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The Enumeration of Mating-Type Graphs*

Ronald C. Read

Abstract

Mating-type graphs (M-graphs), in which no two vertices have the same set
of neighbours, are enumerated, as well as M-digraphs, defined similarly.

1 Introduction

In [1] Bull and Pease discuss a kind of graph that arises in the context of mat-
ing systems among animals. Let each vertex of a graph denote an individual
animal and let two vertices be joined if the two animals are compatible, i.e.,
can mate. If two animals have identical compatibilities they are said to be
of the same mating type, and in that case there is no point in their both
-wbeing represetned in the graph. Thus, for economy, the different vertices can
_ve taken instead to represent different mating types. It then follows that, in
such a graph, no two vertices have identical neighbourhoods, i.e., the same
set of adjacent vertices. This is the characteristic of “mating-type graphs”,
or “M-graphs” for short.

Definition 1.1 An M-graph is a finite graph, without loops or multiple
edges, with the property that no two vertices are adjacent to the same set
of vertices.

Bull and Pease gave the numbers of M-graphs on p vertices for p = 1 to 10.
These numbers were obtained from the catalogue of graphs whose construc-
tion was described in [2]. In this paper I give a theoretical enumeration of
M-graphs, deriving a generating function from which these numbers can be
found without constructing the graphs. The cognate problem of enumerating
M-digraphs (defined similazly) is also solved.

*The research for this paper was supported in part by Grant A8142
from the National Sciences and Engineering Research Council
of Canada.



o

2 Preliminaries

Any graph G has associated with it a unique M-graph, obtained by identify-
ing any two vertices which have the same set of adjacent vertices. Conversely,
we can obtain all the graphs which correspond in this way to a given M-graph
M, by replacing each vertex u of M; by a number of independent vertices
having the same adjacencies as u. The number of such vertices could be 1,
but clearly must not be 0.

To enumerate, by number of vertices, all the graphs obtained in this way
from M, is a simple exercise in Pélya’s Theorem (see [6]) and is effected by
substituting the figure counting series

:+zz+z3+z‘+...=z(1—z)"1

in the cycle-index Z(A;) of the automorphism group A; of M;. The result
is standardly written as

Z(Ay;z(1—z)™).

For the present problem this is not enough. We need to find the sum of
the cycle-indexes of the automorphism groups of the graphs thus obtained.
This we get by substituting in Z(A,) the sum of the cycle-indexes for the
set of graphs {E,} where E, denotes the empty (i.e., edgeless) graph on n
vertices, which is the replacement for a typical vertex of M;. This cycle- 1ndex
sum can be written as )

> 2(S)

r2>1
and the result of substituting this in Z(A;) is written as

Z(A)[D Z(Sn)]

21

the force of the substitution being that each variable s; in Z(A;) is replaced
by ¥ Z(S,) in which every s, is replaced by s;q.

If we now repeat this with every M-graph and sum the results, we obtain
a cycle-index sum which can be written as

Z(M)[D- 2(S.)] (2.1)

r>1



where M denotes the set of M-graphs and Z(AM) stands for the sum of the
cycle-indexes of the automorphism groups of these graphs.

The expression (2.1) therefore gives the sum of the cycle-indexes for all
inequivalent graphs obtained from M-graphs by the replacement of vertices
by sets of vertices as described above. By what was stated earlier, every
graph can be obtained uniquely in this way. Thus the result (2.1) must be
the same as the sum of cycle-indexes for all graphs. This gives us our basic
equation, namely

ZM)[>_2(5.)] = Z(9) (2.2)
r>1
where G stands for the set of all (nonisomorphic) graphs and Z(G) is the sum
of the corresponding cycle-indexes.
The next step is to invert (2.2) to obtain useful results about Z(M).

3 The Inversion

The method for doing this, as explained in [3], is to find a power series u(z)

such that
{3°Z(5)}Hu=) ==

r21

or, replacing the summation by an equivalent expression (see [4], page 52)

1 1

(&.- {ezp(s1 + gs2tgeat. .) = 1}u(z)) = (3.1)
The usual way to find p(z) is to compute its coefficients recursively (see [3]
again); but the present problem has the interesting feature that the function
p(z) assumes a particularly simple form, which can be verified with ease. In

fact, u(z) = = — z%. For after the necessary substitutions have been made,
the left-hand side of (3.1) becomes

ezp Z: (:1: ) -1 = ezp(kz: 1)k -1
= ezp(log(l + z)) -1

= T



Now that u(z) is found the rest of the inversion process is easy. We act on
p(z) with each side of (2.2) and obtain, for the left-hand side

(Z(M)[32 2(S:))k(=)]

r>1

which, since the substitution is associative, is the same as

Z(M)(X 2(S:))u(=)]] = Z(M)[z] (3.2
r2>1
Now the right-hand side of (3.2) is the cycle-index sum Z(M) with each
s; replaced by z'. This will give z" for each cycle-index in the sum which
has total weight n, and hence the right-hand side reduces to the required
generating function for M-graphs, of the form
M(z) =) myz®

p21

where m, is the number of M-graphs having p vertices.
The right-hand side of (2.2), after the substitution of u(z), becomes

Z(9)[z — =7 (3.3)

i.e., the cycle-index sum Z(G) with every s; replaced by z' — z%. Hence
if we can compute Z(G) we can find the required generating function for
M-graphs.

4 The Generating Function

To compute Z(G) we follow the method for enumerating graphs on a given
number p of vertices, as given, for example, in [4] or [5].

This is a straight-forward application of Pélya’s Theorem and yields the
result

Z(5;1 +y) (4.1)
where y marks edges, and S‘(,"') is the group of permutations induced on the
set of unordered pairs of p vertices by the group S, of all permutations of
the vertices themselves. It can be shown (op. cit.) that the term
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in Z(Sp) gives the term

TR CS | C-ud | L N
Mirip;! L S5, 2n+1 Slem(i,j)

1<i<j<p

in Z(S’(,z), where lem(t,7) and ged(z, j) denote the lowest common multiple
and greatest common division, respectively, of i and j. There is such a term
for every partition p = (1712723 ...) of p. (For this notation and others
below, see [7]).

If we want the total number of graphs on p vertices (that is, not broken
down by numbers of edges as given in (4.1) by the coefficients of various
powers of y) we put y = 1, so that each s; is replaced by 2. The total number
of graphs on p vertices is then given by

ST h2%
4

where
1
e = e
Pn
X, = ZnPZn +an2n+1 + Zn< 2) + Y. pipi ged(i, §)
1<i<ji<p

and the summation is over all partitions p of p.
To obtain the sum of the cycle-indexes of the graphs on p vertices, we have
merely to retain, for each term in (4.2), the monomial for the permutation

of the vertices, viz s7's3’ ... s/?. Thus, on summing for p > 0, we derive the
formula
Z2(G) =Y D h2%esr s . sr}.

p>0 P

Making the substitution of ¢ —z? in this expression, we obtain the generating
function for M-graphs in the form

S h2% H(z z%)%}

p>0 P i=1

which can be rewritten as

M(z) = Z{z"Zh 2%r H(l z')} (4.2)

p>0 =1
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The numbers of M-graphs for p = 1 to 12 have been calculated from (4.3).
The numbers for p = 1 to 10 agree with those given in {1]. The values for
p =11 and 12 are 912908876 and 154636289460 respectively.

5 M-Digraphs

The same method will enumerate M-digraphs, defined as digraphs in which
no two vertices have identical out- and in-neighbours. By replicating vertices
of an M-digraph, we can obtain any digraph, and hence we arrive at the

equation
ZM)>_ 2(S.)] = 2(D) (5.1)

r>1

where N represents the set of all M-digraphs and D the set of all digraphs.
This is the analogue of (2.2). Since the expression in brackets is the same as
before, the analysis is the same, and we obtain

Z(D)[z — 7] (5.2)

as the analogue of (3.3).
Proceeding as before but using the cycle-index of S,[f] - the group of
permutations of the ordered pairs of vertices induced by S;, we obtain the

formula o
St a2 10 - ) .

i=1
where
Z(m - l)pm + Zmpm(pm - 1) +2 Z PiPj ng("' J)
1<i<j<p
(for details of the cycle-index Z(S[?) see [4] or [5]).

Formula (5.3) has been used to compute the numbers of M-digraphs up
to p = 8. The numbers are

p 12 3 4 5 6 7 8
- | 1]2]12] 183 | 8884 [ 1495984 | 872987584 | 1787227218134
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6 Further Remarks

The simplicity of the above results - in particular, the fact that the function
p(z) assumes the particularly simple form z —z?, strongly suggests that there
is a simplier interpretation of the results obtain. Without going into details
we can readily convince ourselves that this is the case, and that what we have
here is a variation on the well-known principle of exclusion and inclusion.

Let us take every graph, and for each vertex a either leave it as it is or
replace it by two nonadjacent vertices having the same adjacencies as a. By
Pélya’s theorem the graphs obtained in this way are enumerated, by number
of vertices, by the generating function

Z(G;z + z?) (6.1)

with z marking vertices.

Let G be an M-graph with p vertices, and let G, be the graph on p + 1
vertices obtained by doubling the vertex a. If our aim is to count M-graphs,
then G, is not wanted. Now G, will appear as a graph in its own right (with
no duplicated vertices) and we can cancel this occurrence of it by regarding
the graph G, as having a negative sign attached to it. This would be the
case if we replaced z + z? by z — z? in (6.1).

Let Ga be a graph obtained from the M-graph G by duplicating exactly
o vertices a and b. Again we want the occurrence of G in its own right

be cancelled, but this time both the graphs G, and G, (with the obvious
‘notation) will occur negatively. Thus the occurrence of G will be over-
compensated for, and one occurrence will have to be re-instated. To ensure
this we must regard G, as being counted positively. Proceeding in this was,
we see that graphs to which an even number of extra vertices have been
added must be counted positively, while those with an odd number of extra
vertices should be counted negatively. All this is catered for by the change
from Z(G;z + z?) to Z(G; z — z?).

This explanation is over-simplified. For example, it takes no account of
the group action on the graphs. This line of investigation will not be pursued
further here; suffice it to say that formula (3.3) exhibits in a somewhat more
complicated manner than usual the pattern of cancellations and reinstate-
ments that are characteristic of applications of the principle of exclusion and
inclusion.
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7 Labelled M-Graphs

The enumeration of labelled M-graphs, though of lesser interest, is worth a
brief mention. It is easily performed from first principles.

Consider how to obtain graphs on n labelled vertices by replicating ver-
tices in M-graphs with k labelled vertices. To do this we take the set of n
labels and divide them into k nonempty subsets. These subsets are then used
to label the vertices of the M-graph, each subset providing the labels for the
replications of the vertex to which it is attached. The number of subsets is
the Stirling number of the second kind S(n, k), [8] page 48, and hence the
total number of labelled graphs on n vertices will be

> arS(n, k)

k>0
where ay is the number of labelled M-graphs with k vertices. But the number
of labelled graphs on n vertices is known; it is 237(n-1) (see [5] page 3). Hence
we have

2571 = 3" g, S(n, k) (7.1)
k>0

By virtue of the inverse relation which holds between the two kinds of Stirling
numbers, (8.1) can be inverted to give

ap = Z 2%n(n~1)3(n,k) (7_(

n>0

where the s(n, k) denote Stirling numbers of the first kind. This completes
the enumeration of labelled M-graphs.

The enumeration of labelled M-digraphs is similar, the only difference
being the replacement of 23™"~1) by 2%"-1). Thus if b, is the number of
M-digraphs on k labelled vertices, we have

b= M= g(n, k) (7.3)

n>0

Specific values for a; and b; can be easily found from (8.2) and (8.3). A few
values are given in the table below.

k1 2 3 4 5 6 7 8
ap |[1]1]| 4 32 588 | 21476 | 1551368 | 218218610
by [ 13| 54| 3750 | 1009680 - - -
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