[go: up one dir, main page]

login
A059166
Number of n-node connected labeled graphs without endpoints.
21
1, 1, 0, 1, 10, 253, 12058, 1052443, 169488200, 51045018089, 29184193354806, 32122530765469967, 68867427921051098084, 290155706369032525823085, 2417761578629525173499004146, 40013923790443379076988789688611, 1318910080173114018084245406769861936
OFFSET
0,5
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 404.
LINKS
FORMULA
a(n) = Sum_{i=0..n} (-1)^i*binomial(n, i)*c(n-i)*(n-i)^i, for n>2, a(0)=1, a(1)=1, a(2)=0, where c(n) is number of n-node connected labeled graphs (cf. A001187).
E.g.f.: 1 + x^2/2 + log(Sum_{n >= 0} 2^binomial(n, 2)*(x*exp(-x))^n/n!).
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, May 14 2015
Logarithmic transform of A100743, if we assume a(1) = 0. - Gus Wiseman, Aug 15 2019
MAPLE
c:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*c(k), k=1..n-1)/n)
end:
a:= n-> max(0, add((-1)^i*binomial(n, i)*c(n-i)*(n-i)^i, i=0..n)):
seq(a(n), n=0..20); # Alois P. Heinz, Oct 27 2017
MATHEMATICA
Flatten[{1, 1, 0, Table[n!*Sum[(-1)^(n-j)*SeriesCoefficient[1+Log[Sum[2^(k*(k-1)/2)*x^k/k!, {k, 0, j}]], {x, 0, j}]*j^(n-j)/(n-j)!, {j, 0, n}], {n, 3, 15}]}] (* Vaclav Kotesovec, May 14 2015 *)
c[0] = 1; c[n_] := c[n] = 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]*2^((n-k)*(n - k - 1)/2)*c[k], {k, 1, n-1}]/n; a[0] = a[1] = 1; a[2] = 0; a[n_] := Sum[(-1)^i*Binomial[n, i]*c[n-i]*(n-i)^i, {i, 0, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 27 2017, using Alois P. Heinz's code for c(n) *)
PROG
(PARI) seq(n)={Vec(serlaplace(1 + x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))))} \\ Andrew Howroyd, Sep 09 2018
CROSSREFS
Cf. A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A004110 (n-node unlabeled graphs without endpoints).
Sequence in context: A114450 A178689 A095983 * A100743 A251588 A126468
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jan 12 2001
EXTENSIONS
More terms from John Renze (jrenze(AT)yahoo.com), Feb 01 2001
STATUS
approved