[go: up one dir, main page]

login
A327370
Number of labeled simple graphs with n vertices and exactly n - 1 endpoints (vertices of degree 1).
7
0, 1, 0, 6, 4, 50, 66, 532, 1016, 6876, 16750, 104456, 303612, 1821976, 6067166, 35857200, 133160176, 785514512, 3192117966, 18948962656, 83099447300, 498931946016, 2336474411062, 14234346694976, 70598633745576, 437304764440000, 2282139344678726, 14390600621415552
OFFSET
0,4
COMMENTS
Graphs consist of zero or more paths on two nodes each and either a single isolated node or a star with two or more peripheral nodes. - Andrew Howroyd, Sep 05 2019
LINKS
FORMULA
E.g.f.: x*exp(x^2/2)*(exp(x) - x). - Andrew Howroyd, Sep 05 2019
(n-1)*(n-2)*a(n) - n*(n-3)*(n-2)*a(n-1) - n*(n-1)^2*a(n-2) + (2*n-7)*n*(n-1)*(n-2)*a(n-3) - n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5) = 0. - Robert Israel, Sep 06 2019
EXAMPLE
The a(4) = 4 edge-sets:
{12,13,14}
{12,23,24}
{13,23,34}
{14,24,34}
MAPLE
f:= gfun:-rectoproc({(n-1)*(n-2)*a(n)-n*(n-3)*(n-2)*a(n-1)-n*(n-1)^2*a(n-2)+(2*n-7)*n*(n-1)*(n-2)*a(n-3)-n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0, a(0)=0, a(1)=1, a(2)=0, a(3)=6, a(4)=4}, a(n), remember):
map(f, [$0..40]); # Robert Israel, Sep 06 2019
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Count[Length/@Split[Sort[Join@@#]], 1]==n-1&]], {n, 0, 5}]
With[{nn=30}, CoefficientList[Series[x Exp[x^2/2](Exp[x]-x), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Apr 28 2022 *)
PROG
(PARI) seq(n)={Vec(serlaplace(x*exp(x^2/2 + O(x^n))*(exp(x + O(x^n))-x)), -(n+1))} \\ Andrew Howroyd, Sep 05 2019
CROSSREFS
Column k = n - 1 of A327369.
The unlabeled version is A028242.
Sequence in context: A098657 A126936 A333813 * A375789 A260716 A112521
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 04 2019
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Sep 05 2019
STATUS
approved