OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with the same number of even prime indices as odd conjugate prime indices.
These are also partitions for which the number of even parts is equal to the positive alternating sum of the parts.
EXAMPLE
The terms and their prime indices begin:
1: ()
4: (1,1)
6: (2,1)
15: (3,2)
16: (1,1,1,1)
21: (4,2)
24: (2,1,1,1)
25: (3,3)
35: (4,3)
60: (3,2,1,1)
64: (1,1,1,1,1,1)
77: (5,4)
84: (4,2,1,1)
90: (3,2,2,1)
91: (6,4)
96: (2,1,1,1,1,1)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
conj[y_]:=If[Length[y]==0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
Select[Range[100], Count[primeMS[#], _?EvenQ]==Count[conj[primeMS[#]], _?OddQ]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 21 2022
STATUS
approved