSET
0,3
COMMENTS
A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also covering set-systems with minimum covered vertex-degree 1.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(3) = 18 set-systems:
{{1}} {{1}} {{1}}
{{1,2}} {{1,2}}
{{1},{2}} {{1},{2}}
{{1},{1,2}} {{1,2,3}}
{{1},{1,2}}
{{1},{2,3}}
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{2},{3}}
{{1,2},{1,2,3}}
{{1},{2},{1,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{2},{3},{1,2}}
{{1},{2},{1,2},{1,3}}
{{1},{2},{1,2},{1,2,3}}
CROSSREFS
Unlabeled set-systems are A000612.
The labeled version is A327228.
The covering version is A327230 (first differences).
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 02 2019
STATUS
approved
Number of non-isomorphic set-systems covering n vertices with at least one endpoint/leaf.
+0
11
0, 1, 3, 14, 198
OFFSET
0,3
COMMENTS
A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also covering set-systems with minimum vertex-degree 1.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(3) = 14 set-systems:
{{1}} {{1,2}} {{1,2,3}}
{{1},{2}} {{1},{2,3}}
{{2},{1,2}} {{1},{2},{3}}
{{1,3},{2,3}}
{{3},{1,2,3}}
{{1},{3},{2,3}}
{{2,3},{1,2,3}}
{{2},{1,3},{2,3}}
{{2},{3},{1,2,3}}
{{3},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{3},{2,3},{1,2,3}}
{{2},{3},{1,3},{2,3}}
{{2},{3},{2,3},{1,2,3}}
CROSSREFS
Unlabeled covering set-systems are A055621.
The labeled version is A327229.
The non-covering version is A327335 (partial sums).
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 01 2019
STATUS
approved
Triangle read by rows: T(n,k) is the number of graphs with n vertices and minimum vertex degree k, (0 <= k < n).
+0
9
1, 1, 1, 2, 1, 1, 4, 4, 2, 1, 11, 12, 8, 2, 1, 34, 60, 43, 15, 3, 1, 156, 378, 360, 121, 25, 3, 1, 1044, 3843, 4869, 2166, 378, 41, 4, 1, 12346, 64455, 113622, 68774, 14306, 1095, 65, 4, 1, 274668, 1921532, 4605833, 3953162, 1141597, 104829, 3441, 100, 5, 1
OFFSET
1,4
COMMENTS
Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A327366. Burnside's lemma can be used to extend this method to the unlabeled case. - Andrew Howroyd, Mar 10 2020
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..210 (first 20 rows)
Eric Weisstein's World of Mathematics, Minimum Vertex Degree
FORMULA
T(n, 0) = A000088(n-1).
T(n, n-2) = A004526(n) for n > 1.
T(n, n-1) = 1.
T(n, k) = A263293(n, n-1-k). - Andrew Howroyd, Sep 03 2019
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
4, 4, 2, 1;
11, 12, 8, 2, 1;
34, 60, 43, 15, 3, 1;
156, 378, 360, 121, 25, 3, 1;
...
CROSSREFS
Row sums are A000088 (simple graphs on n nodes).
Columns k=0..2 are A000088(n-1), A324693, A324670.
Cf. A263293 (triangle of n-node maximum vertex degree counts).
The labeled version is A327366.
KEYWORD
nonn,tabl
AUTHOR
Eric W. Weisstein, Oct 25 2017
STATUS
approved
Number of labeled n-vertex graphs without vertices of degree <=1.
+0
14
1, 0, 0, 1, 10, 253, 12068, 1052793, 169505868, 51046350021, 29184353055900, 32122563615242615, 68867440268165982320, 290155715157676330952559, 2417761590648159731258579164, 40013923822242935823157820555477, 1318910080336893719646370269435043184
OFFSET
0,5
LINKS
FORMULA
E.g.f.: exp(-x+x^2/2)*(Sum_{n>=0} 2^(n*(n-1)/2)*(x/exp(x))^n/n!). - Vladeta Jovovic, Jan 26 2006
Exponential transform of A059166. - Gus Wiseman, Aug 18 2019
Inverse binomial transform of A059167. - Gus Wiseman, Sep 02 2019
EXAMPLE
From Gus Wiseman, Aug 18 2019: (Start)
The a(4) = 10 edge-sets:
{12,13,24,34}
{12,14,23,34}
{13,14,23,24}
{12,13,14,23,24}
{12,13,14,23,34}
{12,13,14,24,34}
{12,13,23,24,34}
{12,14,23,24,34}
{13,14,23,24,34}
{12,13,14,23,24,34}
(End)
MATHEMATICA
m = 13;
egf = Exp[-x + x^2/2]*Sum[2^(n (n-1)/2)*(x/Exp[x])^n/n!, {n, 0, m+1}];
s = egf + O[x]^(m+1);
a[n_] := n!*SeriesCoefficient[s, n];
Table[a[n], {n, 0, m}] (* Jean-François Alcover, Feb 23 2019 *)
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]>1&]], {n, 0, 4}] (* Gus Wiseman, Aug 18 2019 *)
PROG
(PARI) seq(n)={Vec(serlaplace(exp(-x + x^2/2 + O(x*x^n))*sum(k=0, n, 2^(k*(k-1)/2)*(x/exp(x + O(x^n)))^k/k!)))} \\ Andrew Howroyd, Sep 04 2019
CROSSREFS
Graphs without isolated nodes are A006129.
The connected case is A059166.
Graphs without endpoints are A059167.
Labeled graphs with endpoints are A245797.
The unlabeled version is A261919.
KEYWORD
nonn
AUTHOR
Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 03 2005
EXTENSIONS
Terms a(14) and beyond from Andrew Howroyd, Sep 04 2019
STATUS
approved
Number of n-node connected labeled graphs without endpoints.
+0
21
1, 1, 0, 1, 10, 253, 12058, 1052443, 169488200, 51045018089, 29184193354806, 32122530765469967, 68867427921051098084, 290155706369032525823085, 2417761578629525173499004146, 40013923790443379076988789688611, 1318910080173114018084245406769861936
OFFSET
0,5
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 404.
LINKS
FORMULA
a(n) = Sum_{i=0..n} (-1)^i*binomial(n, i)*c(n-i)*(n-i)^i, for n>2, a(0)=1, a(1)=1, a(2)=0, where c(n) is number of n-node connected labeled graphs (cf. A001187).
E.g.f.: 1 + x^2/2 + log(Sum_{n >= 0} 2^binomial(n, 2)*(x*exp(-x))^n/n!).
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, May 14 2015
Logarithmic transform of A100743, if we assume a(1) = 0. - Gus Wiseman, Aug 15 2019
MAPLE
c:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*c(k), k=1..n-1)/n)
end:
a:= n-> max(0, add((-1)^i*binomial(n, i)*c(n-i)*(n-i)^i, i=0..n)):
seq(a(n), n=0..20); # Alois P. Heinz, Oct 27 2017
MATHEMATICA
Flatten[{1, 1, 0, Table[n!*Sum[(-1)^(n-j)*SeriesCoefficient[1+Log[Sum[2^(k*(k-1)/2)*x^k/k!, {k, 0, j}]], {x, 0, j}]*j^(n-j)/(n-j)!, {j, 0, n}], {n, 3, 15}]}] (* Vaclav Kotesovec, May 14 2015 *)
c[0] = 1; c[n_] := c[n] = 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]*2^((n-k)*(n - k - 1)/2)*c[k], {k, 1, n-1}]/n; a[0] = a[1] = 1; a[2] = 0; a[n_] := Sum[(-1)^i*Binomial[n, i]*c[n-i]*(n-i)^i, {i, 0, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 27 2017, using Alois P. Heinz's code for c(n) *)
PROG
(PARI) seq(n)={Vec(serlaplace(1 + x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))))} \\ Andrew Howroyd, Sep 09 2018
CROSSREFS
Cf. A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A004110 (n-node unlabeled graphs without endpoints).
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jan 12 2001
EXTENSIONS
More terms from John Renze (jrenze(AT)yahoo.com), Feb 01 2001
STATUS
approved
Number of unlabeled simple connected bridgeless graphs with n nodes.
(Formerly M2909)
+0
29
1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
OFFSET
1,4
COMMENTS
Also unlabeled simple graphs with spanning edge-connectivity >= 2. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices. - Gus Wiseman, Sep 02 2019
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..40 (terms 1..22 from R. J. Mathar)
P. Hanlon and R. W. Robinson, Counting bridgeless graphs, J. Combin. Theory, B 33 (1982), 276-305, Table III.
Eric Weisstein's World of Mathematics, Bridgeless Graph
Eric Weisstein's World of Mathematics, Connected Graph
Eric Weisstein's World of Mathematics, Simple Graph
FORMULA
a(n) = A001349(n) - A052446(n). - Gus Wiseman, Sep 02 2019
PROG
(PARI) \\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr, 2)/2, x*sv(1)*sExp(gcr) )}
NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020
CROSSREFS
Cf. A005470 (number of simple graphs).
Cf. A007145 (number of simple connected rooted bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
The labeled version is A095983.
Row sums of A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.
KEYWORD
nonn,nice
EXTENSIONS
Reference gives first 22 terms.
STATUS
approved

Search completed in 0.010 seconds