[go: up one dir, main page]

login
Search: a294217 -id:a294217
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).
+10
9
1, 1, 0, 1, 0, 1, 2, 0, 2, 0, 5, 1, 3, 1, 1, 16, 6, 7, 2, 3, 0, 78, 35, 25, 8, 7, 2, 1, 588, 260, 126, 40, 20, 6, 4, 0, 8047, 2934, 968, 263, 92, 25, 13, 3, 1, 205914, 53768, 11752, 2434, 596, 140, 47, 12, 5, 0, 10014882, 1707627, 240615, 34756, 5864, 1084, 256, 58, 21, 4, 1
OFFSET
0,7
FORMULA
Column-wise partial sums of A327372.
EXAMPLE
Triangle begins:
1;
1, 0;
1, 0, 1;
2, 0, 2, 0;
5, 1, 3, 1, 1;
16, 6, 7, 2, 3, 0;
78, 35, 25, 8, 7, 2, 1;
588, 260, 126, 40, 20, 6, 4, 0;
8047, 2934, 968, 263, 92, 25, 13, 3, 1;
...
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
G(n)={sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, (1 - x^p[i])/(1 - (x*y)^p[i]) + O(x*x^(n-k)))); x^k*s/k!)*(1-x^2*y)/(1-x^2*y^2)}
T(n)={my(v=Vec(G(n))); vector(#v, n, Vecrev(v[n], n))}
my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 22 2021
CROSSREFS
Row sums are A000088.
Row sums without the first column are A141580.
Columns k = 0..2 are A004110, A325115, A325125.
Column k = n is A059841.
Column k = n - 1 is A028242.
The labeled version is A327369.
The covering case is A327372.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 04 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Sep 05 2019
STATUS
approved
Triangle read by rows: T(n,k) is the number of graphs with n vertices and maximum vertex degree k, (0 <= k < n).
+10
8
1, 1, 1, 1, 1, 2, 1, 2, 4, 4, 1, 2, 8, 12, 11, 1, 3, 15, 43, 60, 34, 1, 3, 25, 121, 360, 378, 156, 1, 4, 41, 378, 2166, 4869, 3843, 1044, 1, 4, 65, 1095, 14306, 68774, 113622, 64455, 12346, 1, 5, 100, 3441, 104829, 1141597, 3953162, 4605833, 1921532, 274668
OFFSET
1,6
COMMENTS
Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A327366. Burnside's lemma can be used to extend this method to the unlabeled case. - Andrew Howroyd, Mar 10 2020
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..210 (first 20 rows)
FindStat - Combinatorial Statistic Finder, The degree of a graph
Eric Weisstein's World of Mathematics, Maximum Vertex Degree
FORMULA
From Geoffrey Critzer, Sep 10 2016: (Start)
G.f. for column k=0: A(x)=1/(1-x).
G.f. for column k=1: B(x)=x^2/((1-x^2)(1-x)).
G.f. for column k=2: 1/((1-x)(1-x^2))*Product_{i>=3} 1/(1-x^i)^2 - B(x) - A(x).
(End)
T(n, 0) = 1.
T(n, n - 1) = A000088(n - 1).
T(n, k) = A294217(n, n - 1 - k). - Andrew Howroyd, Sep 03 2019
EXAMPLE
Triangle begins:
1,
1, 1,
1, 1, 2,
1, 2, 4, 4,
1, 2, 8, 12, 11,
1, 3, 15, 43, 60, 34,
1, 3, 25, 121, 360, 378, 156,
1, 4, 41, 378, 2166, 4869, 3843, 1044,
...
CROSSREFS
Row sums are A000088 (simple graphs on n nodes).
Column k=2 is A324740.
Diagonals include A000088(n-1), A324693, A324670.
Cf. A294217 (triangle of n-node minimum vertex degree counts).
Cf. A327366.
KEYWORD
nonn,tabl,nice
AUTHOR
Christian Stump, Oct 13 2015
EXTENSIONS
Rows n=9 and 10 added by Eric W. Weisstein, Oct 24 2017
STATUS
approved
Number of labeled simple graphs with n vertices and exactly n - 1 endpoints (vertices of degree 1).
+10
7
0, 1, 0, 6, 4, 50, 66, 532, 1016, 6876, 16750, 104456, 303612, 1821976, 6067166, 35857200, 133160176, 785514512, 3192117966, 18948962656, 83099447300, 498931946016, 2336474411062, 14234346694976, 70598633745576, 437304764440000, 2282139344678726, 14390600621415552
OFFSET
0,4
COMMENTS
Graphs consist of zero or more paths on two nodes each and either a single isolated node or a star with two or more peripheral nodes. - Andrew Howroyd, Sep 05 2019
LINKS
FORMULA
E.g.f.: x*exp(x^2/2)*(exp(x) - x). - Andrew Howroyd, Sep 05 2019
(n-1)*(n-2)*a(n) - n*(n-3)*(n-2)*a(n-1) - n*(n-1)^2*a(n-2) + (2*n-7)*n*(n-1)*(n-2)*a(n-3) - n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5) = 0. - Robert Israel, Sep 06 2019
EXAMPLE
The a(4) = 4 edge-sets:
{12,13,14}
{12,23,24}
{13,23,34}
{14,24,34}
MAPLE
f:= gfun:-rectoproc({(n-1)*(n-2)*a(n)-n*(n-3)*(n-2)*a(n-1)-n*(n-1)^2*a(n-2)+(2*n-7)*n*(n-1)*(n-2)*a(n-3)-n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0, a(0)=0, a(1)=1, a(2)=0, a(3)=6, a(4)=4}, a(n), remember):
map(f, [$0..40]); # Robert Israel, Sep 06 2019
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Count[Length/@Split[Sort[Join@@#]], 1]==n-1&]], {n, 0, 5}]
With[{nn=30}, CoefficientList[Series[x Exp[x^2/2](Exp[x]-x), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Apr 28 2022 *)
PROG
(PARI) seq(n)={Vec(serlaplace(x*exp(x^2/2 + O(x^n))*(exp(x + O(x^n))-x)), -(n+1))} \\ Andrew Howroyd, Sep 05 2019
CROSSREFS
Column k = n - 1 of A327369.
The unlabeled version is A028242.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 04 2019
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Sep 05 2019
STATUS
approved
Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and minimum vertex-degree k.
+10
6
1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 23, 31, 9, 1, 0, 256, 515, 227, 25, 1, 0, 5319, 15381, 10210, 1782, 75, 1, 0, 209868, 834491, 815867, 221130, 15564, 231, 1, 0, 15912975, 83016613, 116035801, 47818683, 5499165, 151455, 763, 1, 0, 2343052576, 15330074139, 29550173053, 18044889597, 3291232419, 158416629, 1635703, 2619, 1, 0
OFFSET
0,7
COMMENTS
The minimum vertex-degree of the empty graph is infinity. It has been included here under k = 0. - Andrew Howroyd, Mar 09 2020
EXAMPLE
Triangle begins:
1
1 0
1 1 0
4 3 1 0
23 31 9 1 0
256 515 227 25 1 0
5319 15381 10210 1782 75 1 0
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], k==If[#=={}||Union@@#!=Range[n], 0, Min@@Length/@Split[Sort[Join@@#]]]&]], {n, 0, 5}, {k, 0, n}]
PROG
(PARI)
GraphsByMaxDegree(n)={
local(M=Map(Mat([x^0, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(merge(r, p, v)=acc(p + sum(i=1, poldegree(p)-r-1, polcoef(p, i)*(1-x^i)), v));
my(recurse(r, p, i, q, v, e)=if(i<0, merge(r, x^e+q, v), my(t=polcoef(p, i)); for(k=0, t, self()(r, p, i-1, (t-k+x*k)*x^i+q, binomial(t, k)*v, e+k))));
for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i, 1]); recurse(n-k, p, poldegree(p), 0, src[i, 2], 0)));
Mat(M);
}
Row(n)={if(n==0, [1], my(M=GraphsByMaxDegree(n), u=vector(n+1)); for(i=1, matsize(M)[1], u[n-poldegree(M[i, 1])]+=M[i, 2]); u)}
{ for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 09 2020
CROSSREFS
Row sums are A006125.
Row sums without the first column are A006129.
Row sums without the first two columns are A100743.
Column k = 0 is A327367(n > 0).
Column k = 1 is A327227.
The unlabeled version is A294217.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 04 2019
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Sep 09 2019
STATUS
approved
Triangle read by rows where T(n,k) is the number of unlabeled simple graphs covering n vertices with exactly k endpoints (vertices of degree 1).
+10
5
1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 3, 1, 1, 1, 1, 11, 5, 4, 1, 2, 0, 62, 29, 18, 6, 4, 2, 1, 510, 225, 101, 32, 13, 4, 3, 0, 7459, 2674, 842, 223, 72, 19, 9, 3, 1, 197867, 50834, 10784, 2171, 504, 115, 34, 9, 4, 0, 9808968, 1653859, 228863, 32322, 5268, 944, 209, 46, 16, 4, 1
OFFSET
0,11
FORMULA
Column-wise first differences of A327371.
EXAMPLE
Triangle begins:
1
0 0
0 0 1
1 0 1 0
3 1 1 1 1
11 5 4 1 2 0
PROG
(PARI) \\ Needs G(n) defined in A327371.
T(n)={my(v=Vec(G(n)*(1 - x))); vector(#v, n, Vecrev(v[n], n))}
my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 11 2024
CROSSREFS
Row sums are A002494.
Column k = 0 is A261919.
The non-covering version is A327371.
The labeled version is A327377.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 04 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Sep 11 2019
STATUS
approved
Number of simple graphs on n unlabeled nodes with minimum degree exactly 1.
+10
4
0, 1, 1, 4, 12, 60, 378, 3843, 64455, 1921532, 104098702, 10348794144, 1893781768084, 639954768875644, 400905675004630820, 467554784370658979194, 1019317687720204607541914, 4170177760438554428852944352, 32130458453030025927403299167172
OFFSET
1,4
FORMULA
a(n) = A002494(n) - A261919(n).
First differences of A141580. - Andrew Howroyd, Jan 11 2021
CROSSREFS
Column k = 1 of A294217.
A diagonal of A263293.
The labeled version is A327227.
The generalization to set-systems is A327335, with covering case A327230.
Unlabeled covering graphs are A002494.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 03 2019
STATUS
approved
Number of simple graphs on n unlabeled nodes with minimum degree exactly 2.
+10
2
0, 0, 1, 2, 8, 43, 360, 4869, 113622, 4605833, 325817259, 40350371693, 8825083057727, 3447229161054412, 2432897732375453872, 3135299553791882831175, 7445569254636418368355175, 32831169277561326131677454356, 270499962116368309216399255404116
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Minimum Vertex Degree
FORMULA
a(n) = A261919(n) - A007111(n).
CROSSREFS
Column k=2 of A294217.
A diagonal of A263293.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 03 2019
STATUS
approved
Number of simple graphs on n unlabeled nodes with maximum degree exactly 2.
+10
2
0, 0, 2, 4, 8, 15, 25, 41, 65, 100, 150, 225, 327, 474, 678, 962, 1348, 1884, 2602, 3581, 4889, 6644, 8968, 12064, 16124, 21476, 28462, 37585, 49407, 64747, 84495, 109936, 142522, 184226, 237350, 304977, 390669, 499169, 636039, 808468, 1024996, 1296573, 1636151
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Maximum Vertex Degree
FORMULA
a(n) = A003292(n) - A008619(n).
PROG
(PARI) seq(n) = Vec( (1-x)*(1-x^2)/prod(k=1, n, 1 - x^k + O(x*x^n))^2 - 1/((1-x)*(1-x^2)), -n) \\ Andrew Howroyd, Sep 03 2019
CROSSREFS
Column k=2 of A263293.
A diagonal of A294217.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 03 2019
STATUS
approved

Search completed in 0.008 seconds