[go: up one dir, main page]

login
A322395
Number of labeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.
23
1, 1, 1, 4, 26, 548, 22504, 1708336, 241874928, 65285161232, 34305887955616, 35573982726480064, 73308270568902715136, 301210456065963448091072, 2471487759846321319412778624, 40526856087731237340916330352896, 1328570640536613080046570271722309632
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Graph Bridge
Eric Weisstein's World of Mathematics, Endpoint
FORMULA
a(n) = n + Sum_{k=1..n} binomial(n,k)*A095983(k)*k^(n-k) for n >= 3. - Andrew Howroyd, Dec 07 2018
MATHEMATICA
nmax = 16;
seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n + 1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k - 1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
A095983 = seq[nmax];
a[n_] := If[n<3, 1, n+Sum[Binomial[n, k]*A095983[[k+1]]*k^(n-k), {k, 1, n}]];
a /@ Range[0, nmax] (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 06 2018
EXTENSIONS
a(6)-a(16) from Andrew Howroyd, Dec 07 2018
STATUS
approved