[go: up one dir, main page]

login
Search: a195017 -id:a195017
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of odd parts in the partition having Heinz number n.
+10
75
0, 1, 0, 2, 1, 1, 0, 3, 0, 2, 1, 2, 0, 1, 1, 4, 1, 1, 0, 3, 0, 2, 1, 3, 2, 1, 0, 2, 0, 2, 1, 5, 1, 2, 1, 2, 0, 1, 0, 4, 1, 1, 0, 3, 1, 2, 1, 4, 0, 3, 1, 2, 0, 1, 2, 3, 0, 1, 1, 3, 0, 2, 0, 6, 1, 2, 1, 3, 1, 2, 0, 3, 1, 1, 2, 2, 1, 1, 0, 5, 0, 2, 1, 2, 2, 1, 0, 4
OFFSET
1,4
COMMENTS
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
REFERENCES
George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
Miklós Bóna, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.
LINKS
FORMULA
From Amiram Eldar, Jun 17 2024: (Start)
Totally additive with a(p) = 1 if primepi(p) is odd, and 0 otherwise.
a(n) = A257992(n) + A195017(n). (End)
EXAMPLE
a(12) = 2 because the partition having Heinz number 12 = 2*2*3 is [1,1,2], having 2 odd parts.
MAPLE
with(numtheory): a := proc (n) local B, ct, q: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for q to nops(B(n)) do if `mod`(B(n)[q], 2) = 1 then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 135);
# second Maple program:
a:= n-> add(`if`(numtheory[pi](i[1])::odd, i[2], 0), i=ifactors(n)[2]):
seq(a(n), n=1..120); # Alois P. Heinz, May 09 2016
MATHEMATICA
a[n_] := Sum[If[PrimePi[i[[1]]] // OddQ, i[[2]], 0], {i, FactorInteger[n]} ]; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Dec 10 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 18 2015
STATUS
approved
Numbers with as many even as odd prime indices, counted with multiplicity.
+10
64
1, 6, 14, 15, 26, 33, 35, 36, 38, 51, 58, 65, 69, 74, 77, 84, 86, 90, 93, 95, 106, 119, 122, 123, 141, 142, 143, 145, 156, 158, 161, 177, 178, 185, 196, 198, 201, 202, 209, 210, 214, 215, 216, 217, 219, 221, 225, 226, 228, 249, 262, 265, 278, 287, 291, 299
OFFSET
1,2
COMMENTS
These are Heinz numbers of the integer partitions counted by A045931.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The integers in the multiplicative subgroup of positive rational numbers generated by the products of two consecutive primes (A006094). The sequence is closed under multiplication, prime shift (A003961), and - where the result is an integer - under division. Using these closures, all the terms can be derived from the presence of 6. For example, A003961(6) = 15, A003961(15) = 35, 6 * 35 = 210, 210/15 = 14. Closed also under A297845, since A297845 can be defined using squaring, prime shift and multiplication. - Peter Munn, Oct 05 2020
LINKS
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
6: {1,2}
14: {1,4}
15: {2,3}
26: {1,6}
33: {2,5}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
51: {2,7}
58: {1,10}
65: {3,6}
69: {2,9}
74: {1,12}
77: {4,5}
84: {1,1,2,4}
86: {1,14}
90: {1,2,2,3}
93: {2,11}
95: {3,8}
MATHEMATICA
Select[Range[100], Total[Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>k*(-1)^PrimePi[p]]]==0&]
PROG
(PARI) is(n) = {my(v = vector(2), f = factor(n)); for(i = 1, #f~, v[1 + primepi(f[i, 1])%2]+=f[i, 2]); v[1] == v[2]} \\ David A. Corneth, Oct 06 2020
(Python)
from sympy import factorint, primepi
def ok(n):
v = [0, 0]
for p, e in factorint(n).items(): v[primepi(p)%2] += e
return v[0] == v[1]
print([k for k in range(300) if ok(k)]) # Michael S. Branicky, Apr 16 2022 after David A. Corneth
CROSSREFS
Positions of 0's in A195017.
A257992(n) = A257991(n).
Closed under: A003961, A003991, A297845.
Subsequence of A028260, A332820.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 17 2019
STATUS
approved
Numbers n such that n = product (p_k)^(c_k) and set of its (c_k k's)'s is a self-conjugate partition, where p_k is k-th prime and c_k > 0.
+10
61
1, 2, 6, 9, 20, 30, 56, 75, 84, 125, 176, 210, 264, 350, 416, 441, 624, 660, 735, 1088, 1100, 1386, 1560, 1632, 1715, 2310, 2401, 2432, 2600, 3267, 3276, 3648, 4080, 5390, 5445, 5460, 5888, 6800, 7546, 7722, 8568, 8832, 9120, 12705, 12740, 12870, 13689
OFFSET
1,2
COMMENTS
The Heinz numbers of the self-conjugate partitions. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] to be Product(p_j-th prime, j=1..r) (a concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 1, 4] we get 2*2*2*7 = 56. It is in the sequence since [1,1,1,4] is self-conjugate. - Emeric Deutsch, Jun 05 2015
LINKS
EXAMPLE
20 is in the sequence because 20 = 2^2 * 5^1 = (p_1)^2 *(p_3)^1, (two 1's, one 3's) = (1,1,3) is a self-conjugate partition of 5.
From Gus Wiseman, Jun 28 2022: (Start)
The terms together with their prime indices begin:
1: ()
2: (1)
6: (2,1)
9: (2,2)
20: (3,1,1)
30: (3,2,1)
56: (4,1,1,1)
75: (3,3,2)
84: (4,2,1,1)
125: (3,3,3)
176: (5,1,1,1,1)
210: (4,3,2,1)
264: (5,2,1,1,1)
(End)
MAPLE
with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0: for i to nops(P) do if j <= P[i] then c := c+1 else end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: SC := {}: for i to 14000 do if c(i) = i then SC := `union`(SC, {i}) else end if end do: SC; # Emeric Deutsch, May 09 2015
MATHEMATICA
Select[Range[14000], Function[n, n == If[n == 1, 1, Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@ Length@ l, m = Min@ l}, Length@ Union@ l]] &@ Catenate[ConstantArray[PrimePi@ #1, #2] & @@@ FactorInteger@ n]]]] (* Michael De Vlieger, Aug 27 2016, after JungHwan Min at A122111 *)
PROG
(Scheme, with Antti Karttunen's Intseq-library)
(define A088902 (FIXED-POINTS 1 1 A122111))
CROSSREFS
Fixed points of A122111.
A002110 (primorial numbers) is a subsequence.
After a(1) and a(2), a subsequence of A241913.
These partitions are counted by A000700.
The same count comes from A258116.
The complement is A352486, counted by A330644.
These are the positions of zeros in A352491.
A000041 counts integer partitions, strict A000009.
A325039 counts partitions w/ product = conjugate product, ranked by A325040.
Heinz number (rank) and partition:
- A003963 = product of partition, conjugate A329382.
- A008480 = number of permutations of partition, conjugate A321648.
- A056239 = sum of partition.
- A296150 = parts of partition, reverse A112798, conjugate A321649.
- A352487 = less than conjugate, counted by A000701.
- A352488 = greater than or equal to conjugate, counted by A046682.
- A352489 = less than or equal to conjugate, counted by A046682.
- A352490 = greater than conjugate, counted by A000701.
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Nov 28 2003
EXTENSIONS
More terms from David Wasserman, Aug 26 2005
STATUS
approved
Number of even parts in the partition having Heinz number n.
+10
61
0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0, 2, 1, 0, 2, 0, 0, 1, 0, 1, 3, 1, 1, 1, 0, 0, 1, 0, 1, 2, 1, 1, 2, 0, 0, 2, 1, 0, 2, 0, 0, 1, 2, 0, 1, 1, 1, 3, 0, 1, 2, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 0, 4, 0, 0, 2, 0, 1, 2
OFFSET
1,9
COMMENTS
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
REFERENCES
George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.
Miklós Bóna, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.
LINKS
FORMULA
From Amiram Eldar, Jun 17 2024: (Start)
Totally additive with a(p) = 1 if primepi(p) is even, and 0 otherwise.
a(n) = A257991(n) - A195017(n). (End)
EXAMPLE
a(18) = 2 because the partition having Heinz number 18 = 2*3*3 is [1,2,2], having 2 even parts.
MAPLE
with(numtheory): a := proc (n) local B, ct, q: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for q to nops(B(n)) do if `mod`(B(n)[q], 2) = 0 then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 135);
# second Maple program:
a:= n-> add(`if`(numtheory[pi](i[1])::even, i[2], 0), i=ifactors(n)[2]):
seq(a(n), n=1..120); # Alois P. Heinz, May 09 2016
MATHEMATICA
a[n_] := Sum[If[PrimePi[i[[1]]] // EvenQ, i[[2]], 0], {i, FactorInteger[n]} ]; a[1] = 0; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Dec 10 2016 after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 18 2015
STATUS
approved
Number of partitions of n with equal number of even and odd parts.
+10
60
1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 5, 7, 9, 11, 16, 18, 25, 28, 41, 44, 62, 70, 94, 107, 140, 163, 207, 245, 302, 361, 440, 527, 632, 763, 904, 1090, 1285, 1544, 1812, 2173, 2539, 3031, 3538, 4202, 4896, 5793, 6736, 7934, 9221, 10811, 12549, 14661, 16994, 19780
OFFSET
0,6
COMMENTS
The trivariate g.f. with x marking weight (i.e., sum of the parts), t marking number of odd parts and s marking number of even parts, is 1/product((1-tx^(2j-1))(1-sx^(2j)), j=1..infinity). - Emeric Deutsch, Mar 30 2006
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..3500 (first 1001 terms from David W. Wilson)
FORMULA
G.f.: Sum_{k>=0} x^(3*k)/Product_{i=1..k} (1-x^(2*i))^2. - Vladeta Jovovic, Aug 18 2007
a(n) = A000041(n)-A171967(n) = A130780(n)-A108950(n) = A171966(n)-A108949(n). - Reinhard Zumkeller, Jan 21 2010
a(n) = A000041(n) - A108950(n) - A108949(n) = A130780(n) + A171966(n) - A000041(n). - Gus Wiseman, Jan 23 2022
EXAMPLE
a(9) = 5 because we have [8,1], [7,2], [6,3], [5,4] and [2,2,2,1,1,1].
From Gus Wiseman, Jan 23 2022: (Start)
The a(0) = 1 through a(12) = 9 partitions (A = 10, empty columns indicated by dots):
() . . 21 . 32 2211 43 3221 54 3322 65 4332
41 52 4211 63 4321 74 4431
61 72 4411 83 5322
81 5221 92 5421
222111 6211 A1 6321
322211 6411
422111 7221
8211
22221111
(End)
MAPLE
g:=1/product((1-t*x^(2*j-1))*(1-s*x^(2*j)), j=1..30): gser:=simplify(series(g, x=0, 56)): P[0]:=1: for n from 1 to 53 do P[n]:=subs(s=1/t, coeff(gser, x^n)) od: seq(coeff(t*P[n], t), n=0..53); # Emeric Deutsch, Mar 30 2006
MATHEMATICA
p[n_] := p[n] = Select[IntegerPartitions[n], Count[#, _?OddQ] == Count[#, _?EvenQ] &]; t = Table[p[n], {n, 0, 10}] (* partitions of n with # odd parts = # even parts *)
TableForm[t] (* partitions, vertical format *)
Table[Length[p[n]], {n, 0, 30}] (* A045931 *)
(* Peter J. C. Moses, Mar 10 2014 *)
CROSSREFS
The version for subsets of {1..n} is A001405.
Dominated by A027187 (partitions of even length).
More odd/even parts: A108950/A108949.
More or same number of odd/even parts: A130780/A171966.
The strict case is A239241.
This is column k = 0 of the triangle A240009.
Counting only distinct parts gives A241638, ranked by A325700.
A half-conjugate version is A277579.
These partitions are ranked by A325698.
A000041 counts integer partitions, strict A000009.
A047993 counts balanced partitions, ranked by A106529.
A257991/A257992 count odd/even parts by Heinz number.
KEYWORD
nonn
STATUS
approved
Alternating bit sum for n: replace 2^k with (-1)^k in binary expansion of n.
+10
44
0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, -2, -1, -3, -2, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2
OFFSET
0,6
COMMENTS
Notation: (2)[n](-1)
From David W. Wilson and Ralf Stephan, Jan 09 2007: (Start)
a(n) is even iff n in A001969; a(n) is odd iff n in A000069.
a(n) == 0 (mod 3) iff n == 0 (mod 3).
a(n) == 0 (mod 6) iff (n == 0 (mod 3) and n/3 not in A036556).
a(n) == 3 (mod 6) iff (n == 0 (mod 3) and n/3 in A036556). (End)
a(n) = A030300(n) - A083905(n). - Ralf Stephan, Jul 12 2003
From Robert G. Wilson v, Feb 15 2011: (Start)
First occurrence of k and -k: 0, 1, 2, 5, 10, 21, 42, 85, ..., (A000975); i.e., first 0 occurs for 0, first 1 occurs for 1, first -1 occurs at 2, first 2 occurs for 5, etc.;
a(n)=-3 only if n mod 3 = 0,
a(n)=-2 only if n mod 3 = 1,
a(n)=-1 only if n mod 3 = 2,
a(n)= 0 only if n mod 3 = 0,
a(n)= 1 only if n mod 3 = 1,
a(n)= 2 only if n mod 3 = 2,
a(n)= 3 only if n mod 3 = 0, ..., . (End)
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 20 2011
In the Koch curve, number the segments starting with n=0 for the first segment. The net direction (i.e., the sum of the preceding turns) of segment n is a(n)*60 degrees. This is since in the curve each base-4 digit 0,1,2,3 of n is a sub-curve directed respectively 0, +60, -60, 0 degrees, which is the net 0,+1,-1,0 of two bits in the sum here. - Kevin Ryde, Jan 24 2020
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..65535 (terms 0..1000 from Harry J. Smith)
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197. [Preprint.]
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.
H.-K. Hwang, S. Janson and T.-H. Tsai. Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications. ACM Transactions on Algorithms, 13:4 (2017), #47. DOI:10.1145/3127585.
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 45.
William Paulsen, wpaulsen(AT)csm.astate.edu, Partitioning the [prime] maze
Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
FORMULA
G.f.: (1/(1-x)) * Sum_{k>=0} (-1)^k*x^2^k/(1+x^2^k). - Ralf Stephan, Mar 07 2003
a(0) = 0, a(2n) = -a(n), a(2n+1) = 1-a(n). - Ralf Stephan, Mar 07 2003
a(n) = Sum_{k>=0} A030308(n,k)*(-1)^k. - Philippe Deléham, Oct 20 2011
a(n) = -a(floor(n/2)) + n mod 2. - Reinhard Zumkeller, Mar 20 2015
a(n) = A139351(n) - A139352(n). - Kevin Ryde, Jan 24 2020
G.f. A(x) satisfies: A(x) = x / (1 - x^2) - (1 + x) * A(x^2). - Ilya Gutkovskiy, Jul 28 2021
a(n) = A195017(A019565(n)). - Antti Karttunen, Jun 19 2024
EXAMPLE
Alternating bit sum for 11 = 1011 in binary is 1 - 1 + 0 - 1 = -1, so a(11) = -1.
MAPLE
A065359 := proc(n) local dgs ; dgs := convert(n, base, 2) ; add( -op(i, dgs)*(-1)^i, i=1..nops(dgs)) ; end proc: # R. J. Mathar, Feb 04 2011
MATHEMATICA
f[0]=0; f[n_] := Plus @@ (-(-1)^Range[ Floor[ Log2@ n + 1]] Reverse@ IntegerDigits[n, 2]); Array[ f, 107, 0]
PROG
(PARI)
SumAD(x)= { local(a=1, s=0); while (x>9, s+=a*(x-10*(x\10)); x\=10; a=-a); return(s + a*x) }
baseE(x, b)= { local(d, e=0, f=1); while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) }
{ for (n=0, 1000, b=baseE(n, 2); write("b065359.txt", n, " ", SumAD(b)) ) } \\ Harry J. Smith, Oct 17 2009
(PARI) for(n=0, 106, s=0; u=1; for(k=0, #binary(n)-1, s+=bittest(n, k)*u; u=-u); print1(s, ", ")) /* Washington Bomfim, Jan 18 2011 */
(PARI) a(n) = my(b=binary(n)); b*[(-1)^k|k<-[-#b+1..0]]~; \\ Ruud H.G. van Tol, Oct 16 2023
(Haskell)
a065359 0 = 0
a065359 n = - a065359 n' + m where (n', m) = divMod n 2
-- Reinhard Zumkeller, Mar 20 2015
(Python)
def a(n):
return sum((-1)**k for k, bi in enumerate(bin(n)[2:][::-1]) if bi=='1')
print([a(n) for n in range(107)]) # Michael S. Branicky, Jul 13 2021
(Python)
from sympy.ntheory import digits
def A065359(n): return sum((0, 1, -1, 0)[i] for i in digits(n, 4)[1:]) # Chai Wah Wu, Jul 19 2024
CROSSREFS
Cf. A005536 (partial sums), A056832 (abs first differences), A010060 (mod 2), A039004 (indices of 0's).
Cf. also A004718.
Cf. analogous sequences for bases 3-10: A065368, A346688, A346689, A346690, A346691, A346731, A346732, A055017 and also A373605 (for primorial base).
KEYWORD
base,easy,sign
AUTHOR
Marc LeBrun, Oct 31 2001
EXTENSIONS
More terms from Ralf Stephan, Jul 12 2003
STATUS
approved
Integers in the multiplicative subgroup of positive rationals generated by the products of two consecutive primes and the cubes of primes. Numbers k for which A048675(k) is a multiple of three.
+10
25
1, 6, 8, 14, 15, 20, 26, 27, 33, 35, 36, 38, 44, 48, 50, 51, 58, 63, 64, 65, 68, 69, 74, 77, 84, 86, 90, 92, 93, 95, 106, 110, 112, 117, 119, 120, 122, 123, 124, 125, 141, 142, 143, 145, 147, 156, 158, 160, 161, 162, 164, 170, 171, 177, 178, 185, 188, 196, 198, 201, 202, 208, 209, 210, 214, 215, 216, 217, 219, 221, 225
OFFSET
1,2
COMMENTS
The positive integers are partitioned between this sequence, A332821 and A332822, which list the integers in respective cosets of the subgroup.
As the sequence lists the integers in a multiplicative subgroup of the positive rationals, the sequence is closed under multiplication and, provided the result is an integer, under division.
It follows that for any n in this sequence, all powers n^k are present (k >= 0), as are all cubes.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting numbers are a permutation of the full sequence; and if we take the square root of each square term we get the full sequence.
There are no primes in the sequence, therefore if k is present and p is a prime, k*p and k/p are absent (noting that k/p might not be an integer). This property extends from primes to all terms of A050376 (often called Fermi-Dirac primes), therefore to squares of primes, 4th powers of primes etc.
The terms are the even numbers in A332821 halved. The terms are also the numbers m such that 5m is in A332821, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332822, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332822, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332821, which consists exactly of those numbers. These properties extend in a pattern of alternating primes as described in the previous paragraph.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.
If m and n are in this sequence then so is m*n (the definition of "multiplicative semigroup"), while if n is in this sequence, and x is in the complement A359830, then n*x is in A359830. This essentially follows from the fact that A048675 is totally additive sequence. Compare to A329609. - Antti Karttunen, Jan 17 2023
FORMULA
{a(n) : n >= 1} = {1} U {2 * A332822(k) : k >= 1} U {A003961(a(k)) : k >= 1}.
{a(n) : n >= 1} = {1} U {a(k)^2 : k >= 1} U {A331590(2, A332822(k)) : k >= 1}.
From Peter Munn, Mar 17 2021: (Start)
{a(n) : n >= 1} = {k : k >= 1, 3|A048675(k)}.
{a(n) : n >= 1} = {k : k >= 1, 3|A195017(k)}.
{a(n) : n >= 1} = {A332821(k)/2 : k >= 1, 2|A332821(k)}.
{a(n) : n >= 1} = {A332822(k)/3 : k >= 1, 3|A332822(k)}.
(End)
MATHEMATICA
Select[Range@ 225, Or[Mod[Total@ #, 3] == 0 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]], # == 1] &] (* Michael De Vlieger, Mar 15 2020 *)
PROG
(PARI) isA332820(n) = { my(f = factor(n)); !((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); };
CROSSREFS
Positions of zeros in A332823; equivalently, numbers in row 3k of A277905 for some k >= 0.
Cf. A048675, A195017, A332821, A332822, A353350 (characteristic function), A353348 (its Dirichlet inverse), A359830 (complement).
Subsequences: A000578\{0}, A006094, A090090, A099788, A245630 (A191002 in ascending order), A244726\{0}, A325698, A338471, A338556, A338907.
Subsequence of {1} U A268388.
KEYWORD
nonn
AUTHOR
Antti Karttunen and Peter Munn, Feb 25 2020
EXTENSIONS
New name from Peter Munn, Mar 08 2021
STATUS
approved
Encoded multiplication table for polynomials in one indeterminate with nonnegative integer coefficients. Symmetric square array T(n, k) read by antidiagonals, n > 0 and k > 0. See comment for details.
+10
24
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 90, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
OFFSET
1,5
COMMENTS
For any number n > 0, let f(n) be the polynomial in a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials in a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; T(n, k) = g(f(n) * f(k)).
This table has many similarities with A248601.
For any n > 0 and m > 0, f(n * m) = f(n) + f(m).
Also, f(1) = 0 and f(2) = 1.
The function f can be naturally extended to the set of positive rational numbers: if r = u/v (not necessarily in reduced form), then f(r) = f(u) - f(v); as such, f is a homomorphism from the multiplicative group of positive rational numbers to the additive group of polynomials of a single indeterminate x with integer coefficients.
See A297473 for the main diagonal of T.
As a binary operation, T(.,.) is related to A306697(.,.) and A329329(.,.). When their operands are terms of A050376 (sometimes called Fermi-Dirac primes) the three operations give the same result. However the rest of the multiplication table for T(.,.) can be derived from these results because T(.,.) distributes over integer multiplication (A003991), whereas for A306697 and A329329, the equivalent derivation uses distribution over A059896(.,.) and A059897(.,.) respectively. - Peter Munn, Mar 25 2020
From Peter Munn, Jun 16 2021: (Start)
The operation defined by this sequence can be extended to be the multiplicative operator of a ring over the positive rationals that is isomorphic to the polynomial ring Z[x]. The extended function f (described in the author's original comments) is the isomorphism we use, and it has the same relationship with the extended operation that exists between their unextended equivalents.
Denoting this extension of T(.,.) as t_Q(.,.), we get t_Q(n, 1/k) = t_Q(1/n, k) = 1/T(n, k) and t_Q(1/n, 1/k) = T(n, k) for positive integers n and k. The result for other rationals is derived from the distributive property: t_Q(q, r*s) = t_Q(q, r) * t_Q(q, s); t_Q(q*r, s) = t_Q(q, s) * t_Q(r, s). This may look unusual because standard multiplication of rational numbers takes on the role of the ring's additive group.
There are many OEIS sequences that can be shown to be a list of the integers in an ideal of this ring. See the cross-references.
There are some completely additive sequences that similarly define by extension completely additive functions on the positive rationals that can be shown to be homomorphisms from this ring onto the integer ring Z, and these functions relate to some of the ideals. For example, the extended function of A048675, denoted A048675_Q, maps i/j to A048675(i) - A048675(j) for positive integers i and j. For any positive integer k, the set {r rational > 0 : k divides A048675_Q(r)} forms an ideal of the ring; for k=2 and k=3 the integers in this ideal are listed in A003159 and A332820 respectively.
(End)
LINKS
Encyclopedia of Mathematics, Additive arithmetic function
Encyclopedia of Mathematics, Isomorphism
Eric Weisstein's World of Mathematics, Distributive
Eric Weisstein's World of Mathematics, Ring.
Wikipedia, Polynomial ring
FORMULA
T is completely multiplicative in both parameters:
- for any n > 0
- and k > 0 with prime factorization Prod_{i > 0} prime(i)^e_i:
- T(prime(n), k) = T(k, prime(n)) = Prod_{i > 0} prime(n + i - 1)^e_i.
For any m > 0, n > 0 and k > 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 2^i) = n^i for any i >= 0,
- T(n, 4) = n^2 (A000290),
- T(n, 8) = n^3 (A000578),
- T(n, 3) = A003961(n),
- T(n, 3^i) = A003961(n)^i for any i >= 0,
- T(n, 6) = A191002(n),
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- A001222(T(n, k)) = A001222(n) * A001222(k),
- A055396(T(n, k)) = A055396(n) + A055396(k) - 1 when n > 1 and k > 1,
- A061395(T(n, k)) = A061395(n) + A061395(k) - 1 when n > 1 and k > 1,
- T(A000040(n), A000040(k)) = A000040(n + k - 1),
- T(A000040(n)^i, A000040(k)^j) = A000040(n + k - 1)^(i * j) for any i >= 0 and j >= 0.
From Peter Munn, Mar 13 2020 and Apr 20 2021: (Start)
T(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
T(n, m*k) = T(n, m) * T(n, k); T(n*m, k) = T(n, k) * T(m, k) (T distributes over multiplication).
A104244(m, T(n, k)) = A104244(m, n) * A104244(m, k).
For example, for m = 2, the above formula is equivalent to A048675(T(n, k)) = A048675(n) * A048675(k).
A195017(T(n, k)) = A195017(n) * A195017(k).
A248663(T(n, k)) = A048720(A248663(n), A248663(k)).
T(n, k) = A306697(n, k) if and only if T(n, k) = A329329(n, k).
A007913(T(n, k)) = A007913(T(A007913(n), A007913(k))) = A007913(A329329(n, k)).
(End)
EXAMPLE
Array T(n, k) begins:
n\k| 1 2 3 4 5 6 7 8 9 10
---+------------------------------------------------
1| 1 1 1 1 1 1 1 1 1 1 -> A000012
2| 1 2 3 4 5 6 7 8 9 10 -> A000027
3| 1 3 5 9 7 15 11 27 25 21 -> A003961
4| 1 4 9 16 25 36 49 64 81 100 -> A000290
5| 1 5 7 25 11 35 13 125 49 55 -> A357852
6| 1 6 15 36 35 90 77 216 225 210 -> A191002
7| 1 7 11 49 13 77 17 343 121 91
8| 1 8 27 64 125 216 343 512 729 1000 -> A000578
9| 1 9 25 81 49 225 121 729 625 441
10| 1 10 21 100 55 210 91 1000 441 550
From Peter Munn, Jun 24 2021: (Start)
The encoding, n, of polynomials, f(n), that is used for the table is further described in A206284. Examples of encoded polynomials:
n f(n) n f(n)
1 0 16 4
2 1 17 x^6
3 x 21 x^3 + x
4 2 25 2x^2
5 x^2 27 3x
6 x + 1 35 x^3 + x^2
7 x^3 36 2x + 2
8 3 49 2x^3
9 2x 55 x^4 + x^2
10 x^2 + 1 64 6
11 x^4 77 x^4 + x^3
12 x + 2 81 4x
13 x^5 90 x^2 + 2x + 1
15 x^2 + x 91 x^5 + x^3
(End)
PROG
(PARI) T(n, k) = my (f=factor(n), p=apply(primepi, f[, 1]~), g=factor(k), q=apply(primepi, g[, 1]~)); prod (i=1, #p, prod(j=1, #q, prime(p[i]+q[j]-1)^(f[i, 2]*g[j, 2])))
CROSSREFS
Row n: n=1: A000012, n=2: A000027, n=3: A003961, n=4: A000290, n=5: A357852, n=6: A191002, n=8: A000578.
Main diagonal: A297473.
Functions f satisfying f(T(n,k)) = f(n) * f(k): A001222, A048675 (and similarly, other rows of A104244), A195017.
Powers of k: k=3: A000040, k=4: A001146, k=5: A031368, k=6: A007188 (see also A066117), k=7: A031377, k=8: A023365, k=9: main diagonal of A329050.
Integers in the ideal of the related ring (see Jun 2021 comment) generated by S: S={3}: A005408, S={4}: A000290\{0}, S={4,3}: A003159, S={5}: A007310, S={5,4}: A339690, S={6}: A325698, S={6,4}: A028260, S={7}: A007775, S={8}: A000578\{0}, S={8,3}: A191257, S={8,6}: A332820, S={9}: A016754, S={10,4}: A340784, S={11}: A008364, S={12,8}: A145784, S={13}: A008365, S={15,4}: A345452, S={15,9}: A046337, S={16}: A000583\{0}, S={17}: A008366.
Equivalent sequence for polynomial composition: A326376.
Related binary operations: A003991, A306697/A059896, A329329/A059897.
KEYWORD
nonn,tabl,mult
AUTHOR
Rémy Sigrist, Jan 10 2018
EXTENSIONS
New name from Peter Munn, Jul 17 2021
STATUS
approved
Heinz numbers of non-self-conjugate integer partitions.
+10
24
3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
OFFSET
1,1
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. The sequence lists all Heinz numbers of partitions whose Heinz number is different from that of their conjugate.
FORMULA
a(n) != A122111(a(n)).
EXAMPLE
The terms together with their prime indices begin:
3: (2)
4: (1,1)
5: (3)
7: (4)
8: (1,1,1)
10: (3,1)
11: (5)
12: (2,1,1)
13: (6)
14: (4,1)
15: (3,2)
16: (1,1,1,1)
17: (7)
18: (2,2,1)
For example, the self-conjugate partition (4,3,3,1) has Heinz number 350, so 350 is not in the sequence.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
conj[y_]:=If[Length[y0]==0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
Select[Range[100], #!=Times@@Prime/@conj[primeMS[#]]&]
CROSSREFS
The complement is A088902, counted by A000700.
These partitions are counted by A330644.
These are the positions of nonzero terms in A352491.
A000041 counts integer partitions, strict A000009.
A098825 counts permutations by unfixed points.
A238349 counts compositions by fixed points, rank statistic A352512.
A325039 counts partitions w/ same product as conjugate, ranked by A325040.
A352523 counts compositions by unfixed points, rank statistic A352513.
Heinz number (rank) and partition:
- A003963 = product of partition, conjugate A329382
- A008480 = number of permutations of partition, conjugate A321648.
- A056239 = sum of partition
- A122111 = rank of conjugate partition
- A296150 = parts of partition, reverse A112798, conjugate A321649
- A352487 = less than conjugate, counted by A000701
- A352488 = greater than or equal to conjugate, counted by A046682
- A352489 = less than or equal to conjugate, counted by A046682
- A352490 = greater than conjugate, counted by A000701
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 20 2022
STATUS
approved
Number of even parts in the conjugate of the integer partition with Heinz number n.
+10
23
0, 0, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 1, 3, 1, 0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 0, 1, 2, 1, 0, 1, 0, 0, 0, 1, 0, 0, 4, 2, 2, 0, 0, 1, 3, 1, 2, 1, 0, 2, 0, 1, 0, 1, 3, 1, 0, 0, 2, 2, 0, 1, 0, 1, 1, 0, 4, 1, 0, 0, 2, 1, 0, 2, 3, 1, 2
OFFSET
1,9
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so a(n) counts even prime indices of n.
FORMULA
a(n) = A344616(n) - A350941(n).
a(n) = A257992(A122111(n)).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
conj[y_]:=If[Length[y]==0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
Table[Count[conj[primeMS[n]], _?EvenQ], {n, 100}]
CROSSREFS
Positions of first appearances are A001248.
The triangular version is A116482.
Positions of zeros are A346635.
Subtracting from the number of odd conjugate parts gives A350941.
Subtracting from the number of odd parts gives A350942.
Subtracting from the number of even parts gives A350950.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847 (this sequence).
There are six possible pairings of statistics:
- A325698: # of even parts = # of odd parts, counted by A045931.
- A349157: # of even parts = # of odd conjugate parts, counted by A277579.
- A350848: # of even conj parts = # of odd conj parts, counted by A045931.
- A350943: # of even conjugate parts = # of odd parts, counted by A277579.
- A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
- A350945: # of even parts = # of even conjugate parts, counted by A350948.
There are three possible double-pairings of statistics:
- A350946, counted by A351977.
- A350949, counted by A351976.
- A351980, counted by A351981.
The case of all four statistics equal is A350947, counted by A351978.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents partition conjugation using Heinz numbers.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 14 2022
STATUS
approved

Search completed in 0.053 seconds