[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a059166 -id:a059166
Displaying 1-10 of 20 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A095983 Number of 2-edge-connected labeled graphs on n nodes. +10
38
0, 0, 0, 1, 10, 253, 11968, 1047613, 169181040, 51017714393, 29180467201536, 32121680070545657, 68867078000231169536, 290155435185687263172693, 2417761175748567327193407488, 40013922635723692336670167608181, 1318910073755307133701940625759574016 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
From Falk Hüffner, Jun 28 2018: (Start)
Essentially the same sequence arises as the number of connected bridgeless labeled graphs (graphs that are k-edge connected for k >= 2, starting elements of this sequence are 1, 1, 0, 1, 10, 253, 11968, ...).
Labeled version of A007146. (End)
The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a graph that is disconnected or covers fewer vertices. This sequence counts graphs with spanning edge-connectivity >= 2, which, for n > 1, are connected graphs with no bridges. - Gus Wiseman, Sep 20 2019
LINKS
P. Hanlon and R. W. Robinson, Counting bridgeless graphs, J. Combin. Theory, B 33 (1982), 276-305.
FORMULA
a(n) = A001187(n) - A327071(n). - Gus Wiseman, Sep 20 2019
MATHEMATICA
seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[ Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n+1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k-1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
seq[16] (* Jean-François Alcover, Aug 13 2019, after Andrew Howroyd *)
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_, eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds], Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], spanEdgeConn[Range[n], #]>=2&]], {n, 0, 5}] (* Gus Wiseman, Sep 20 2019 *)
PROG
(PARI) \\ here p is initially A053549, q is A198046 as e.g.f.s.
seq(n)={my(v=vector(n));
my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))));
my(q=x*exp(p)); p-=q;
for(k=3, n, my(c=polcoeff(p, k)); v[k]=c*(k-1)!; p-=c*q^k);
concat([0], v)} \\ Andrew Howroyd, Jun 18 2018
(PARI) seq(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))/x-1), -(n+1))} \\ Andrew Howroyd, Dec 28 2020
CROSSREFS
The unlabeled version is A007146.
Row sums of A327069 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with spanning edge-connectivity 2 are A327146.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.
Graphs without endpoints are A059167.
Graphs with spanning edge-connectivity 1 are A327071.
KEYWORD
nonn
AUTHOR
Yifei Chen (yifei(AT)mit.edu), Jul 17 2004
EXTENSIONS
Name corrected and more terms from Pavel Irzhavski, Nov 01 2014
Offset corrected by Falk Hüffner, Jun 17 2018
a(12)-a(16) from Andrew Howroyd, Jun 18 2018
STATUS
approved
A004110 Number of n-node unlabeled graphs without endpoints (i.e., no nodes of degree 1).
(Formerly M1504)
+10
33
1, 1, 1, 2, 5, 16, 78, 588, 8047, 205914, 10014882, 912908876, 154636289460, 48597794716736, 28412296651708628, 31024938435794151088, 63533059372622888758054, 244916078509480823407040988, 1783406527599529094009748567708 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
a(n) is also the number of unlabeled mating graphs with n nodes. A mating graph has no two vertices with identical sets of neighbors. - Tanya Khovanova, Oct 23 2008
REFERENCES
F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.
F. Harary and E. Palmer, Graphical Enumeration, (1973), compare formula (8.7.11).
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 0..26 from R. W. Robinson)
David Cook II, Nested colourings of graphs, arXiv preprint arXiv:1306.0140 [math.CO], 2013.
Ira M. Gessel and Ji Li, Enumeration of point-determining graphs, J. Combinatorial Theory Ser. A 118 (2011), 591-612.
Ronald C. Read, The enumeration of mating-type graphs, Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.
N. J. A. Sloane, Illustration of a(0)-a(5)
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t * k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
a[n_] := Sum[permcount[p] * 2^edges[p] * Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; a[0] = 1;
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
PROG
(PARI) \\ Compare A000088.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
a(n) = {my(s=0); sum(k=1, n, forpart(p=k, s+=permcount(p) * 2^edges(p) * polcoef(prod(i=1, #p, 1-x^p[i]), n-k)/k!)); s} \\ Andrew Howroyd, Sep 09 2018
CROSSREFS
Row sums of A123551.
Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A006024 (number of labeled mating graphs with n nodes), A129584 (bi-point-determining graphs).
If isolated nodes are forbidden, see A261919.
KEYWORD
nonn
AUTHOR
STATUS
approved
A059167 Number of n-node labeled graphs without endpoints. +10
30
1, 1, 1, 2, 15, 314, 13757, 1142968, 178281041, 52610850316, 29702573255587, 32446427369694348, 69254848513798160815, 291053505824567573585744, 2421830049319361003822380177, 40050220743831370293688592267252, 1319550593412053164173947687592553185 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a).
LINKS
Marko R. Riedel, Geoffrey Critzer, Math.Stackexchange.com, Proof of the closed form of the e.g.f. by combinatorial species. - Marko Riedel, Sep 18 2016
FORMULA
a(n) = Sum_{i=0..n-1} binomial(n-1, i)*b(i+1)*a(n-i-1), n>0, a(0)=1, where b(n) is number of n-node connected labeled graphs without endpoints (Cf. A059166).
E.g.f.: exp(x^2/2)*(Sum_{n >= 0} 2^binomial(n, 2)*(x/exp(x))^n/n!). - Vladeta Jovovic, Mar 23 2004
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, Sep 22 2016
MAPLE
F:= proc(N) local S;
S:= series(exp(1/2*x^2)*Sum(2^binomial(n, 2)*(x/exp(x))^n/n!, n = 0 .. N), x, N+1);
seq(coeff(S, x, i)*i!, i=0..N)
end proc:
F(20); # Robert Israel, Sep 18 2016
MATHEMATICA
b[n_] := If[n < 3, Boole[n == 1], n!*Sum[(-1)^(n - j) * SeriesCoefficient[1 + Log[Sum[2^(k*(k - 1)/2)*x^k/k!, {k, 0, j}]], {x, 0, j}] * j^(n - j)/(n - j)!, {j, 0, n}]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, i] b[i + 1] a[n - i - 1], {i, 0, n - 1}]; Table[a@ n, {n, 0, 15}] (* Michael De Vlieger, Sep 19 2016, after Vaclav Kotesovec at A059166 *)
PROG
(PARI) seq(n)={my(A=x/exp(x + O(x^n))); Vec(serlaplace(exp(x^2/2 + O(x*x^n)) * sum(k=0, n, 2^binomial(k, 2)*A^k/k!)))} \\ Andrew Howroyd, Sep 09 2018
CROSSREFS
Column k=0 of A327369.
Cf. A059166 (n-node connected labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A004110 (n-node unlabeled graphs without endpoints).
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jan 12 2001
EXTENSIONS
More terms from John Renze (jrenze(AT)yahoo.com), Feb 01 2001
STATUS
approved
A327071 Number of labeled simple connected graphs with n vertices and at least one bridge, or graphs with spanning edge-connectivity 1. +10
27
0, 0, 1, 3, 28, 475, 14736, 818643, 82367552, 15278576679, 5316021393280, 3519977478407687, 4487518206535452672, 11116767463976825779115, 53887635281876408097483776, 513758302006787897939587736715, 9668884580476067306398361085853696 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph.
LINKS
Jean-François Alcover and Vaclav Kotesovec, Table of n, a(n) for n = 0..82 [using A001187 and b-file from A095983]
Eric Weisstein's World of Mathematics, Bridged Graph
FORMULA
a(1) = 0; a(n > 1) = A001187(n) - A095983(n).
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_, eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds], Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], spanEdgeConn[Range[n], #]==1&]], {n, 0, 4}]
CROSSREFS
Column k = 1 of A327069.
The unlabeled version is A052446.
Connected graphs without bridges are A007146.
The enumeration of labeled connected graphs by number of bridges is A327072.
Connected graphs with exactly one bridge are A327073.
Graphs with non-spanning edge-connectivity 1 are A327079.
BII-numbers of set-systems with spanning edge-connectivity 1 are A327111.
Covering set-systems with spanning edge-connectivity 1 are A327145.
Graphs with spanning edge-connectivity 2 are A327146.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 24 2019
STATUS
approved
A004108 Number of n-node unlabeled connected graphs without endpoints.
(Formerly M2910)
+10
24
1, 1, 0, 1, 3, 11, 61, 507, 7442, 197772, 9808209, 902884343, 153723152913, 48443147912137, 28363697921914475, 30996525982586676021, 63502034385272108655525, 244852545421597419740767106, 1783161611489937453151313949442, 24603891216883233547700609793901996 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Also number of n-node unlabeled connected mating graphs, cf. A006024 and A092430 (conjectured by Vladeta Jovovic, proved by G. Kilibarda). - Vladeta Jovovic, Oct 07 2004
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, (1973), formula (8.7.11).
Goran Kilibarda, "Enumeration of unlabeled mating graphs", Belgrade, 2004, to be published.
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 1..26 from R. W. Robinson)
David Cook II, Nested colourings of graphs, arXiv preprint arXiv:1306.0140 [math.CO], 2013.
Goran Kilibarda, Enumeration of Unlabeled Mating Graphs, Graphs and Combinatorics, Volume 23, Number 2 / April, 2007, pp. 183-199.
Eric Weisstein's World of Mathematics, Connected Graph.
FORMULA
Inverse Euler transform of A004110. - Andrew Howroyd, Sep 09 2018
MATHEMATICA
terms = 19;
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}];
A004110 = Table[b[n], {n, 1, terms-1}];
Join[{1}, EULERi[A004110]] (* Jean-François Alcover, Jan 21 2019, after Andrew Howroyd *)
CROSSREFS
Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004110 (Euler Transform, n-node unlabeled graphs without endpoints).
Cf. A092430 (n-node labeled connected mating graphs).
See also A261919.
Counts include those for distance-critical graphs, A349402.
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, Sep 09 2018
STATUS
approved
A245797 The number of labeled graphs of n vertices that have endpoints, where an endpoint is a vertex with degree 1. +10
22
0, 1, 6, 49, 710, 19011, 954184, 90154415, 16108626420, 5481798833245, 3582369649269620, 4532127781040045649, 11177949079089720090800, 54050029251399545975868271, 514598463471970554205910304780, 9677402372862708729859372687791391 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
FORMULA
a(n) = 2^(n*(n+1)/2) - A059167(n).
Binomial transform of A327227 (assuming a(0) = 0).
MATHEMATICA
m = 16;
egf = Exp[x^2/2]*Sum[2^Binomial[n, 2]*(x/Exp[x])^n/n!, {n, 0, m}];
A059167[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
a[n_] := 2^(n(n-1)/2) - A059167[n];
Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Min@@Length/@Split[Sort[Join@@#]]==1&]], {n, 0, 5}] (* Gus Wiseman, Sep 11 2019 *)
CROSSREFS
Equal to row sums of A245796.
The covering case is A327227.
The connected case is A327362.
The generalization to set-systems is A327228.
BII-numbers of set-systems with minimum degree 1 are A327105.
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Aug 01 2014
EXTENSIONS
a(9)-a(16) from Andrew Howroyd, Oct 26 2017
STATUS
approved
A327227 Number of labeled simple graphs covering n vertices with at least one endpoint/leaf. +10
22
0, 0, 1, 3, 31, 515, 15381, 834491, 83016613, 15330074139, 5324658838645, 3522941267488973, 4489497643961740521, 11119309286377621015089, 53893949089393110881259181, 513788884660608277842596504415, 9669175277199248753133328740702449 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Covering means there are no isolated vertices.
A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also graphs with minimum vertex-degree 1.
LINKS
FORMULA
Inverse binomial transform of A245797, if we assume A245797(0) = 0.
EXAMPLE
The a(4) = 31 edge-sets:
{12,34} {12,13,14} {12,13,14,23}
{13,24} {12,13,24} {12,13,14,24}
{14,23} {12,13,34} {12,13,14,34}
{12,14,23} {12,13,23,24}
{12,14,34} {12,13,23,34}
{12,23,24} {12,14,23,24}
{12,23,34} {12,14,24,34}
{12,24,34} {12,23,24,34}
{13,14,23} {13,14,23,34}
{13,14,24} {13,14,24,34}
{13,23,24} {13,23,24,34}
{13,23,34} {14,23,24,34}
{13,24,34}
{14,23,24}
{14,23,34}
{14,24,34}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]==1&]], {n, 0, 5}]
CROSSREFS
Column k=1 of A327366.
The non-covering version is A245797.
The unlabeled version is A324693.
The generalization to set-systems is A327229.
BII-numbers of set-systems with minimum degree 1 are A327105.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 01 2019
STATUS
approved
A100743 Number of labeled n-vertex graphs without vertices of degree <=1. +10
14
1, 0, 0, 1, 10, 253, 12068, 1052793, 169505868, 51046350021, 29184353055900, 32122563615242615, 68867440268165982320, 290155715157676330952559, 2417761590648159731258579164, 40013923822242935823157820555477, 1318910080336893719646370269435043184 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
FORMULA
E.g.f.: exp(-x+x^2/2)*(Sum_{n>=0} 2^(n*(n-1)/2)*(x/exp(x))^n/n!). - Vladeta Jovovic, Jan 26 2006
Exponential transform of A059166. - Gus Wiseman, Aug 18 2019
Inverse binomial transform of A059167. - Gus Wiseman, Sep 02 2019
EXAMPLE
From Gus Wiseman, Aug 18 2019: (Start)
The a(4) = 10 edge-sets:
{12,13,24,34}
{12,14,23,34}
{13,14,23,24}
{12,13,14,23,24}
{12,13,14,23,34}
{12,13,14,24,34}
{12,13,23,24,34}
{12,14,23,24,34}
{13,14,23,24,34}
{12,13,14,23,24,34}
(End)
MATHEMATICA
m = 13;
egf = Exp[-x + x^2/2]*Sum[2^(n (n-1)/2)*(x/Exp[x])^n/n!, {n, 0, m+1}];
s = egf + O[x]^(m+1);
a[n_] := n!*SeriesCoefficient[s, n];
Table[a[n], {n, 0, m}] (* Jean-François Alcover, Feb 23 2019 *)
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]>1&]], {n, 0, 4}] (* Gus Wiseman, Aug 18 2019 *)
PROG
(PARI) seq(n)={Vec(serlaplace(exp(-x + x^2/2 + O(x*x^n))*sum(k=0, n, 2^(k*(k-1)/2)*(x/exp(x + O(x^n)))^k/k!)))} \\ Andrew Howroyd, Sep 04 2019
CROSSREFS
Graphs without isolated nodes are A006129.
The connected case is A059166.
Graphs without endpoints are A059167.
Labeled graphs with endpoints are A245797.
The unlabeled version is A261919.
KEYWORD
nonn
AUTHOR
Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 03 2005
EXTENSIONS
Terms a(14) and beyond from Andrew Howroyd, Sep 04 2019
STATUS
approved
A327079 Number of labeled simple connected graphs covering n vertices with at least one bridge that is not an endpoint/leaf (non-spanning edge-connectivity 1). +10
14
0, 0, 1, 0, 12, 180, 4200, 157920, 9673664, 1011129840, 190600639200, 67674822473280, 46325637863907072, 61746583700640860736, 161051184122415878112640, 824849999242893693424992000, 8317799170120961768715123118080 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Graphs with no bridges are counted by A095983 (2-edge-connected graphs).
Also labeled simple connected graphs covering n vertices with non-spanning edge-connectivity 1, where the non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty graph.
LINKS
FORMULA
a(n) = A001187(n) - A322395(n) for n > 2. - Andrew Howroyd, Aug 27 2019
Inverse binomial transform of A327231.
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1, 0, Length[sys]-Max@@Length/@Select[Union[Subsets[sys]], Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&eConn[#]==1&]], {n, 0, 4}]
CROSSREFS
Column k = 1 of A327149.
The non-covering version is A327231.
Connected bridged graphs (spanning edge-connectivity 1) are A327071.
BII-numbers of graphs with non-spanning edge-connectivity 1 are A327099.
Covering set-systems with non-spanning edge-connectivity 1 are A327129.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 25 2019
EXTENSIONS
Terms a(6) and beyond from Andrew Howroyd, Aug 27 2019
STATUS
approved
A327369 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1). +10
14
1, 1, 0, 1, 0, 1, 2, 0, 6, 0, 15, 12, 30, 4, 3, 314, 320, 260, 80, 50, 0, 13757, 10890, 5445, 1860, 735, 66, 15, 1142968, 640836, 228564, 64680, 16800, 2772, 532, 0, 178281041, 68362504, 17288852, 3666600, 702030, 115416, 17892, 1016, 105 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,7
LINKS
FORMULA
Column-wise binomial transform of A327377.
E.g.f.: exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - Andrew Howroyd, Oct 05 2019
EXAMPLE
Triangle begins:
1
1 0
1 0 1
2 0 6 0
15 12 30 4 3
314 320 260 80 50 0
13757 10890 5445 1860 735 66 15
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Count[Length/@Split[Sort[Join@@#]], 1]==k&]], {n, 0, 5}, {k, 0, n}]
PROG
(PARI)
Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167.
my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n));
my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n));
my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!)));
my(A=exp(x + U + subst(B-x, x, x*(1-y) + R)));
Vecrev(n!*polcoef(A, n), n + 1);
}
{ for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Oct 05 2019
CROSSREFS
Row sums are A006125.
Row sums without the first column are A245797.
Column k = 0 is A059167.
Column k = 1 is A277072.
Column k = 2 is A277073.
Column k = 3 is A277074.
Column k = n is A123023(n + 2).
Column k = n - 1 is A327370.
The unlabeled version is A327371.
The covering version is A327377.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 04 2019
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Sep 09 2019
STATUS
approved
page 1 2

Search completed in 0.020 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 09:16 EDT 2024. Contains 375511 sequences. (Running on oeis4.)